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Abstract—To mitigate the outbreak of highly contagious
COVID-19, we need a sensitive, robust automated diagnostic
tool. This paper proposes a three-level approach to separate
the cases of COVID-19, pneumonia from normal patients using
chest CT scans. At the first level, we fine tune a multi-scale
ResNet50 model for feature extraction from all the slices of CT
scan for each patient. By using multi-scale residual network, we
can learn different sizes of infection, thereby making the detection
possible at early stages too. These extracted features are used to
train a patient-level classifier, at the second level. Four different
classifiers are trained at this stage. Finally, predictions of patient
level classifiers are combined by training an ensemble classifier.
We test the proposed method on three sets of data released by
ICASSP, COVID-19 Signal Processing Grand Challenge (SPGC).
The proposed method has been successful in classifying the three
classes with a validation accuracy of 94.9% and testing accuracy
of 88.89%.

Index Terms—COVID-19, ResNet, BiLSTM, Computed To-
mography Scans, Deep Learning

I. INTRODUCTION

Coronavirus Disease-2019 or COVID-19 is a highly conta-
gious respiratory illness, which started spreading from Wuhan,
China in December 2019 [8]. In March 2020, World Health
Organisation declared this disease a pandemic due to its
exponential rate of rising cases all over the world [7]. The
novelty of disease makes its diagnosis a big challenge before
the medical community. Presently, Real-time Reverse Tran-
scription—Polymerase Chain Reaction (RT-PCR) is the most
common COVID-19 diagnostic method [6]. However, this test
is expensive, time-consuming and sometimes less sensitive
(71-98%). Also, specialised laboratories are required for these
tests [5]. Other than RT-PCR, lung imaging modalities like
chest X-rays (CXR) and computerised tomography (CT) scans
are also helping the medical experts to visualize the infection
and thereby using them for diagnosis. Various opacities like
bilateral ground-glass opacities (GGOs), bilateral multilobar
GGO and consolidations, mostly in peripheral regions of
lungs have been reported as observable visual patterns in
COVID-19 positive cases [1]- [4]. For COVID-19 diagnosis,
in comparison to CXR images, CT scans are reported to
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perform better in terms of sensitivity (Sen) and specificity
(Spe) measures [1].

Several research groups are analysing and experimenting
with CT-scans to develop an automatic COVID-19 diagnostic
tool to assist the medical experts. Amyar et al. [19] proposed a
multitasking deep model to segment the COVID-19 infection
lesions and classify the CT scans of COVID-19. Inf-Net
[20] model is proposed to locate the infected regions of
CT-slices and thus detect COVID-positive cases. Hu et al.
[17] developed a mutli-scale classifier to detect COVID-19,
community acquired pneumonia and non-pneumonia cases.
Despite all these algorithms, there is still a large scope of
improvement in COVID-19 diagnosis. We need to minimize
the false negatives to alleviate the risk. Moreover, with rapidly
increasing variety of coronavirus strains, we need a robust and
sensitive algorithm which can detect the slightest possibility
of infection. In the proposed work, we use chest CT-scans to
train a robust three level classifier. At the first level, slice based
feature extraction is done for each patient. These features
are then used to train patient level classifiers. We train four
different patient level classifiers. These classifiers are then
combined by training an ensemble classifier. Main contribution
of the proposed algorithm lie in multi-scale feature extraction
which leads into better detection of different dimensions of in-
fection. Moreover, three-level classification brings robustness
to the algorithm. The proposed method achieves an accuracy
of 94.9% and a sensitivity of 100%, 89.47% and 94.55% for
Normal, CAP and COVID-19 patients, respectively, on the
validation set. We also visualize the heat maps from different
convolution layers using Grad-CAM which reveals that the
model is looking at the correct infectious areas.

