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Abstract—Huge amounts of big data can be generated and
collected from a wide variety of rich data sources. Embedded in
these big data are useful information and valuable knowledge. An
example is healthcare and epidemiological data such as data
related to patients who suffered from viral diseases like the
coronavirus disease 2019 (COVID-19). Knowledge discovered
from these epidemiological data via data science helps researchers,
epidemiologists and policy makers to get a better understanding
of the disease, which may inspire them to come up ways to detect,
control and combat the disease. In this paper, we present a spatial
data science system for analyzing big COVID-19 epidemiological
data, with focus on the spatial data analytics among different
geographic locations. The system helps users to get a better
understanding of information about the confirmed cases of
COVID-19. Evaluation results show the benefits of our system in
spatial data analytics of big COVID-19 data.

Keywords—data science, coronavirus disease, COVID-19, data
system, data application, big data, spatial data, data mining

I. INTRODUCTION AND RELATED WORKS

Nowadays, big data [1-3] are everywhere. To elaborate,
huge amounts of big data—with different levels of veracity (e.g.,
precise data, imprecise or uncertain data [4-8])—have been
generated and collected at a rapid rate from a wide variety of
rich data sources in numerous real-life applications. These
include networks (e.g., social networks [9-11], transportation
networks [12-15]), financial time series [16], biomedical data
(e.g. omic data [17-19], disease reports [20], epidemiological
data [21, 22]). Valuable knowledge and useful information
embedded in these big data can be discovered by data science
[23-25]—which apply data mining algorithms [26-30], machine
learning tools [31-34], mathematical and statistical models [35,
36], informatics [37, 38], data analytics [39-44], and visual
analytics [45, 46].

The discovered knowledge is useful as it can significantly
improve the quality of human life. For instance, knowledge
discovered from the epidemiological data helps researchers,
epidemiologists and policy makers to get a better understanding
of diseases, which may inspire them to come up ways to detect,
prevent, and/or control diseases—including viral diseases like
coronavirus disease 2019 (COVID-19), which broke out in 2019
and became a pandemic in 2020.

Because of the COVID-19 pandemic, many researchers have
focused on different aspects of the COVID-19 disease. For
instance, from the social science aspects, there has been works
studying on crisis management for the COVID-19 outbreak

[47]. From medical and health science aspects, there has been
works focusing on clinical and treatment information [48], as
well as drug discovery and vaccine development [49]. From the
natural science and engineering aspect, researchers have
examined artificial intelligence (Al)-driven informatics,
sensing, imaging for tracking, testing, diagnosis, treatment and
prognosis [50] such as those imaging-based diagnosis of
COVID-19 using chest computed tomography (CT) images [51,
52]. Researchers have also come up with mathematical
modelling of the spread of COVID-19 [53].

In contrast, we examine COVID-19 epidemiological data
because they can be considered as an excellent example of big
data, especially characterized by their several V’s (namely, high
volumes, velocity, variety and veracity). For instance, as of
November 15, 2020, there have been high volumes of
53M+ cumulative COVID-19 cases globally appear at high
velocity of mean 400+ new cases per minute (derived from
~594,000 new daily cases) [54]. These cases are associated with
a wide variety of information (e.g., symptoms, clinical course
and outcomes, transmission methods) collected from a wide
variety of data sources (e.g., regional health authorities). These
cases contain data of different levels of veracity. While some
data are precise, some others can be uncertain (e.g., unstated
transmission methods) partially due to fast dissemination of the
information or privacy-preservation of individual cases.

Although there are some existing works [54] on the
epidemiological data, they mostly focused on showing the
numbers of confirmed cases and mortality. While the numbers
of confirmed cases and mortality are important in revealing the
severity of the disease at a specific geographic location, there are
other important knowledge that can be discovered from the
epidemiological data for revealing additional information
associated with the disease (e.g., what are common transmission
methods, set of symptoms, etc. among patients in different
geographic locations?).

In this paper, we design and develop a data science system
that conducts spatial data science of textual-based COVID-19
epidemiological data (rather than images). Instead of projecting
the spread of the disease, our system aims to discover common
characteristics (beyond just the numbers of confirmed cases and
mortality) among COVID-19 cases in a certain geographic
location, and compares them with those in other geographic
locations.

