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Abstract—One of the main challenges in containing the Coronoavirus
disease 2019 (COVID-19) pandemic stems from the difficulty in carrying
out efficient mass diagnosis over large populations. The leading method
to test for COVID-19 infection utilizes qualitative polymerase chain reac-
tion, implemented using dedicated machinery which can simultaneously
process a limited amount of samples. A candidate method to increase the
test throughput is to examine pooled samples comprised of a mixture of
samples from different patients. In this work we study pooling-based
COVID-19 tests. We identify the specific requirements of COVID-19
testing, including the need to characterize the infection level and to
operate in a one-shot fashion, which limit the application of traditional
group-testing (GT) methods. We then propose a multi-level GT scheme,
designed specifically to meet the unique requirements of COVID-19 tests,
while exploiting the strength of GT theory to enable accurate recovery
using much fewer tests than patients. Our numerical results demonstrate
that multi-level GT reliably and efficiently detects the infection levels,
while achieving improved accuracy over previously proposed one-shot
COVID-19 pooled-testing methods.

I. INTRODUCTION

The Coronoavirus disease 2019 (COVID-19) pandemic has already
forced lockdowns all over the globe, and has claimed more than a
million lives worldwide. In order to handle and contain the pandemic
in the absence of a vaccine, large portions of the population should be
frequently tested [1]. One of the main difficulties in doing so stems
from the limited testing resources and the lengthy duration required
to identify the presence of an infection [2].

The main diagnosis tool for COVID-19 tests is based on RNA
extraction via qualitative reverse transcription polymerase chain re-
action (RT-qPCR). Although various technological alternatives have
been proposed [3], [4], the RT-qPCR process remains the leading
and most widely spread method for COVID-19 testing. The output
of this procedure represents an estimate of the viral load in the tested
sample [5]. The main bottleneck associated with this form of COVID-
19 testing follows from the fact that each RT-qPCR machine can
simultaneously process a fixed number of samples, and its procedure
tends to be quite lengthy, on the order of a few hours for each test.

A promising method to increase the efficiency of COVID-19 tests
is based on pooling [6], [7]. Here, each sample processed by the
RT-qPCR machine is comprised of a mixture of several samples taken
from different patients. When the infected patients constitute a small
subset of the overall tested individuals, pooling-based schemes allow
accurate recovery using a number of tests which is notably smaller
than the number of patients [8]. Several recovery schemes for pooled
COVID-19 tests have been recently proposed [7], [9]–[15], which
can be divided according to the two main mathematical frameworks
for such recovery procedures: The first is group testing (GT) theory,
originally derived for detecting infections in large populations [16],
which was used in [6], [7], [9]; The second framework is compressed
sensing (CS), which deals with the recovery of sparse signals [17],
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and was utilized for pooled COVID-19 tests in [10]–[15].
The main difference between classical GT and CS is that GT deals

with group detection problems, which results in binary variables, i.e.,
each subject can be either infected or not infected [8], while CS-
based methods result in real-valued variables. Although group testing
is traditionally adaptive, requiring multiple sequential tests based on
previous ones [16], it can also be applied in a one-shot (non-adaptive)
manner [18]. CS focuses on the one-shot recovery of sparse real-
valued vectors from lower-dimensional linear projections, and thus
each subject can take any real value number [17]. The additional
domain knowledge of GT, namely, the more restricted domain over
which it operates compared to CS, allows it in some applications
to achieve improved recovery guarantees over CS, in terms of fewer
measurements required, as suggested in [19], [20] for the quantization
of sparse signals. Nonetheless, in the context of COVID-19 testing,
one is often interested not only in detecting whether or not a patient
is infected, but also in some score on the level of the viral load
[11], as can be provided using CS tools. The fact that each of these
mathematical frameworks has its own pros and cons for COVID-19
testing, motivates the design of a recovery method which combines
GT with one-shot operation and multi-level detection, as in CS.

