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Abstract—With the rapid worldwide spread of Coronavirus
(COVID-19 and COVID-20), wearing face masks in public
becomes a necessity to mitigate the transmission of this or other
pandemics. However, with the lack of on-ground automated
prevention measures, depending on humans to enforce face
mask-wearing policies in universities and other organizational
buildings, is a very costly and time-consuming measure. Without
addressing this challenge, mitigating highly airborne transmit-
table diseases will be impractical, and the time to react will
continue to increase.

Considering the high personnel traffic in buildings and the
effectiveness of countermeasures, that is, detecting and offering
unmasked personnel with surgical masks, our aim in this paper is
to develop automated detection of unmasked personnel in public
spaces in order to respond by providing a surgical mask to them
to promptly remedy the situation. Our approach consists of three
key components. The first component utilizes a deep learning
architecture that integrates deep residual learning (ResNet-50)
with Feature Pyramid Network (FPN) to detect the existence
of human subjects in the videos (or video feed). The second
component utilizes Multi-Task Convolutional Neural Networks
(MT-CNN) to detect and extract human faces from these videos.
For the third component, we construct and train a convolutional
neural network classifier to detect masked and unmasked human
subjects. Our techniques were implemented in a mobile robot,
Thor, and evaluated using a dataset of videos collected by the
robot from public spaces of an educational institute in the U.S.
Our evaluation results show that Thor is very accurate achieving
an F; score of 87.7% with a recall of 99.2% in a variety of
situations, a reasonable accuracy given the challenging dataset
and the problem domain.

Index Terms—machine learning, convolutional neural net-
works, face detection, deep learning, mask detection, COVID-19

I. INTRODUCTION

The world is facing a health crisis due to the rapid spread
of Coronavirus Disease 2019 (COVID-19). According to the
World Health Organization (WHO) COVID-19 dashboard [1],
more than more than 109 million people were infected by
COVID-19 across 188 countries. The WHO published various
reports that provide guidelines and mitigation measures to
prevent the spread of the virus. According to the these reports
and various research studies, wearing a face mask is highly
effective in preventing the spread of respiratory viruses includ-
ing COVID-19 [2]-[4]. For instance, Sim et al. [S5] conducted
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a comprehensive study and reported that the effectiveness of
wearing N95 mask in preventing SARS transmission is 91%.
Since the outbreak of COVID-19, many organizations have
updated their polices to require wearing face masks in public
to protect their employees and community from the disease
[6]. Therefore, a key role of the artificial intelligence and
machine learning community is to propose new systems to
automatically detect situations where people fail to wear face
masks in public spaces to help mitigate the spread of COVID-
19 and other pandemics. For example, France integrated an
Al-based system to the Paris Metro surveillance cameras [7] to
provide statistics about the adherence to the face mask policy.
Recent advances in deep learning techniques and their main
component Deep Neural Networks (DNNs), have significantly
improved the performance of image classification and object
detection [8], [9]. Convolutional Neural Networks (CNNs or
ConvNets) are a primary model of DNNs that have shown
superior effectiveness in areas such as image recognition and
classification. CNNs have been very successful in detecting
human subjects, faces, and other objects in images and videos
because of their powerful feature extraction capabilities.

In this paper, we ask the question: can we construct a deep
learning-based classifier to detect unmasked faces from low-
quality images? Our goal is to investigate the ability of deep
learning to extract powerful features from low-quality images
taken by a mobile robot (Thor) to construct a classifier that
detects unmasked personnel with high accuracy. We describe
low-quality images (and videos) not only as low-resolution
images, but also other factors that significantly affect feature
extraction from images. These factors are as follows:

o The height difference between the camera and the face.
Our mobile robot captures images with a camera that
is 1-foot high from the ground, which provides partial
facial images that are more challenging for feature extrac-
tion and classification than popular datasets that contain
mostly images taken by cameras at the same height level
of the face.

o The angle between the camera and the face. Unlike most
popular datasets, facial images are not always taken when
human subjects are directly facing the camera. In practice,
a dataset could contain images of human subjects that are
walking away or with a 90 degree angle from the camera,
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which results in partial facial images that introduce more
challenges to the image classification and mask detection
tasks.

e Quality of light. Unlike most popular datasets, using a
mobile robot to capture videos or images results in images
that are captured in spaces with a lighting quality that
varies from low to intense. This variation in the dataset
presents a new challenge to address.