Our key contributions of this paper include our design and
development of a data science system that conducts spatial data
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science of textual-based COVID-19 epidemiological data. With
our spatial hierarchy, important information at different spatial
granularity can be captured. Moreover, our system discovers
frequently co-occurring characteristics (e.g., common sets of
symptoms) of COVID-19 cases, compares and contrast among
different geographic locations. Taking into account population
differences among different geographic locations, we consider
both absolute frequency and relative frequency (relative to per
thousand inhabitants or percentages of the total populations)
when discovering frequently co-occurring characteristics.
Furthermore, although the system is designed and developed for
spatial analytics of big epidemiological data, it would be
applicable to spatial analytics of other big data in many real-life
applications and services.

The remainder of this paper is organized as follows. Next
section presents our data science system for spatial data
analytics. Section III shows evaluation results, and Section IV
draws the conclusions.

II. OUR DATA SCIENCE SYSTEM FOR SPATIAL DATA
ANALYTICS

In this section, we describe our data science system for
spatial data analytics of COVID-19 epidemiological data.

A. Data Collection and Integration

Big COVID-19 epidemiological data can be of a wide
variety (e.g., different types of data). They are usually generated
and collected from various data sources.

As a concrete example, in Canada, health care is a
responsibility of provincial governments. So, Canadian COVID-
19 epidemiological data are gathered from each province (or
territory), and provincial data are obtained from health
authorities (which are also known as health regions) within the
province. For instance, in the province of Manitoba, COVID-19
data can be gathered from Winnipeg Regional Health Authority
(WRHA) and four other regional health authorities (RHAs)'. In
terms of data types, COVID-19 epidemiological data usually
contain:

e administrative information, which includes (a) an unique
privacy-preserving identifier for each case, (b) its
location, and (c) episode day (i.e., symptom onset day or
its closest day).

e case details, which include (a) gender, (b) age, and
(c) occupation of the cases.

e symptom-related data, which include additional
information for the case who is not asymptomatic (i.e.,
symptomatic case) such as (a) onset day of symptoms,
and (b) a collection of symptoms (e.g., cough, fever,
chills, sore throat, runny nose, shortness of breath,
nausea, headache, weakness, pain, irritability, diarrhea,
and other symptoms).

e clinical course and outcomes, which include (a) hospital
status—such as hospitalized in the intensive care unit

(ICU), non-ICU hospitalized, and not hospitalized—as
well as (b) clinical outcomes (e.g., recovery or death).

e exposures, which include transmission methods.

B. Data Preprocessing

After collecting and integrating data from heterogeneous
sources, we observe that there are some missing, unstated or
unknown information (i.e., NULL values). Given the nature of
these COVID-19 cases, it is not unusual to have NULL values
because some values may not be available or recorded at the
moments for timely reporting of cases. For some other attributes
related to case details (e.g., personal information like gender,
age), patients may prefer not to report it due the privacy
concerns. As there are many cases with NULL values for some
attributes, ignoring them may lead to inaccurate or incomplete
analysis of the data. Instead, our system keeps all these cases for
analysis.

For some attributes (e.g., date), it would be too specific for
the analysis. Moreover, delays in testing or reporting (especially,
due to weekends) are not uncommon. Hence, it would also be
logical to group days into a 7-day interval---i.e., a week. For
example, all days within the week of January 19-25 inclusive are
considered as Week 3. Side-benefits of such grouping include:

e Summing the frequency of cases over a week (cf. a single
day) increases the chance of having sufficient frequency
for being discovered as a frequent pattern and getting
statistically significant mining results.

e Generalizing the cases help preserve the privacy of the
individuals while maintaining the utility for knowledge
discovery.

Similarly, for some attributes (e.g., age, occupation), it would be
logical to group similar values into a mega-value (say, ages can
be binned into age groups). For example:

e grouping ages to age groups (e.g., < 19 years old,
20-29 years old, ..., 70-79 years old, > 80 years old);

e generalizing occupation of the cases to some generalized
key occupation groups—say, (a) health care workers,
(b) school or daycare workers, (c¢) long-term care
residents, and (d) others;

e generalizing specific transmission methods to some
generalized  key  transmission  methods—say,
(a) community exposures, (b)travel exposures, and
(c) others.