In this work we propose a multi-level GT recovery scheme for
pooled COVID-19 testing, which is a GT-based method designed
to account for the unique characteristics of pooled COVID-19 tests.
The proposed technique extends GT schemes to detect multiple levels
of viral load, building upon our previous results on combining GT
with CS concepts and multi-level discretization in [19]. The resulting
multi-level GT scheme operates in a one-shot manner, and is designed
to avoid dilution due to mixing too many samples in each pool [21].

We begin by identifying the specific requirements which arise from
the setup of pooled COVID-19 testing. In light of these requirements,
we derive the multi-level GT method, which is comprised of a
dedicated testing matrix, i.e., pooling pattern, as well as a GT-based
recovery method. Our numerical evaluations, which use the model
proposed in [11] for pooled RT-qPCR testing, demonstrate that the
proposed multi-level GT scheme reliably recovers the infection levels,
while operating at a limited computational burden, and achieving
improved accuracy over previously proposed CS-based approaches.

The rest of this paper is organized as follows: In Section II we
review the pooled COVID-19 testing setup. Section III presents the
proposed multi-level GT scheme. Section IV details the simulation
study, and Section V provides concluding remarks.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x. Matrices are denoted with boldface upper-case letters,
e.g., M . Sets are expressed with calligraphic letters, e.g., X , and Xn

is the nth order Cartesian power of X .

II. SYSTEM MODEL

In this section we present the system model for which we derive the
recovery algorithm described in Section III. As our main application
is pooled COVID-19 tests, we begin by identifying the specific char-
acteristics which arise from this application in Subsection II-A, based
on which we present our problem formulation in Subsection II-B.

A. Pooled COVID-19 Tests
The common approach in testing for the presence of COVID-19

is based on the RT-qPCR method. Here, a sample is collected, most
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Fig. 1: Pooled RT-qPCR testing with one-shot recovery.

commonly swab-based. The presence of infection is then examined
by RNA extraction via RT-qPCR measurements, quantifying the viral
load in the sample. The RT-qPCR process is quite time consuming (on
the typical order of several hours), and can simultaneously examine
up to a given number of m inputs (commonly on the order of several
tens of samples). This results in a major bottleneck, particularly when
the number of patients, denoted by n, is much larger than m.

A candidate approach to reduce the test duration, which is consid-
ered in this paper, utilizes pooling [6]. Pooling is based on mixing
the samples of groups of patients together, forming m mixed samples
out of the overall n patients. Then, the presence of COVID-19 for
each of the tested individuals is recovered from the mixed RT-qPCR
measurements, either directly, i.e., in a one-shot fashion, or in an
adaptive manner, which involves additional tests [22]. To formulate
the problem of designing pooling-based recovery techniques for
COVID-19 tests, we note the following characteristics of this testing
procedure which have to be accounted for:

A1 : The number of infected measurements, denoted by k, is much
smaller than the number of tested individuals n. Typically k ≤
0.1n, i.e., up to 10% of the tested population is infected.

A2 : One is interested not in only identifying whether a subject is
infected or not, but also in some discrete score on the viral load.
For example, possible outputs are no (no virus), low (borderline),
mid (infected), and high (highly infected).

A3 : The RT-qPCR measurements are noisy, i.e., some level of ran-
dom distortion is induced in the overall process, encapsulating
the randomness in the acquisition of the samples, their mixing,
and the RT-qPCR reading.

A4 : It is preferable to carry out one-shot tests, i.e., fully identify
all subjects from a single RT-qPCR operation, without having
to carry out additional tests based on the results.

A5 : There is a limit, denoted by L > 1, on the number of subjects
which can be mixed together in a single measurement. A typical
limit on the number of subjects mixed together is L = 32 [6].
Furthermore, the portion taken from each sample for the pooled
measurements is identical, e.g., one cannot mix 30% from one
patient with 70% from another patient into a single pool.