« Distance to human subjects. Capturing images at varying
distances between the camera and human subjects makes
the task of feature extraction and subsequently image
classification more challenging because, at far distances,
the areas of interest in the image (i.e., the human subject,
face, and mask) are smaller which provides less powerful
features to use for face and mask detection in such
images.

Given the speed at which the pandemic is spreading, the aim
of this paper is to develop automated detection for face mask
wearing using a cost-effective mobile robot for enabling timely
detection and mitigation of non-mask-wearing situations in
public spaces. Upon detection of unmasked faces, the robot
dispenses surgical masks to mitigate the situation.

We proposed an end-to-end approach for face mask de-
tection based on deep learning for low-quality images that
are taken from challenging angles, distances, and available
lighting quality. As a proof-of-concept, we implement these
techniques in a mobile robot called Thor, which utilizes a
set of deep learning techniques to preprocess images taken of
human subjects in public spaces, generate features for masked
and unmasked faces, and detect unmasked faces in public
spaces. We evaluate, compare, and contrast the accuracy of our
approach to detect unmasked faces given various challenges
and scenarios such as distance to human subject, available
space lighting, and the rotation angle of the human face in the
image.

The novelty of our approach is using a pipeline of deep
learning algorithms to construct and validate machine learning
models using a dataset that is collected by a mobile robot that
contains more realistic facial images that are taken at different
vertical and horizontal angles, varying distances between the
camera and human subjects, and in spaces that significantly
vary in the quality of lighting. To the best of our knowledge,
this is the first study that considers and evaluates detecting
face masks under such varying lighting and distance settings.

The rest of the paper is organized as follows. In Section
2, we discuss the related work. In Section 3, we describe the
design of our approach, Thor. We evaluate the effectiveness
and the computational cost in Section 6. presents a brief de-
scription of the datasets and classification Finally, we discuss
future directions in Section 6. Finally, Section 7 presents a
discussion and future research directions.

II. RELATED WORKS

To help the organizations and the community defend against
the rapid spread of Coronavirus Disease 2019 (COVID-19),
there have been great efforts to spread awareness and share

countermeasures with the public to mitigate the spread of
COVID-19. Wearing a face mask in public is a key counter-
measure to limit the spread of COVID-19 [4], and therefore,
many educational and industry organizations have updated
their policy to include having to wear face masks while on
campus or inside buildings.

In general, most research studies are focused on face
construction and recognition for identify-based authentica-
tion. Loey et al. [10] presented a machine learning based
framework for detecting face masks using a dataset of high
quality conference-like face images. Their model achieved
an accuracy of 99.64%-100% in detecting face masks. These
images however, were taken when a face was looking towards
a computer camera that is a few inches away. This is not
appropriate to apply in realistic situations where people are
walking around tens of steps away with varying angles that
may only contain partial visibility of peoples faces and masks.

Qin and Li [11] proposed a method that determines the
correctness of mask wearing based on its placement. The
approach classifies each situation into one of three categories:
correct placement of the mask, incorrect placement, and no
mask at all. The proposed approach achieved 98.7% accuracy
in detecting face masks and mask positions.

Ejaz et al. [12] analyzed and compared face recognition
accuracy as an identity-based authentication using Principal
Component Analysis (PCA) to recognize a person. They
discovered that the accuracy of face recognition dropped to
73.75% when wearing masks.

Li et al. [13] proposed an approach for face detection using
YOLOV3 algorithm. The approach constructed a classifier
using more than 600,000 images of human faces provided by
CelebA and WIDER FACE datasets. The approach achieved
an accuracy of 92.9% in detecting faces.