C. Spatial Hierarchy

Recall from Section 1I-A, COVID-19 epidemiological data
can be collected from a wide variety of data sources such as local
health authorities. These local data can then be combined and/or
aggregated to meta-data at a more generalized granularity level.
For instance, we group local data obtained from various
facilities (e.g., health centers, hospitals) within a regional health
authority (RHA), and then combine and aggregate these data to
form the provincial COVID-19 epidemiological data. Along this
direction, we then form the data for a national region by

! https://www.gov.mb.ca/health/rha/
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combining data from some similar provinces (e.g., from Prairie
Provinces). Afterwards, we can obtain data for a country, and
then a continent, by moving up the spatial hierarchy as shown in
Fig. 1.

Continent
Country
Nat'l region ‘ Prairie + NWT H Atlantic ‘
Province Manitoba

RHA

Grace Hospital | ...

Fig. 1. Spatial hierarchy

With our spatial hierarchy, users can mine frequent patterns
and compare contrast patterns among different units at the
spatial granularity level of their interest (instead of many
repetitive comparisons among data obtained numerous local
health authorities). Moreover, users can start conducting spatial
data analytics at higher granularity (to avoid distraction) to get
an insight or overview. They can then drill in to more detailed
data at some specific lower granularity of their interest.

D. Frequent and Contrast Pattern Mining

To discover frequently co-occurring characteristics of
COVID-19 cases, we apply frequent patterns to COVID-19
epidemiological data for each geographic location at a certain
spatial granularity level in the hierarchy. As data for each
location is disjoint, our system can mine each of these disjoint
data set independently in parallel.

Partially due to the timely reporting of cases, symptoms were
unstated for many cases (i.e., many NULL values for
symptoms). As such, the frequency of the symptoms may be
lower than values for some other attributes (e.g., domestic
acquisition as a transmission method). However, it is
scientifically important to know which symptoms—among
more than 12 different symptoms—co-occurred more frequently
than others. As such, our system provides users with flexible to
express their preference or interests. For example, the users can
express their interest in finding frequent patterns containing at
least one symptoms. As another example, the users can also
express their interest in finding frequent patterns consisting of
only symptoms.

In addition to finding frequent patterns from each geographic
location, our system also compares and contrasts the ranking of
the discovered patterns among different geographic locations.
Moreover, observing that population for each geographic
location may vary. Hence, it is logical to take into account the
population for that location for comparison. Hence, in addition
to reporting the absolute frequency, our system also reports the
percentages relative to (a) every thousand inhabitants in the

locations, (b) the population of the locations and/or (c) the
number of cases reported for the locations.

III. EVALUATION
A. A Case Study on Real-Life COVID-19 Data

1) Data Collection, Integration and Preprocessing

To evaluate and demonstrate the usefulness of our data
science system, we tested it with COVID-19 epidemiological
data from rich data sources like World Health Organization?
[54], Manitoba Government®, Wikipedia®*, and Statistics Canada
[55, 56]. The last dataset was collected and integrated from
provincial and territorial public health authorities by the Public
Health Agency of Canada (PHAC). We preprocess data and
generalize some attributes to obtain a dataset with the following
attributes:

1. A unique privacy-preserving identifier for each case
2. A geographic region/location

3. Episode week (or onset week of symptoms): From
Week 3 (i.e., week of January 12-18, 2020) to now

4. Gender
5. Age group: <19, 20s, 30s, 40s, 50s, 60s, 70s, and > 80s.
6. Occupation group, including:
a) health care worker,
b) school or daycare worker (or attendee),
¢) long-term care resident, and
d) other occupation.
7. Asymptomatic: Yes and No

8. Set of 13 symptoms, including cough, fever, chills, sore
throat, runny nose, shortness of breath, nausea,
headache, weakness, pain, irritability, diarrhea, and
other symptoms.