An illustration of the overall flow of pooled RT-qPCR-based COVID-
19 testing along with the desired one-shot recovery operation is
depicted in Fig. 1. On the left side of the figure, we see the true
viral loads of all n items. In particular, we see that the first item is
infected in a medium level, the fourth item is infected in a low level,
and all other items are not infected. Next, pooling is done based on a
testing matrix, which is generated prior to obtaining the samples. For
example, the first pooled test involves samples from the first, third,
and fifth items. This results in a measurements vector, denoted by z.
This vector is fed to the recovery algorithm, which is able to tell in
one-shot that the first item is infected in a medium level, the fourth
item is infected in a low level, and all other items are not infected.

B. Problem Formulation
Based on the characteristics of pooled COVID-19 tests detailed

above, we consider the following problem: Let x ∈ Rn
+ be a vector

whose entries are the viral loads of the n patients. By A1 it holds that
x is k-sparse, i.e., ‖x‖0 ≤ k. The pooling operation is represented
by the matrix A ∈ {0, 1}m×n. Let l(i) ≤ L denote the number of
subjects mixed together in the ith individual pool, i ∈ {1, . . . ,m}.
This implies that the ith row of A, denoted AT

i , is l(i)-sparse by A5.
The viral loads of the pooled samples are represented by the vector
z ∈ Rm

+ , whose entries are given by

zi =
1

l(i)
AT

i x, i ∈ {1, . . . ,m}, (1)

where the factor 1
l(i)

and the structure of A guarantee that identical
portions are taken from each sample in a pool-test, as required in
A5. The RT-qPCR measurements, denoted by y ∈ Rm

+ , are given by
some stochastic mapping f : R+ 7→ R+ of z, which represents the
distortion detailed in A3. We write the measurement as y = f(z),
where f(·) is carried out element-wise.

To formulate our objective, we note that by A2, we are interested
in recovering a discrete representation of the viral load. We thus
define the discretization mapping Q : R+ 7→ Q, where Q is a finite
set containing the possible decisions. Our goal is thus to design an
algorithm which maps the RT-qPCR measurements y into an estimate
of the discretized viral loads, denoted by x̂ ∈ Qn, for the objective
of minimizing the error probability, defined as

e(x̂) ,
1

n

n∑
i=1

Pr (Q(xi) 6= x̂i) . (2)

The fact that x̂ is obtained directly from y indicates that the algorithm
operates in a one-shot fashion, as required in A4.

To conclude, for the subset of infected items, of size k, from n, the
goal in multi-level pooled COVID-19 tests is to design an m×n one-
shot measurement matrix which guarantees that at most L subjects
are mixed in each pool-test and a recovery algorithm, such that by
observing z we can identify the subset of infected items and their
discrete representation of the viral load.

III. MULTI-LEVEL GROUP TESTING

In this section, we provide an efficient scheme which implements
GT with multiple decisions. The sparsity assumption A1 implies that
the recovery of pooled RT-qPCR tests can be treated as a sparse
recovery problem, as was also noted in previous works on pooled
COVID-19 testing [7], [9]–[15]. Sparse recovery is typically studied
under either the framework of GT [8], or that of CS [17]. Broadly
speaking, GT deals with sparse recovery of binary variables, i.e., it
can recover whether a subject is infected or not. In order to evaluate
the actual levels of each tested subject, as requested in A2, one
would have to re-run the RT-qPCR test, violating requirement A4. The
alternative approach of CS operates over the domain of real numbers,
namely, it attempts to identify the exact cycle threshold or viral load
for each subject, and thus tends to be less accurate compared to
GT, as it does not exploit the fact that one is only interested in
a discrete grade value by A2. This motivates the derivation of a
dedicated algorithm for pooled COVID-19 recovery, which harnesses
the strength of GT theory while extending it to the multi-level
domain. The proposed multi-level GT method designed in light of
the model assumptions detailed in the previous section, is presented
in Subsection III-A, followed by a discussion in Subsection III-B.