Nieto-Rodriguez et al. in [14] and [15] proposed an ap-
proach for detecting surgical face masks in operation rooms.
The main objective of this approach is to minimize the false
positive face detection in order to only alert staff who are
not wearing masks inside operating rooms. To achieve this,
the approach takes advantage of the distinctive surgical masks
color to reduce false positives. The approach achieved a recall
above 95% with a false positive rate below 5% for the detec-
tion of faces and surgical masks. However, unlike operating
rooms where the medical staff only wear the distinctively
recognizable surgical masks, many other people wear masks
with varying colors and styles. This variation will effect the
the proposed approach in [14] and [15], and therefore, their
reported accuracy might drop significantly.

Park et al. [16] proposed an image processing method to
remove reading glasses from facial images and reconstruct the
removed parts of the image using PCA reconstruction.

Khan et al. [17] proposed a method, MRGAN, to detect and
remove the microphone area concealing a face behind it in an
image. Then, MRGAN utilized Generative Adversarial Net-
works (GAN) to reconstruct the removed parts and regenerate
the image. Similarly, din et al. [18] proposed an approach
for removing masks from facial images and reconstructing



SoutheastCon 2021

the removed part of the image using GAN based image
regeneration.

Our approach differs from the other approaches because it
does not function based on the assumption that people are
facing the camera and are only a few inches away like most
popular datasets. Our solution works with footage (videos)
with varying lighting quality as indoor spaces have differ-
ent lighting intensities which affects the quality of captured
images. To our best knowledge, this is the first work that
considers the challenges of detecting face masks captured from
challenging vertical angles by a robot’s camera under various
indoor lighting and distance settings.

III. DATASETS

This research is conducted using a pipeline of three de-
tection models that are constructed and tested on four pub-
licly available datasets in addition to our own dataset that
we collected to investigate our research objective. Table I
summarizes these datasets. In this section, we describe each
of these datasets.

COCO Dataset. Microsoft Common Objects in Context
(COCO) [19] is a large-scale object detection dataset that con-
tains a total of 330,000 images of 91 object types (including
human subject). These images have been labeled in this dataset
with 2.5 million object labels. The COCO dataset was used
to construct a pre-trained model that detects human subjects
in captured images by our approach. We provide more details
about this process in Section IV.

CelebA. The CelebFaces Attributes Dataset (CelebA) [20]
is a large-scale face dataset that contains 202,599 facial images
of celebrities where each of these images have been annotated
with 40 binary attributes. This dataset contains a largely
diverse set of faces with many pose variations of human
subjects which makes it a goldmine for training classifiers
for face attribute recognition, face detection and extraction (of
facial part) from the provided image.

WIDER FACE. This is a face detection benchmark dataset
[21] that contains 393,703 labeled faces with high variation
in terms of pose and occlusion. the CelebA and WIDER
FACE datasets were used to construct a pre-trained model that
detects facial images (the facial area) in captured images by
our approach.

CMCD. The Custom Mask Community Dataset [22] con-
tains 1,376 facial images that are well-balanced in terms
of mask wearing. 50.15% (or 690) of these images contain
masked faces and 49.85% (or 686) contain unmasked faces.
Our approach uses this data to construct a convolutional neural
network model for mask detection in the images it captures.

IV. THOR: DESIGN AND IMPLEMENTATION

Figure 1 illustrates the architecture of Thor including an
Image Generator (IG), a human subject detector (HSD), a
face detector and extractor (FD), a mask detector (MD). First,
the IG continuously collects videos from various spaces and
hallways in our organization. Then, it reduces the size of the
video by sampling its images by keeping one image per second

TABLE I
SUMMARY OF DATASETS
dataset images content number of

images

COCO [19] human subjects 330,000

WIDER FACE [21]
CelebA [20] facial images 600,000
CMCD [22] masked & unmasked
facial images 1,376
RetinaNet

Images of
Human
Subjects

Deep Residual
Learning
(ResNet-50)

Multi-Task
CNN

Images

Feature
Pyramid
Networks

facial
images

Thor’s Mobile Camera

Performance
Measurements

Extracted
Facial
Images

NN Face Mask
Detector

Fig. 1. The Architecture of Thor.

and discarding the other images captured in that second. This
sampling is important because the large number of images
captured in each second significantly increases the size of
the data and burdens the robot’s resources. Therefore, we
configured the robot to keep 1 image per second and discarded
the other images captured in that second that are unlikely
to provide additional information. Then, the HSD detects the
presence of human subjects in these images and filters out the
ones that do not have human subjects. The FD then detects
and extracts human faces from these images and provides them
for the MD. Then, the MD classifies the extracted faces into
“Masked” or “Unmasked”. The robot was equipped with two
speakers to alert and provide unmasked individuals with a
mask.