II. DATASET

In this section, we explain the different datasets used for
our study. The first dataset, COVIDx-CT [9] is used for pre-
training the model. The second dataset, COVID-CT-MD [11]
is then used to fine tune the model.
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A. COVIDx-CT

This dataset [22] comprises of 194,922 chest CT slices
from 3,745 patients. It consists of COVID-19 positive pa-
tients with confirmed diagnoses (i.e., RT-PCR, radiologist-
confirmed, etc.). It has chest CT-scans of patients with slice
level labels across three different classes, i.e., COVID-19,
Community Acquired Pneumonia (CAP) and Normal. It con-
tains 94, 548 slices for COVID-19, 40, 291 slices for CAP and
60, 083 slices for Normal patients.

The dataset is provided with a 60% — 20% — 20% split
for training, validation and testing, respectively. We combine
the training and validation dataset to train our model. It has
images of size 512 x 512 pixels in png format.

B. COVID-CT-MD

This dataset [11] contains the chest CT scans of 307 patients
out of which 171 are COVID-19 positives, 60 are patients with
community acquired pneumonia (CAP), and 76 are normal
patients. Along with this, 55 COVID-19 and 25 CAP patients
have slice level labels. The slice level dataset consists of 4,993
slices with infection and 18, 501 slices without infection. The
dataset is provided in DICOM format with images of size
512 x 512 pixels. The dataset is provided with a 70% — 30%
split for training and validation.

C. ICASSP-SPGC Test Set

The test dataset consists of three sets with each set having 30
patients. All the three sets have different exposure dose, slice
thickness etc. One of the test sets also contain CT scans of
patients with manifestations related to non-infectious disease.

III. PROPOSED METHOD

In order to develop a sensitive and robust COVID-19 diag-
nosis using chest CT-scans, we adopt a three-level classifica-
tion approach. First level is extraction of features correspond-
ing to normal, COVID-19 and CAP cases. The second level
uses the extracted features to train four different classifiers at
patient level. The last level combines the predictions from the
multiple classifiers of previous level in an optimized manner.

A. Preprocessing

Before applying the core algorithm, we need some pre-
processing steps to clean the raw images. Here, we extract
region of interest (Rol), normalise the intensity range, resize
the images etc. This step facilitates the model to focus on the
relevant details. As we use two different datasets to train our
model, we need some different sets of pre-processing steps in
each case. Fig 1 shows the raw and pre-processed images.

1) Preprocessing of CT slices from COVIDx-CT dataset:
The raw CT slices have projections of pulmonary region
along-with patient’s body and some other external objects.
So, as the first step of pre-processing, we remove these extra
projections and extract our Rol i.e. lungs along with patient’s
body from each of the CT slices using image contours. The
image contours are computed using the binary image of the
given CT slices. We compute the binary image by applying a
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Fig. 1: (a), (b): Sample slices from COVIDx-CT dataset before
and after preprocessing; (c), (d): Sample slices from COVID-

CT-MD dataset before and after preprocesssing

thresholding step after performing Gaussian smoothing. The
contour with the maximum area is taken as the body of the
patient [9]. The obtained contour is then used to create a binary
mask for the body, which is then multiplied with the original
image to remove the background and obtain the Rol.

The images are resized to 224 x 224 pixels, the size for
which the ResNet50 architecture was defined. The standard
pre-processing functions used by the pre-trained ResNet50
model, are then applied before giving it as the input [15].

2) Preprocessing of CT slices from COVID-CT-MD dataset:
At first, we normalise the images to an intensity range of O-
255. Then, we convert the data from float to unsigned integer
values in order to reduce the memory requirements during
training. Again, we segment out the Rol i.e. the body of the
patient as done with COVIDx-CT dataset. Also, we increase
the brightness of the images by a factor of 2 to match the
brightness of the images with that of COVIDx-CT dataset.

Since the CT scans from different sources could have
different number slices, we interpolate the given dataset using
spline interpolation to increase the number of slices. The
interpolated images are only used to train the slice level
classifier. In order to keep the slice level labels intact we didn’t
interpolate the infected slices with non infected slices.

The images are then resized to a size of 224 x 224 pixels,
the size for which the ResNet50 architecture was defined.
The standard pre-processing functions used by the pre-trained
ResNet50 model is then applied before giving it as the input
[15].