A. Pooled-Testing Algorithm
Multi-level GT is comprised of three components: The design

of the testing matrix A; the pooling operation; and the recovery
algorithm which determines the discrete level associated with each
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subject based on the results of the pooled tests. We next elaborate on
each of these components.

1) Testing Matrix: To determine the testing matrix A, we first set
the number of the pool-tests m to be (1+ε)k log2 n, for some ε > 0.
This is the sufficient number of pool-test for reliable recovery in GT
using the optimal Maximum likelihood (ML) decoder [23], [24].

Once m is fixed, we proceed to setting A. The traditional GT
method of generating A is to draw its elements in an i.i.d. fashion
according to a Bernoulli distribution with parameter p. A Common
choice for p in GT theory is p = 1 − 2−1/k, for which the
probability of each element in z to be zero is 1/2. This choice of p is
obviously impractical, as k is unknown, so p is chosen using a rough
approximation of k. A major drawback of this approach is that A5 is
not necessarily satisfied. We therefore consider an alternative method
of generating A, which forces the columns of A, as well as the
rows of A, to be “typical”. That is, we want every column/row to
have exactly dp · me ≤ L and dp · ne ones, respectively. Since
in practical COVID-19 testing setups, one is interested in using a
fixed deterministic matrix, rather than having to work with random
matrices, we generate A once before the pooling starts. That is, the
same testing matrix can be used for multiple pooling experiments.

2) Pooling: After the testing matrix A is generated, it determines
which samples are pooled together. The pooling process is done as
detailed in Section II.

3) Recovery Algorithm: The proposed recovery algorithm is given
in Algorithm 1. It operates in two main steps as detailed next.

At the first step, the algorithm identifies efficiently all of the
definitely defective (DD) items in two stages, without determining
the infection level. In the first stage of the first step, the definitely
not defective (DND) algorithm [25] is used (lines 2 and 14-22). Recall
that the number of pool-tests m, corresponding to the testing matrix
A, is fixed to allow ML detection. The DND algorithm attempts to
match the columns of A with the vector y. In particular, if column j
of A has a non-zero entry while the correpodponding element in y is
zero, the column is assumed not to correspond to a defective subject.
This algorithm finds most of the subjects that are DND and drastically
reduces the number of possible defective (PD) items. In practice, as
demonstrated empirically in Fig. 2b, in the non-asymptomatic regime
as we consider herein for COVID-19, the set of subjects declared as
PD after this stage, denoted P , approximately satisfies |P| = O(k).
The remaining n − |P| subjects are declared not defective. In the
second stage of the first step, the ML algorithm [23] is used only
over the smaller set of PD subjects P , to identify exactly the set
D of k DD subjects (lines 3 and 23-25). The ML algorithm looks
for a collection of k columns in A, for which y is most likely. In
the formulation Q(·)0,1 is a binary quantization mapping, and in the
ML rule we denote by K the set of actual defective subjects, and by
Ω(P, k) the set of

(|P|
k

)
combinations of k defective subjects in P .

In the second step, the algorithm estimates the infection level
of each subject in the set of identified defective subjects D, in an
iterative fashion (lines 4-13). Let D(i) be the i-th element of D, and
AD denote the matrix created by taking the columns of D from A.
For a test in which only one infected subject participates according to
the testing matrix (lines 7-8), the algorithm can recover the viral load
directly from the measurement (lines 9-10). To obtain a discrete score,
the measured value is quantized using a threshold-based quantization
mapping Q(·). Then the algorithm subtracts the viral load of that
subject from all the tests in which it participates (line 11), and repeats
until it recovers the infection levels of all declared infected subjects,
denoted by S (line 6).
B. Discussion

The novelty of our algorithm stems from the efficiency in the first
step with few pool-tests, and the iterative process in the second step,

Algorithm 1 Multi-level GT recovery
Input: A,y
Output: S . S contains index and infection level tuples
1: S ← ∅

