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ABSTRACT

We propose a two-stage Convolutional Neural Network
(CNN) based classification framework for detecting COVID-
19 and Community Acquired Pneumonia (CAP) using the
chest Computed Tomography (CT) scan images. In the first
stage, an infection - COVID-19 or CAP, is detected using
a pre-trained DenseNet architecture. Then, in the second
stage, a fine-grained three-way classification is done using
EfficientNet architecture. The proposed COVID+CAP-CNN
framework achieved a slice-level classification accuracy
of over 94% at identifying COVID-19 and CAP. Further,
the proposed framework has the potential to be an initial
screening tool for differential diagnosis of COVID-19 and
CAP, achieving a validation accuracy of over 89.3% at the
finer three-way COVID-19, CAP, and healthy classification.
Within the IEEE ICASSP 2021 Signal Processing Grand
Challenge (SPGC) on COVID-19 Diagnosis, our proposed
two-stage classification framework achieved an overall accuracy
of 90% and sensitivity of .857, .9, and .942 at distinguishing
COVID-19, CAP, and normal individuals respectively, to rank
first in the evaluation. Code and model weights are available
at https://github.com/shubhamchaudhary2015/
ct_covidl9_cap_cnn

Index Terms— COVID-19, CAP, Chest CT, Deep Learning.

1. INTRODUCTION

As of March 2021, there have been more than 119 million
confirmed cases of the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) infection, the virus that causes
the novel coronavirus disease (COVID-19), resulting in
over 2.6 million reported deaths [1]. Chest Computed
Tomography (CT) images have shown to be an essential
method for detecting interstitial pneumonia, a distinctive
feature of COVID-19 [2]. Deep learning based computational
imaging techniques are promising at the evaluation of positive
COVID-19 cases [3].

Several works have studied the feasibility of automating
COVID-19 detection using Convolutional Neural Networks
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(CNN) [4-11]. Harmon et al. showed that Al-based algorithms
trained on a multinational cohort could classify CT images
between pneumonia associated with COVID-19 and non-
COVID-19 pneumonia with over 90% accuracy [5]. Wang
et al. proposed a Deep tailored CNN for chest X-ray
images to detect COVID-19 [6] and released an open-source
dataset of 13975 chest X-ray images. On another dataset
of 349 COVID-19 CT images from 216 patients and 463
non-COVID-19 samples, an automatic diagnosis system
using multi-task and self-supervised learning techniques
reported accuracy 89% [7]. Zheng et al. used 499 3D
CT volumes to predict COVID-19 infections by training
a weakly-supervised deep learning model [§]. COVID-
CAPS [9] is a capsules network-based framework trained
on X-ray images to identify COVID-19 infections. COVID-
FACT [10] is a two-stage network where the first stage
identifies slices with infection and classifies them further
into COVID-19 and other infections in the second stage.

Manual analysis of chest CT scans by professional medical
professionals is a resource and time-intensive process. An
automated risk assessment system could potentially serve
as an initial screening tool to aid medical professionals’
diagnosis. One of the challenges associated with the automatic
detection of COVID-19 is its differential diagnosis compared
to CAP [12]. To address this, we propose a two-stage
Convolutional Neural Network (CNN) based framework,
termed COVID+CAP-CNN, for the differential detection of
COVID-19 and CAP.

In Stage-1, we train two different CNN architectures
for labeling COVID-19 and CAP CT scans. In Stage-2, we
propose to use EfficientNet architecture to classify individuals
and CT scans into three classes, i.e., Normal, COVID-19, and
CAP. We use the SPGC-COVID dataset [4], which contains
CT scans of individuals with a combination of COVID-19 and
CAP, along with CT scans of individuals with no infections.
The dataset has slice-level as well as patient-level labels for
several individuals. In Fig. 1, example CT scans for normal
individuals and patients affected with COVID-19 and CAP in
the SPGC-COVID dataset are shown. Sample descriptives of
the SPGC dataset are given in Table 1.
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(a) Normal

(b) COVID-19 (c) CAP

Fig. 1: Segmented slice images from three example CT
volumes of a) normal, b) COVID-19, c¢) CAP patients

Table 1: The description of SPGC dataset.