A. Data Collection and Preprocessing

As mentioned earlier, our robot (Thor) is equipped with a
modified Donkey Car for mobility and a Raspberry Pi 1080p
Camera that captures 20 images/second for data collection. We
have used Thor to patrol a university campus and it collected
over 150 videos from various hallways and spaces. These
videos had varying lengths and most of their content was
empty (e.g., no activity in images). We manually inspected
these videos and discovered that our dataset contained 229
human subjects. 198 of the human subjects were facing the
camera where the other 31 subjects were not facing the camera
and therefore did not provide any facial footage. 133 of the
subjects were wearing masks and 65 subjects were not wearing
masks. To reduce the size of the data (i.e., number of images),
our sampler selected only one image (frame) from the 20
frames captured in each second and discarded the other 19
images captured during that second. This process reduced the
size of our data to 5% and boosted the performance of the
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following detection modules by 95%. In the next part, we
describe how we detect human subjects in these images.

B. Human Subject Detection

Our approach detects unmasked human subjects in three
steps. The first step identifies human subjects in the captured
videos. The second step identifies and extracts the facial part
from the images. Then, the third step classifies the facial
images into “masked” or “unmasked”. In this part, we explain
the first step.

To automatically extract human subjects and filter out
irrelevant content from our dataset, we utilize RetinaNet [23].
RetinaNet is an architecture that integrates deep residual
learning (ResNet) [24] with Feature Pyramid Network (FPN).
Moreover, it uses a Feature Pyramid Network backbone on
top of a feedforward ResNet (particularity ResNet-50) archi-
tecture, for image recognition.

ResNet-50 is a convolutional neural network that consists of
five stages that are 50 layers deep in total. It takes the image as
input and starts with a convolution layer, and ends with a fully
connected layer. Then, RetinaNet takes the output of ResNet
and and feeds it to the FPN. FPN is then applied to build high-
level semantic feature maps [25] and it has a high effectiveness
as a feature extractor in various applications when it uses a
Fast Region-based Convolutional Network method (Faster R-
CNN) [26]. RetinaNet uses this integration of ResNet and FPN
to construct a rich feature pyramid from a given input image
and to detect human subjects in the images (or videos).

We ran RetinaNet on our dataset to extract the relevant
images by detecting human subjects and discard images that
do not contain human subjects. To evaluate RetinaNet on our
dataset, we compared our manual extraction of human subject
with RetinaNet’s detection. RetinaNet was able to detect all
229 human subjects achieving a recall of 100%.

C. Face Detection and Extraction

The previous step produced 229 instances in which the HSD
module detected human subjects. Each instance was essentially
an 11-second video (on average) of a human subject walking
into and out of the camera’s view generating about 110 images
for each instance (1 image per second) . The average number
of images for each instance was about 110 images.

Although all of these instances contained human subjects,
however, 31 of these instances did not provide sufficient details
to manually determine whether the subjects were wearing
masks or not. Such instances are not helpful for the task of
mask detection as they do not provide enough information
to be judged and labeled by humans to either masked or
unmasked. Therefore, we removed these 31 instances from
our dataset. For the remaining 198 instances, the next step is
to detect and extract faces (the facial part of the image). To
detect the facial part of the images, we utilize the Multi-Task
cascaded Convolutional Neural Network (MTCNN) classifica-
tion [8] and apply it to our dataset.

MTCNN face detection is a three-stage cascaded framework
where a convolutional neural network processes each stage.

First, the candidate windows of human faces are nominated
by a fast Proposal Network (P-Net). Second, the human face
candidates in a given image are refined by a Refinement
Network (R-Net) which filters out a large number of false
candidates. In the third stage, the facial landmark position
are produced and subsequently the exact position(s) of human
face(s) in the image are detected by an Output Network (O-
Net).