Step 1: Detection of defective subjects
2: P ← DND(Q0,1(y),A) . P contains PD items
3: D ← ML(Q0,1(y),A,P) . D contains DD items

Step 2: Iterative viral load detection
4: Â← AD
5: ȳ ←

∑
i∈DAi

6: while |S| < K do
7: for all i s.t. ȳi = 1 do
8: j ← index s.t. Âi,j = 1

9: x̂i ← Q(yi)

10: S = S ∪ {(D(j), x̂i)}
11: ȳ ← ȳ −Aj

12: end for
13: end while

Definitely Not Defective (DND) [18] for m = (1 + ε)k log2 n

14: procedure DND(Q0,1(y),A)
15: P ← {1, . . . , n}
16: for all i s.t. Q0,1(y)i = 0 do
17: for all j s.t. Ai,j = 1 do
18: P ← P \ {j}
19: end for
20: end for
21: return P
22: end procedure

Maximum Likelihood (ML) [23] only for P (not for n)

23: procedure ML(Q0,1(y),A,P)
24: return arg maxD∈Ω(P,k) P (Q0,1(y) | A,K = D)
25: end procedure

which determines the discrete infection level of each item. Here, we
note a few remarks arising from the proposed multi-level GT scheme.

In Subsection III-A we describe how the testing matrix A is
generated. The description involves a random generation procedure,
for which the resulting matrix is not guaranteed to satisfy A5. The
motivation for using such random procedures as in GT theory stems
from their provable performance guarantees [8]. Once a typical testing
matrix satisfying A5 is selected, one does not have to generate a new
matrix for each group of n patients.

According to GT theory, for n i.i.d. tested individuals, the al-
gorithm which maximizes the probability of finding the infected
items (though not necessarily their levels) is the ML algorithm.
However, its complexity is burdensome, as it has to consider

(
n
k

)
options [26], [27]. An efficient alternative is the DND algorithm, also
known as column matching [18], [25], [28], whose time complexity
is O(kn logn) [24]. However, it requires a greater amount of
pooled measurements compared to the ML algorithm in order to
reliably identify the detective items. Our proposed multi-level GT
method combines the concepts of DND with the ML algorithm,
while extending them to operate over non-binary fields, i.e., recover
multiple levels rather than just identifying which subject is defective.
Performing DND on all n items using the number of tests set to allow
ML detection, i.e., m = (1+ε)k log2 n, results in a smaller set of PD
subjects P . Given P , the ML decoder has to consider significantly
less options,

(|P|
k

)
, which is likely to be computationally feasible and

considerably faster than considering all
(
n
k

)
combinations.

In the second step of the algorithm proposed, we analyze the
tests in which only one infected subject participates according to A.
This process, when restricted to operate over binary variables, was
proposed as means to identify the DD subjects in GT [25]. Unlike
[25], we utilize this process in iterative fashion after the DD subjects
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Fig. 2: Performance evaluation of one-shot multi-level GT over 200 iterations, with n = 105, k = 5 and with 4 infection levels.
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Fig. 3: Confusion matrices of one-shot multi-level GT.

are already detected to determine the viral load infection over the non-
binary field. By subtracting the viral load of each detected subject in
the iterative algorithm, we reduce the number of pool-tests in [25] to
the one required in the ML algorithm. In the case where it is possible
to identify the number of infected subjects in a pool-test, by observing
its measurement, we noticed empirically that it is possible to achieve
the lower bound number of pool test suggested for GT using ML
algorithm, i.e., m ≈ log2

(
n
k

)
≤ k log2(n/k) [18], [23]. We leave

this interesting case and the analytical and complexity analysis of the
proposed iterative algorithm as future work.