Disease Type Number of Number of Patients with
Individuals slice-level labels
Normal 76 -
CAP 60 25
COVID-19 171 55

2. PROPOSED MODEL

Our proposed COVID-19 and CAP detection system using
deep learning, termed as COVID+CAP-CNN, consists of two
stages. In the first stage, unlabelled CT scans in the SPGC
dataset are labeled using a pre-trained CNN-based algorithm
(detailed in subsection 2.2). In the second stage, labeled slices
are pooled into individual-level estimates of COVID-19, CAP
infected patients, and normal individuals using the state-of-
the-art EfficientNet architecture (detailed in subsection 2.3).
The complete architecture of the two stages of the proposed
COVID-CNN model is shown in Figs. 2 and 3. We describe
data pre-processing and implementation of these two stages
in the following subsections.

2.1. Dataset Pre-processing

Each patient’s data in a chest CT scan is given in the form of
a 3D volume, a combination of many image slices captured
from different angles. Images provided in the SPGC-COVID
dataset were mapped from Hounsfield Units (HU) to [0, 255]
using a window centered at -500 HU with a width of 1300
HU. Further, we observed that the crucial signal associated
with infection is often present in the 3D chest CT volumes’
central slices. Consequently, we selected the middle slices
from the 3D volumes to fine-tune the proposed COVID-CNN
architecture. For COVID-19 and CAP patients with over 80
slices in the 3D chest CT volume, we select the middle 80
slices, and if the number of slices is less than 80, then we
take the middle 40 slices. The distribution of adopted data for
Stage-1 architectures is shown in Table 2. To overcome class
imbalance, a similar number of CT scans are selected from
different classes.

Table 2: Data used for fine-tuning Stage-1

Total Selected Slices
Di T f Pati
isease Type|| Number of Patients Infectious | Non-Infectious
CAP 55 910 910
COVID-19 25 3046 3046

2.2, Stage-1: Slice Label Prediction

All slices for each patient in the dataset do not contain labels.
Consequently, it is required to differentiate the slices with
infections and without infections. To automatically detect the
slices with infection and without infection, we use Stage-1
slice level label prediction framework (Fig. 2). We propose
to independently label the unlabelled slices of COVID-19 and
CAP 3D volumes using two different CNN architectures. We
first used the SPGC dataset labels to create separate classes of
infectious and non-infectious slices. Using transfer learning
[13], we extracted features from the pre-trained CNN model
for Stage-1. Several works have utilized transfer learning to
extract features successfully for tasks both within and across
domains [14-17]. We utilized the weights of DenseNet-121
[18] architecture to transfer learning across domains. The
pre-trained features from Densenet-121 are obtained using
Global Average Pooling (GAP) on the last layer. Then a
fully connected layer with 1024 features is used. The fully
connected layer was unfrozen, and its weights were trained.
The extracted features were then fed into a Sigmoid activation
function to obtain the two-class probabilities.

We used Adam optimizer for the training process. The
chosen parameters values for $; was 0.5 . The adopted
learning rate for our model was 2 * 104, We obtained an
accuracy of over 94 % while fine-tuning.

2.3. Stage-2: Classification Model for Diagnosis

After segmenting the 3D volumes into middle slices that
exclusively contain lung data, as explained in the pre-processing
step, we perform Stage-1 of the framework, slice-wise
labeling of unlabelled slices. Our CNN architecture classifies
CT scan slices into three fine-grained classes in the second
stage: COVID-19, CAP, and healthy. The architecture
designed for diagnosis purposes is illustrated in Fig. 3.

In order to classify CT scan images into three classes,
we used several pre-trained architectures such as EfficientNet
[19], InceptionV3 [20], ResNet [21], and DenseNet [18].
EfficientNet architecture has several advantages over other
deep learning architectures such as compound scaling (in
dimensions such as width, depth, resolution of an image,
etc.), reduced set of parameters that make the training process

efficient. For this reason, we fine-tuned EfficientNet architecture

to extract features for our proposed classification model.
These features are extracted using Global Average Pooling
(GAP) and then fed into two fully connected dense layers
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Fig. 3: Overview of Stage-2 of the proposed COVID+CAP-CNN Architecture.

with 2048 and 1024 trainable parameters, respectively. For
three-class classification, a softmax activation function is
used to predict the final class probabilities. The original and
predicted labels (for COVID-19 and CAP) from Stage-1 are
used for each of the three training classes. We make sure that
there is no overlap in training and validation data and ensured
out-of-sample patient validation. For training, we adopted the
same optimizer as Stage-1 architecture i.e. Adam Optimizer
with 8, = 0.5 and learning rate of 2 10~4.