We chose to apply MTCNN classification for the task of
face detection because it outperformed the state-of-the-art
methods to detect faces across multiple benchmarks such as
Face Detection Set and Benchmark (FDDB) [27] and WIDER
FACE for face detection in various studies [8].

The MTCNN classifier was trained using two public
datasets, WIDER FACE [21] and CelebA [20]. These datasets
contain more than 600,000 images of human faces that is
sufficient to train a highly accurate classifier for human face
detection.

We ran MTCNN classifier on the 198 instances in dataset
to detect and label images into “face” or “no face”. These
labels are assigned confidence scores by MTCNN. We explain
in the next section how we further utilize these scores for
mask detection. The MTCNN classifier achieved an accuracy
of 94.4%.

D. Face Mask Classification

This section describes how our approach classifies each
image, provided by the FD module, into “masked” or “un-
masked”. To do this, we construct a convolutional neural
network model to classify instances into mask or unmasked.
In particular, we used MobileNetV2 [28], which is a convolu-
tional neural network architecture that is designed to optimize
performance on mobile devices.

We train our convolutional neural network classifier using
a public Custom Mask Community Dataset (CMCD) [22].
This dataset contains 1,376 facial images. 690 of these facial
images are masked, and 686 are unmasked. We used 80% of
dataset for training the neural network classifier. To report the
performance of our classifier on the same dataset, we used
the other 20% of the CMCD dataset to test the model and it
achieved 99% accuracy. Note that this accuracy was based on
the CMCD dataset. We provide the comprehensive evaluation
of our model on our dataset in the evaluation section.

We processed the images produced (and labeled) by the FD
module with our neural network classifier to label each facial
image to “masked” or “unmasked”. Since masks often confuse
FD, we used face detections with low scores as a feature of
a masked face. We discuss and present our experiments and
evaluation results next.

V. EVALUATION

Our evaluation seeks to measure the performance of our
approach in the following terms: (a) the effectiveness of our
approach in detecting face masks in public spaces; (b) the
robustness of our approach in detecting face masks accurately
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Fig. 2. Workflow of face mask detection using pipeline of deep learning techniques.

under various challenging settings such as the distance be-
tween the robot’s camera and human subjects, and the quality
of available lighting for the image; and (c) the computational
efficiency of Thor.

A. Accuracy Measures

To evaluate the performance of our approach, we use
several performance metrics to investigate its accuracy and
completeness under different settings. The most popular accu-
racy measures in machine learning and information retrieval
domains are: Accuracy, Precision, Recall, and F} score. We
present and explain each measure next.

o Accuracy (A): calculates the number of correctly clas-
sified instances of both classes (mask and no-mask)
over the total number of instances using the following
equation:

A (TP+TN) !
- (TP+TN + FP+FN) M
o Precision (P): calculates the number of correctly detected
class members by the classifier over the total number
of correctly and incorrectly detected members using the
following equation:

TP
P=——
TP+ FP
¢ Recall (R): calculates the number of correctly detected

class members over the total number of class members
using the following equation:

2)

TP
R= —7F——
TP+ FN
e [ score: provides a score that balances both the con-

cerns of precision and recall in one measures using the
following equation:

3)

2 X (precision X recall
F = ( — ) “4)
(precision + recall)

where True Positive (T'P) is the number of instances (facial
images) that are correctly classified as masked. True Negative

(T'N) is the number of instances that are correctly classified
as unmasked. False Positive (F'P) is the number of instances
that are incorrectly classified as masked. False Negative (F'N)
is the number of instances that are incorrectly classified as
unmasked where in fact these facial images were masked.

B. Experimental Results

We successfully processed 198 facial images extracted from
our dataset using Thor. First, we inspected these images and
manually labeled them into “masked” or “unmasked”. Then,
we used our approach to automatically classify these images
into “masked” or “unmasked” and compared its results with
our manual labeling.

We manually labeled 133 facial images as “masked” and 65
as “unmasked”. Our approach agreed 161 times (or 81.31%)
with our manual labeling. It correctly detected 132 masked
faces out of 133 possible ones achieving a recall of 99.24%.
Also, it classified 37 images (or 18.68%) differently than our
labeled set such that it falsely classified 1 image of a masked
face as “unmasked” achieving a false negative rate that is less
than 1% (precisely 0.75%).