IV. NUMERICAL EVALUATIONS

We assessed the performance of our method using the RT-qPCR-
based COVID-19 test model of [11]. The elements of the test matrix
are chosen such that the rows and columns of A are typical. The
number of items selected in the first example is n = 105, out of
which k = 5 items are defective, and with 4 infection levels. The
viral load of each defective item is drawn from a uniform distribution
between [0, 1000] as in [11]. The infection level score is based on
the following division of this interval into 4 regions: [0, 50) = no;
[50, 300) = low (borderline); [300, 700) = mid; and > 700 = high.

The success probability of Algorithm 1 versus m is depicted in
Fig. 2a, compared to the ML lower/upper bound on the number of
tests m from GT theory, as described in [23]. We evaluate forms of
the success probability measure: here an error is declared when there
is at least a single defective subject who is not detected out of a set
of n patients, as well as when there is at least one patient whose
infection level is not correctly recovered. From the plot, we see that
the success probability of finding the defective items and the success
probability of finding the infection levels coincide. That is, whenever
the defective set was recovered successfully, the correct infection
levels were also estimated successfully, indicating the validity of step
2 of Algorithm 1. We also see that when the number of tests is at
the ML upper bound, the probability of success approaches one.

Fig. 2b shows the number of true positives, i.e. the number of
defective subjects that are declared defective. We can see that when
the number of tests m matches the upper bound, we have no false
negatives with high probability. In the context of COVID-19, false
negatives are considered to be the worst outcomes of a test. Fig. 2c
illustrates the probability of the detected non-defective subjects after
the DND stage in Algorithm 1. This is calculated as the number of
non-defective items declared by the DND algorithm, divided by the

total number of non-defective items. We see that when the number
of tests is as the upper bound of ML dictates, the DND algorithm
identifies ≈ 95

100
= 95% of the subjects as non-defective, i.e., |P| ≈

2k. These will be candidates to be tested in the second stage of
ML algorithm as PD, demonstrating the notable complexity reduction
achieved by the two-step process.

The results in Figs. 2a-2c evaluate the error probability, but do not
capture which forms of errors are produced when using Algorithm 1.
Therefore, we depict in Fig. 3 the confusion matrix for the considered
scenario, as well as when repeating the setup with a much larger
amount of patients of n = 961, using merely m ∈ {70, 93} pool-
tests. The values (n,m) ∈ {(105, 45), (961, 93)} were also used in
[11], which applied CS tools for recovery. Observing Fig. 3, we note
that most of the errors reported in fact correspond to identifying low-
level and mid-level subjects as mid and high, respectively. Such errors
are much less harmful in COVID-19 tests compared to reporting non-
infected subjects as defective, which occurs only ≈ 0.1% of the times
for (n,m) = (105, 45) in Fig. 3a, which is similar to the results
achieved in [11] for such setups. This behavior is more notable when
jointly testing n = 961 subjects in Figs. 3b-3c. Comparing these
results to [11], it is noted that multi-level GT achieves improved
false positive and false negative probabilities with only m = 70 test-
pools compared to that achieved using all CS methods examined in
[11] with m = 93 test-pools. For instance, for (n,m) = (961, 93)
[11] reported false positive probabilities varying from 0.1% to 0.8%,
while the corresponding probability in Fig. 3b is 0.0%. This indicates
the potential of multi-level GT in facilitating pooled testing of large
numbers of subjects. The noise in the RT-qPCR measurements causes
degradation in the level’s detection. In further work, we will consider
an additional algorithmic step to reduce this noise degradation.

V. CONCLUSIONS

In this work we proposed a scheme coined multi-level GT for
one-shot pooled COVID-19 tests. We first identified the unique
characteristics and requirements of RT-qPCR-based COVID-19 tests.
Based on these requirements, we designed multi-level GT to combine
traditional GT methods with one-shot operation and multi-level out-
puts, while implementing a preliminary DND detection mechanism to
facilitate recovery at reduced complexity. Our numerical evaluations
demonstrate that multi-level GT reliably identifies the infection levels
when examining a much smaller number of samples compared to the
number of tested subjects.
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