Single-slice prediction for final diagnosis does not guarantee

the individual’s diagnosis [10]. Hence, we utilized the
slice-level predictions from Stage-2 of our proposed model
for patient-level prediction of diagnosis based on a simple
voting technique. All the slices of a patient are tested for
classification into three classes. As discussed in Section
2.1, central slices of the 3D volume are important because
they contain crucial information regarding infection and

were used for patient-level prediction. Let x, y, z be the
total number of slices from the centre of the 3D volume
predicted as COVID-19, CAP, normal, respectively. Further,
let =, 3/, 2’ be the total number of slices other than centre
slices of 3D volume predicted as COVID-19, CAP, normal,
respectively. We calculated the final Patient Label (PL) as:
PL = (maz((z + 0.72"), (y + 0.7¢/), (z + 0.52))), where
0.7 and 0.5 are the weight factors obtained heuristically.

3. RESULTS

The proposed COVID+CAP-CNN model is trained and
validated on different out-of-sample folds of the SPGC-
COVID dataset. All analyses performed in Stage-2 are
evaluated on non-overlapping out-of-sample sets. For an
ablation study, we evaluated both the stages of our model for
training and validation accuracy. Table 3 shows the accuracy
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of the proposed model for Stage-1, which is over 94 %.

Table 3: Performance of Stage-1 for binary classification:
infected and non-infected

Classification Type || Training accuracy | Validation accuracy
COVID-19 99.29 % 97.7 %
CAP 99.17 % 94.7 %

Stage-2 accuracy is shown in Tables 4 and 5. In Table-
4, we show the variation of performance on different CNN
architectures. EfficientNet is seen to outperform others. In
Table-5, we evaluate the performance of the proposed model
on different train-validation splits. Our proposed model
achieved over 89.3 % accuracy on the validation set for
different splits.

We also evaluated patient-level accuracy for the three-
way classification of the proposed framework and observed
that the proposed algorithm achieves an 84% accuracy across
three fine-grained classes.

3.1. Class-wise Sensitivity Analysis

We show the confusion matrix considering the three classes:
Normal, CAP, and COVID-19 in Fig. 4 and Fig. 5. The
data provided in the confusion matrix in Fig. 4 is at slice-
level, and that of Fig. 5 is at patient-level. Our fine-tuned
EfficientNet model obtains a class-wise sensitivity of §9.2
%, 81.9 % and 91.49 % for Normal, CAP and, COVID-19
classes, respectively.
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Fig. 4: Confusion Matrix for proposed proposed
COVID+CAP-CNN model at slice-level.

3.2. Execution Time

We performed all the experiments on an NVIDIA Tesla V100
Tensor Core GPU. The proposed model takes less than 0.16
seconds for testing one CT scan image slice of shape 512 X
512 x 3.

Table 4:  Performance of Stage-2 for fine-grained
classification: with different architectures.

Architecture Training Accuracy | Validation Accuracy
Proposed(EfficientNet) 99.00 % 89.3 %
InceptionV3 98.78 % 82.9 %
ResNet 99.61 % 78 %
DenseNet 98.66 % 80.6 %
Table 5:  Performance of Stage-2 for fine-grained
classification: with different train-validation splits
Train-Validation Split || Training Accuracy | Validation Accuracy
70-30 99.00 % 89.3 %
80-20 98.54 % 90.25 %
90-10 99.3 % 91 %
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Fig. 5: Confusion Matrix for proposed proposed

COVID+CAP-CNN model at patient-level.

4. CONCLUSION

In this work, we proposed a two-stage framework to detect
COVID-19 and CAP using CT scan images. In the first stage,
individual slices of CT scans are labeled using fine-tuned
DenseNet based deep-learning architecture. In the second
stage, a fine-grained differential classification in three classes,
i.e., COVID-19, CAP, and healthy individuals, by fine-
tuning the EfficientNet architecture. The proposed two-stage
framework achieved over 94% accuracy for classifying the
CT scan images in the binary classification task: infectious
vs. non-infectious, and accuracy of 89.3% for the fine-grained
three-class classification: COVID-19, CAP, and normal.
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