One of the key differences between our approach and other
approaches in the literature is that our approach depends on a
mobile robot (Thor) to roam the organization’s hallways and
collect data. This causes our data to contain instances (images)
with varying distances between the robot’s camera and human
subjects. Also, since Thor’s camera is 1-foot high from the
ground, the captured images are taken with a steep (vertical)
angle which increases the difficulty of face and mask detection.
Furthermore, these hallways have different lighting sources
(e.g., sunlight, indoor light color, etc.) that affect the quality
of captured images and subsequently the features extracted
from them. This also adds to the difficulty of face and mask
detection.

To study the robustness of our approach in detecting face
masks with different distances and lighting settings, we mea-
sure and analyze the detection accuracy at different distances
and lighting intensities. First, we run our experiments under
three distance categories (ranges). These categories are: (1)
close distance, in which the distance (d) between the robot’s



SoutheastCon 2021

camera and human subjects is less than 5 feet (d < 5); (2)
medium distance, in which the distance d is from 5 to 10 feet
(5 < d< 15); and (3) far distance, in which d is greater than
10 feet (d > 15).

We carefully inspected the images in our dataset and labeled
them based on distance as close, medium, or far. Figure 3
shows the accuracies of face mask detection for different
distance settings (close, medium, and far). As shown by the
Figure, our approach detected face masks with accuracy (A)
values of 100%, 84.61%, and 64.7% for close, medium, and far
distance respectively. This experiment shows that the distance
between human subjects and the camera is a major factor that
affects (in an inverse manner) the accuracy of mask detection.

Our second set of evaluation shows the detection accuracies
of our approach under different lighting settings. For this
experiment, we inspected and labeled our dataset into two
categories based on the available lighting in the space. These
categories are (1) moderate lighting, and (2) intense (or high)
lighting. Figure 4 shows the accuracies of face mask detection
under different lighting settings (moderate and intense). As
shown by the Figure, our approach detected face masks with
accuracy (A) values of 100% and 84.61% for moderate and
intense lighting respectively. These accuracies indicate that
intense lighting reduces the accuracy of face mask detection.
We further investigate the cause of these results by running
more specific experiments next.

To provide comprehensive evaluation of our approach and
ensure that the distance is not a factor (confounder) in the
varying light experiment and vise versa, we further study the
detection accuracy of varying light at a constant distance and
the detection accuracy of varying distances at a constant light.

Our third set of evaluation investigates how the detection
accuracy is affected by changing the distance between human
subjects and the robot’s camera under the same (constant)
intensity of lighting. For this experiment, we only chose
images with intense (high) lighting and reported the accuracy
values for varying distance. Figure 5 shows the impact of the
change of distance (d) on the detection accuracy measures
under the same lighting intensity. As depicted in Figure 5, the
distance (d) between human subjects and the robot’s camera
have a significant impact on the detection accuracies. Unlike
the recall (R), which maintained its value, the other accuracy
metrics (precision, F} score, and accuracy) have dropped
significantly when the distance (d) was increased. Based on
our analysis, this is mainly attributed to the reduced area
(number of pixels) of facial images that are taken from far
distances. Such images generate less accurate features that
have increased chance of being mis-classified by our models.

In our fourth set of evaluation, we studied how the detection
accuracy is affected by changing the intensity of lighting under
the same (constant) distance (d) between human subjects and
the robot’s camera. For this experiment, we only chose images
with medium distance (d) to human subjects and reported
the accuracy values for different lighting settings. Figure 6
shows the impact of the quality of lighting (/) on the detection
accuracy under medium distances between human subjects and

the robot’s camera (5 < d < 15). As depicted in Figure 6,
intense lighting (I) has a negative impact on the detection
accuracy as the accuracy measures dropped when images were
captured inside intensely lit spaces. We believe the main reason
for this drop in accuracy was caused by space light that
changed the image original colors (and features) of the human
subject.

TABLE II
MASK DETECTION ACCURACY OF THOR AT DIFFERENT STAGES.