B. Data Augmentation

To avoid overfitting, we apply the following data augmen-
tation techniques to both the datasets during training of the
slice level classifier.

o Rotation: -25°to 25°.

o Translation: -20 pixels to 20 pixels

e Zoom: 0.8 to 1.2

e Shear: -0.2 to 0.2
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o Brightness: 0.8 to 1.2 times the original
« Random Horizontal flips

C. Model

The proposed model consists of three levels. At the first
level, we train a slice-level classifier. This classifier extracts
the features from each slice of a patient. These extracted
features from all the slices of a patient are then used to train
a patient-level classifier. We train four different classifiers for
this purpose. At the final level, we train an ensemble classifier,
which combines the predicted scores of each of the four
patient-level classifiers. Fig. 2 shows the overall architecture
of the proposed model. In this work, all the implementations
are done using Keras with Tensorflow backend.
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Fig. 2: Overall architecture of the proposed three-level model.
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1) Slice-Level Classifier: The slice-level classifier i.e. the
first level classifier, is the backbone of the proposed model.
We train it to extract features from each CT-scan slice of the
patient.

Architecture. We use ResNet50 [15] model pre-trained on
ImageNet database. We remove the last layer of the model
and replace it with a dropout layer and two fully connected
layers of 1024 and 3 neurons. As the infection in different
slices can be of different sizes, depending upon its severity,
we consider adapting the multi-scale features. Hence, apart
from the features of the Stageb5 of ResNet50 (i.e, the last
stage) we also use the features from the Stage3 and Staged
[17]. We concatenate the features from each of these stages
before passing them to the fully connected layer as shown in
Fig. 3. ReLU activation is used in all the layers except for
the last layer where we use softmax activation function. As
the loss function, we use categorical cross-entropy with class
weights to handle the class imbalance.

Training. The model is first trained on COVIDx-CT dataset.
We train the complete model using Adam optimizer with a
batch size of 64 and a learning rate of 10~3 for 10 epochs.
Next we train the model on COVID-CT-MD dataset. First, we
train only the last two layers with a learning rate of 10~*
for 10 epochs. Once the last layers of the model are trained
we unfreeze all the layers except for the Batch normalization
layers which is kept frozen throughout because if we update
the running mean and variance the weights of the subsequent
layers are rendered useless. Then we retrain the model with
a lower learning rate of 10~ for 10 epochs. We do not train
the model on the normal slices of infected patients since these
slices might have traces of infection hidden from human eyes.

Finally we use the data which has only the patient level
labels to fine-tune the weights. We note the fact that the model
performs reasonably well in classifying normal slices. Hence
we use the model to get infected slices from the unlabeled
dataset and then retrain the model for 25 epochs. We use Adam
optimizer with a batch size of 64 in all the three training
steps of COVID-CT-MD dataset. At each training step, we
save the best model performing in terms of maximum accuracy

on validation set.
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Fig. 3: Architecture of slice-level classifier

Softmax

2) Patient-Level Classifier: After extracting the features
from each slice corresponding to all the patients, we train four
different classifiers at this level.

Feature Extraction. We extract two different types of
features from each slice. First is a vector of dimension 1024
from the penultimate layer of slice-level classifier. Second is a
vector of dimension 3072 created by concatenating the features
after multiplying the probabilities of the three classes predicted
by the slice level classifier. This is done so as to make it easier
for the model to distinguish between the infected and normal
slices.

Architecture. Next we train four patient level classifier:

e Maxpool: In this model we take the dimension-wise
maximum of each slice features to get a single vector
representative of the whole patient [23]. Then we train a
simple two layer neural network with 512 and 3 neurons.

o Maxpool-Weighted: This model is same as Maxpool with
feature vector replaced with the weighted features of
dimension 3072.

e BiLSTM: In this model we train a Bidirectional Long
Short Term Memory network [13] with 512 hidden units.
Then we take the dimension-wise average of the output
of each time step, over which we train a two layer neural
network with 1024 and 3 neurons, as shown in Fig. 4.

o BiLSTM-Weighted: This model is same as BiLSTM with
feature vector replaced with the weighted features of
dimension 3072.