9. Hospital status, including:
a) hospitalized in the ICU,
b) hospitalized but not in the ICU, and
c) not hospitalized.
10. Transmission method, including:
a) community exposures, and
b) travel exposures.
11. Clinical outcome: Recovered and death
12. Recovery week

As of November 12, 2020, the dataset has captured
209,811 COVID-19 cases in Canada. Among them,
190,108 cases with stated episode week. Moreover, although the

2 https://www.who.int/publications/m/item/weekly-epidemiological-update---15-december-2020

3 https://news.gov.mb.ca/news/index.html?item=49817&posted=2020-11-15

4 https://en.wikipedia.org/wiki/Template:COVID-19 pandemic data/Canada medical cases
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first Canadian case occurred in Week 3, there were not more
than two new daily cases for following few weeks. To preserve
privacy of these early cases and to cumulate statistically
significant mass for analysis, cases from Weeks 3-8 were
grouped into (Episode) Week 8 (February 23-29) with
107 cases. From Week 9 onward, the data reflect their reported
episode weeks.

2) Spatial Hierarchy

Once the data are preprocessed, our system analyzes and
mines data from each geographic location. For instance, as of
November 15, 2020, at the regional health authority (RHA)
level, the top-3 Manitoban RHAs with the highest number of
new daily COVID-19 cases are Winnipeg, Southern and Prairie
Mountain RHAs—with 266, 136 and 34 new cases,
respectively. Moving up the spatial hierarchy (by combining and
aggregating local RHA data), the top-3 provinces are Ontario,
Quebec and Alberta—with 1248, 1211 and 991 new daily cases,
respectively—among the 13 Canadian provinces and territories.
Manitoba is ranked the fifth, with 266+136+34+30+28 =
494 new daily cases.

To avoid distraction and numerous comparison among these
13 provincial and territorial locations, we can also generalize
these locations into five national regions. As such, the top-3
Canadian regions are (a) Prairies (consisting of Alberta,
Manitoba and Saskatchewan) + NW Territories, (b) Ontario +
Nunavut, and (c) Quebec—with 991+494+181+0 = 1666,
1248+10 = 1348, and 1211 new daily cases as of November 15,
respectively. Along this direction, top-3 countries in the
Americas are USA, Brazil and Argentina—with 181066, 29070
and 11859 new daily cases. Canada is ranked the sixth, with
4741 new daily cases. For completeness, global number of new
daily COVID-19 cases is 594000 over all continents.

3) Absolute and Relative Frequencies

Observing that population is not evenly distributed among
all geographic locations and locations with lager population may
have higher chances of having larger absolute numbers of
COVID-19 cases, we also present their relative figures (e.g.,
cases per certain number of inhabitants, percentage of
population has contracted COVID-19). For example, by
incorporating population [57] in the five national regions in
Canada, our system their absolute and relative frequencies as of
November 12 in Table I.

TABLE 1. ABSOLUTE AND RELATIVE CUMULATIVE COVID-19 CASES
IN FIVE NATIONAL REGIONS
Nat'l region Cum #cases Y%cases
Absolutett per IM pop'n wrt pop'n
Quebec 73,190 8,534.5 0.853%
Ontario + Nunavut 80,393 5,442.1 0.544%
Prairies + NWT 37,910 5,392.1 0.539%
BC + Yukon 16,494 3,179.2 0.318%
Atlantic 1,824 747.2 0.075%
Canada 209,811 5,520.2 0.552%
Worldwide 53,766,728 6,887.6 0.689%

Observed from the table, in terms of absolute numbers of
cumulative COVID-19 cases, there are more cumulative
COVID-19 cases in the national region of (Ontario + Nunavut)
than in Quebec. However, in terms of relative numbers,
situations in Quebec are more serious (with 0.853% of its
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population have contracted COVID-19) than Ontario +
Nunavut. Such an infection rate in Quebec is higher than the
national and global averages (of 0.552% and 0.689%,
respectively).

4) Frequent Pattern Mining

In addition to analyzing the number of cases, our system also
mine and analyze 12 aforementioned attributes. We observe the
following from the Prairies + NW Territories:

e Frequent singleton pattern {not hospitalized}:29208
reveals that 29,208 cases did not needed to be
hospitalized. These account for (a) 94.9% of COVID-19
cases with known hospitalization status, and (b) 77.0% of
all cases (with known and unknown hospitalization

status), in this national region.