Stage | Accuracy (A) | Fi Score

HSD 100% 100%
FD 94.44% 95.88%
MD 81.31% 87.7%

Performance. To understand the performance of Thor, we
measured the running time that Thor spent on each image at
each of detection stage, HSD, FD, and MD. In this evaluation,
the average running time to detect a masked (or unmasked)
face was around 525 millisecond (or 0.52 second). As shown
in Table III, Thor can process images and detect face masks
in under a second. This shows that our approach can easily
scale to perform in environments that require high responsive
rates.

TABLE III
RUNNING TIME AT DIFFERENT STAGES

Stage | average time | cumulative time
(ms/image) (ms)
HSD 125 125
FD 200 325
MD 200 525

VI. DISCUSSION AND FUTURE WORKS

our study shows that Thor takes a significant step to
gather, detect, and mitigate situations of unmasked individuals
inside indoor spaces. With the increased potential of spreading
diseases, automatically detecting, alerting, and offering a mask
for unmasked individuals can effectively counter current and
emerging airborn diseases. However, our current implementa-
tion of Thor is still preliminary and in this section we discuss
the limitations and potential future research of our approach.

Error/misdetection analysis. Our evaluation shows that
Thor has a high recall and precision given the nature of our
dataset. However, Thor still mistakenly misses face masks
and detects face masks that are not there. These problems
mostly come from the limitations of existing datasets and
subsequently the classifiers we use that are trained on these
datasets. Specifically, the images provided by these datasets
differ from images that are captured by a 1-foot-tall mobile
robot in terms of the angle of capture that changes with
distance and the available indoor lighting in the image. For
example, using the Multi-Task cascaded Convolutional Neural
Network (MTCNN) [8] on our dataset to detect human faces
(facial areas) achieved an accuracy of 94.4%. The data respon-
sible for the loss of 5.6% accuracy directly affects the outcome
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Fig. 3. The impact of the distance (d) between the human subject and the camera on the detection accuracy of face masks.
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of the following face mask detection and might trigger Thor
to report false negative.

A potential direction for further improving Thor is to

implement a light intensity detector which detects intense
lighting in images and applies a filter(s) to regulate the light
intensity in images. In our evaluation, images with intense
lighting caused a drop in the mask detection accuracy and
investigating the efficiency of applying various image filters
to reduce light intensity might increase the detection accuracy
for such images.
Another possible future tasks is to enhance low-quality im-
ages using tools like the GNU Image Manipulation Program
(GIMP) [29] to resize images for better image quality. Resizing
and enhancing the quality of images might reduce the drop
of accuracy caused by captured images when human subjects
where far (i.e., d > 15 feet) from the camera.



SoutheastCon 2021

VII. CONCLUSION

In this paper, we present Thor, a system that implements
deep learning-based techniques for automatic detection of
unmasked personnel in public spaces. Thor developed an inno-
vative approach that integrates different types of deep learning
for face mask detection. Our prototype robot is comprised
of three modules. The first module uses an integration of
ResNet-50 and Feature Pyramid Network for feature extraction
and human subject detection. The second module uses Multi-
Task Convolutional Neural Network (MT-CNN) to detect and
extract faces from images containing human subjects. Then,
the third module uses our constructed neural network model
to classify the processed images to masked or unmasked. This
classification enables identifying dangerous indoor situations
of unmasked personnel. To mitigate such situations, Thor
offers a surgical mask to the detected unmasked personnel.

We evaluated our approach using a dataset of 229 human
subjects collected by our mobile robot, Thor. The approach
achieved a mask detection accuracy of 81.3% with a very high
recall of 99.2%. To the best of our knowledge, this is the
first effort that studies detecting face masks in images that are
captured in various challenging settings such as space lighting
and distance to camera.

ACKNOWLEDGMENT

This work was supported in part by the Niswonger Research
Fellowship in Computer Science. The authors would like
to thank the Niswonger Foundation for the support of this
research.

REFERENCES

[1] “WHO Coronavirus Disease (COVID-19) Dashboard,” Accessed: Jan-
uary 10, 2021. [Online]. https://covid19.who.int, 2021.