ReLU activation function is used in all the layers except for
the last layer where we use softmax activation function. We
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use categorical crossentropy as the loss function with class
weights to handle class imbalance. L1 and L2 regularization
with regularizing coefficient 107> and 10~* is used.

Training. All the four models are trained using Adam
optimizer with a batch size of 64 and a learning rate of 1073
for 25 epochs. For all four models, we save the model with
maximum accuracy on validation set.

Softmax
-

| Dense |

Global Average Pool

1

BILSTM

. . .
[OCO0]| [00C0O] [0O0CO]

Xi Xe X

BILSTM BILSTM BILSTM

Fig. 4: Architecture of BILSTM Network

3) Ensemble Learning: Predictions of four patient-level
classifier need to be combined in an optimized manner to
obtain the final prediction. Here, we implement ensemble
learning for this purpose.

Architecture. We concatenate the scores of all the four
patient-level classifiers to get a 12 dimensional vector cor-
responding to each patient. Then, we train a two layer neural
network with 10 and 3 neurons.

We use categorical crossentropy as the loss function with
class weights to handle class imbalance. L1 and L2 regular-
ization with regularizing coefficient 10~> and 10~ is used.

Training. The model is trained using Adam optimizer with
a batch size of 64 and a learning rate of 102 for 200 epochs.
Again, the model with best validation accuracy is saved.

IV. RESULTS AND DISCUSSION

The pre-trained model is validated on COVIDx-CT dataset
with 6018 slices for COVID-19, 7395 slices for CAP and
12245 normal slices. The model achieves an accuracy of
93.06%. The slice-level model is validated on COVID-CT-MD
dataset with 1333 slices for COVID-19, 436 slices for CAP
and 3659 normal slices. The model achieves an accuracy of
95.76%. The patient-level model is validated on COVID-CT-
MD dataset with 55 COVID-19 cases, 19 CAP cases and 24
normal cases. The model achieves an accuracy of 94.9%.

Finally, the model achieves an accuracy of 88.89% on the
test dataset.

A. Grad-CAM

We visualise the convolution feature maps at three different
stages using Grad-CAM [14] as shown in Fig. 5. It shows an
infected slice of a COVID-positive patient from the validation

(a) (b)

Fig. 5: Heat maps for outputs corresponding to (a) Stageb (b)
Staged (c) Stage3.

set. Clearly the model is able to locate the infected region in
the lung slice and is able to make the correct prediction.

B. t-SNE Plots

We visualize the patient-level feature vector learned by
the model for the validation and the test dataset using t-
SNE as shown in Fig. 6. Clearly, we can see the formation
of clusters of Normal, COVID-19 and CAP patients. It is
important to note that the test dataset overlaps with the
validation set indicating there is no significant distribution drift
in the features extracted, which otherwise would have formed
a separate cluster.
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Fig. 6: Visualizing patient level features using t-SNE
TABLE I: Results on Validation Dataset

Model Accuracy (%) Sensitivity(%)
Normal | CAP | COVID

Pretrained 93.06 95.58 98.44 81.32
Slice Level 95.76 98.17 81.65 93.77
Patient Level 94.90 100.00 | 89.47 94.55

TABLE II: Results on Test Dataset

Accuracy (%) Sensitivity(%)
Normal | CAP | COVID
88.89 88.57 90.00 88.57

V. CONCLUSION

The proposed work implements a three-level classifier to
detect the cases of normal, COVID-19 and CAP using chest
CT-scans. The model learns the features at slice-level, patient-
level and then applies ensemble learning to combine the
patient-level scores. Such multi-level training enhances the
robustness of the model. Moreover, it uses residual network at
multiple scales which covers different dimensions of infection
and thereby helps in detecting the early stages of infection.
The algorithm has performed quite well in terms of validation
accuracy and sensitivity.
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