{domestic acquisition}: 28617 reveals that 28,617 cases
were transmitted via community exposure.

{recovered}:27167 reveals that 27,167 patients have
recovered. These account for an encouraging percentage
of 98.3% of patients with known clinical outcomes, and
71.7% of all patients, in this region.

Frequent non-singleton pattern {domestic acquisition,
not hospitalized}:27287 reveals that, among the
28,617 cases were transmitted via community exposure,
a majority of them (i.e., 27,287 = 95.4%) did not require
hospitalization.

{domestic acquisition, not hospitalized, recovered}:
21795 reveals that, among the 28,617 domestically
acquired cases not requiring hospitalization, most of
them (i.e., 21,795 = 76.2%) recovered.

As users have flexibility to express their interest or
preference (say, finding frequent pattern consisting of only
symptoms), our system then incorporates user preference into
mining frequent patterns satisfying the user preference. For
instance, it finds the following patterns from the same region:

Frequent patterns {cough}:14431, {headache}:11050,
{pain}:9005, {sore throat}:8773 and {fever}:7648
reveal these common symptoms with their absolute
frequencies.

Non-frequent pattern {cough, headache}:6108 reveals
the number of cases having the two symptoms together.

{cough, recovered}:10739 reveals that, among the
14,431 cases with cough, most of them (i.e., 10,739 =
74.4%) recovered.

5) Contrast Pattern Mining

Our data science system applies a similar procedure to other
geographic locations to (a) discover frequent patterns from these
locations and (b) compare the patterns among different
locations. The following are some observations that worth
mentioning:

e With 1,704 recovered cases, Atlantic Provinces have a

much higher recovery rate (of ~93.4% of all cases in this
region) than other four national regions (e.g., a recovery
rate of 71.7% in the Prairies + NWT).



In Quebec, as well as Ontario + Nunavut, occupations of
cases are classified into (a) health care workers,
(b) others, or (c) unstated. An additional class label of
(d) “long-term care residents” is available for cases in
BC + Yukon. Another class label-—namely, (e) “school/
daycare workers”—is available for cases in the
remaining two national regions.

In Ontario + Nunavut, only 43 cases experienced cough
and 9 cases did not. The remaining 80,341 cases did not
report any information regarding cough. Similarly, for a
majority of cases, their symptoms are unreported.

Moreover, among all 80,322 cases in Ontario + Nunavut
with known occupations, 72,136 cases (i.e., 89.8%) were
not health care workers.

With 15,422 non-hospitalized cases, BC + Yukon have a
much higher non-hospitalization rate (~93.5%) than
other four regions (e.g., 77.0% in the Prairies + NWT).

B. Functionality Check with Related Works

After demonstrating the features and usefulness of our data
science system in conducting spatial data analytics on real-life
COVID-19 data, let us evaluate its functionality when compared
with related works. First, most of the related works are observed
to report mainly the numbers of cases and deaths. They do not
provide privacy-preserving details and epidemiological
characteristics of those COVID-19 cases, which are provided by
our system. Second, for those related works that provide overall
data distribution of cases, they are mostly confined to single
dimensions/attributes. In contrast, our system provides multi-
dimensional information such as relationships among attributes
in the form of frequent patterns.

IV. CONCLUSIONS

In this paper, we presented a system for spatial data science
on big COVID-19 epidemological data. Our data science system
generalizes some attributes for effective analysis. Moreover, it
provides users with flexibility of (a) including or excluding these
unstated/NULL values and (b) expressing their preference (e.g.,
“must include symptoms”) in mining of frequent patterns. With
our spatial hierarchy, the system discovers frequent patterns and
contrast patterns at different spatial granularity levels.
Evaluation results show the practicality of our system in
providing rich knowledge about characteristics of COVID-19
cases. This helps researchers, epidemiologists and policy makers
to get a better understanding of the disease, which may inspire
them to come up ways to detect, control and combat the disease.
As ongoing and future work, we transfer knowledge learned
from the current work to temporal analytics of other big data in
many real-life applications and services. We also explore the
incorporation of visual analytics [58] with our data science
system to conduct visual analytics of spatial big data.
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