[2] B. J. Cowling, K.-H. Chan, V. J. Fang, C. K. Cheng, R. O. Fung,
W. Wai, J. Sin, W. H. Seto, R. Yung, D. W. Chu et al., “Facemasks
and hand hygiene to prevent influenza transmission in households: a
cluster randomized trial,” Annals of internal medicine, vol. 151, no. 7,
pp. 437446, 2009.

[3] S. M. Tracht, S. Y. Del Valle, and J. M. Hyman, “Mathematical modeling
of the effectiveness of facemasks in reducing the spread of novel
influenza a (h1nl),” PloS one, vol. 5, no. 2, p. €9018, 2010.

[4] S.Feng, C. Shen, N. Xia, W. Song, M. Fan, and B. J. Cowling, “Rational
use of face masks in the covid-19 pandemic,” The Lancet Respiratory
Medicine, vol. 8, no. 5, pp. 434-436, 2020.

[51 S. W. Sim, K. S. P. Moey, and N. C. Tan, “The use of facemasks to
prevent respiratory infection: a literature review in the context of the
health belief model,” Singapore medical journal, vol. 55, no. 3, p. 160,
2014.

[6] H. Elachola, S. H. Ebrahim, and E. Gozzer, “Covid-19: Facemask use
prevalence in international airports in asia, europe and the americas,
march 2020,” Travel Medicine and Infectious Disease, 2020.

[7] “Paris Tests Face-Mask Recognition Software on Metro Riders,” Ac-
cessed: January 10, 2021. [Online]. https://Bloomberg.com, 2021.

[8] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499-1503, 2016.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Communications of the ACM,

vol. 60, no. 6, pp. 84-90, 2017.

M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A

hybrid deep transfer learning model with machine learning methods for

face mask detection in the era of the covid-19 pandemic,” Measurement,

vol. 167, p. 108288, 2020.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

B. QIN and D. LI, “Identifying facemask-wearing condition using image
super-resolution with classification network to prevent covid-19,” 2020.
M. S. Ejaz, M. R. Islam, M. Sifatullah, and A. Sarker, “Implementation
of principal component analysis on masked and non-masked face recog-
nition,” in 2019 Ist International Conference on Advances in Science,
Engineering and Robotics Technology (ICASERT), 2019, pp. 1-5.

C. Li, R. Wang, J. Li, and L. Fei, “Face detection based on yolov3,” in
Recent Trends in Intelligent Computing, Communication and Devices.
Springer, 2020, pp. 277-284.

A. Nieto-Rodriguez, M. Mucientes, and V. M. Brea, “System for
medical mask detection in the operating room through facial attributes,”
in Iberian Conference on Pattern Recognition and Image Analysis.
Springer, 2015, pp. 138-145.

A. Nieto-Rodriguez, M. Mucientes, and V. M. Brea, “Mask and
maskless face classification system to detect breach protocols in the
operating room,” in Proceedings of the 9th International Conference on
Distributed Smart Cameras, ser. ICDSC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 207-208. [Online].
Available: https://doi.org/10.1145/2789116.2802655

J.-S. Park, Y. H. Oh, S. C. Ahn, and S.-W. Lee, “Glasses removal from
facial image using recursive error compensation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 27, no. 5, pp. 805-811,
2005.

M. K. J. Khan, N. Ud Din, S. Bae, and J. Yi, “Interactive removal of
microphone object in facial images,” Electronics, vol. 8, no. 10, p. 1115,
2019.

N. U. Din, K. Javed, S. Bae, and J. Yi, “A novel gan-based network for
unmasking of masked face,” IEEE Access, vol. 8, pp. 4427644287,
2020.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft coco:
Common objects in context,” 2015.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 3730-3738.

S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 5525-5533.

“Custom Mask Community Dataset (DMCD),” Accessed: January
10, 2021. [Online]. Available: https://github.com/prajnasb/observations,
2021.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980-2988.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection
in unconstrained settings,” UMass Ambherst technical report, Tech. Rep.,
2010.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510-4520.

GIMP, 2020, (Accessed:
https://www.gimp.org/downloads/

12.07.2020).  [Online].  Available:



