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ABSTRACT 
Electrical trees are one of the main mechanisms of degradation in solid polymeric 
insulation leading to the failure of high voltage equipment. They are interconnected 
networks of hollow tubules typically characterized from two-dimensional (2D) 
projections of their physical manifestation. It is shown that complete characterization 
requires a three-dimensional (3D) imaging technique such as X-ray computed 
tomography (XCT). We present a comprehensive set of parameters, quantitatively 
characterizing two types of tree topology, conventionally known as bush- and branch-
type. Fractal dimensions are determined from 3D models and from 2D projections, and 
a simple quantitative relationship is established between the two for all but dense bush 
trees. Parameters such as number of nodes, segment length, tortuosity and branch 
angle are determined from tree skeletons. The parameters most strongly indicative of 
the differences in the structure are the number of branches, individual channel size, 
channel tortuosity, nodes per unit length and fractal dimension. Studying two stages of 
a bush tree’s development showed that channels grew in width, while macroscopic 
parameters such as the fractal dimension and tortuosity were unchanged. These 
parameters provide a basis for tree growth models, and can shed light on growth 
mechanisms. 

   Index Terms — electrical trees, three-dimensional trees, 3D imaging, fractal analysis, 
XCT 

 
1 INTRODUCTION 

ELECTRICAL trees are a form of degradation in polymers 
exposed to high electric fields [1]. Despite extensive research, the 
fundamental mechanisms of initiation and tree growth are not 
fully understood. It is clear however, that the growth of electrical 
trees can lead to irreversible insulation failure. In power systems 
this results in a high-energy discharge accompanied by significant 
damage. A better understanding of this aging mechanism is key to 
development of new insulation designs, and to enabling asset 
management through condition monitoring.  

The visible aspect of electrical trees is associated with hollow 1-
10 m diameter interconnected bifurcated tubes and resembles 
botanical trees. Their development is associated with partial 

discharges (PDs) and, in the laboratory, with high divergent fields 
typically generated using a needle electrode. 

 

A variety of techniques has been used to image electrical 
trees [2]. The most common methods are optical imaging and 
scanning electron microscopy (SEM). Optical methods provide 2-
dimensional (2D) images from transparent or translucent 
materials. SEM provides cross-sections of small parts of a tree. 
Conventional optical imaging uses a camera which presents a 
projection of the tree from one direction, perpendicular to its 
general direction of growth (typically extending from the axis of a 
needle electrode). Depending upon the depth of field only part of 
the tree (a slice) is captured in the projected image. 

Key to the nature of an electrical tree (and its name) is its 
shape. Quantifying tree-type structures can be traced to Leonardo 
da Vinci, who introduced the notion of a fixed total thickness for 
a botanical tree as bifurcation points are passed, and who 
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considered the angles of bifurcation [3]. Commonly, the shape 
of an electrical tree is categorized into branch, bush or bush-
branch types [1]. Other distinctive shapes include branch-pine, 
bine-branch and monkey-puzzle [4-6].  

Tree length (L) is commonly used to characterize a tree  
[4–7]. It is normally defined as the Euclidean distance from 
the needle tip to the furthest tree tip in a 2D projected image 
(see Figure 1a). Tree length analysis relates to remaining 
insulation life expectancy because the final breakdown process 
is expected to ensue rapidly once a tree crosses the insulation 
thickness. The tree growth rate (dL/dt) is often presented [4, 6, 
8]. Another widely quoted property is fractal dimension (Df) 
[4, 5, 8] which quantifies how a tree fills the space it occupies. 
Df is typically calculated through the box-counting method, in 
which a 2D space is divided into squares (or cubes in 3D) with 
edge length r, and the number of squares required to cover the 
shape N(r) is counted. If 𝑁ሺ௥ሻ ∝ 𝑟ି஽೑ is satisfied, then Df is the 
fractal dimension [9]. 

Three other quantities used to characterize electrical trees 
are: Firstly, the ‘expansion coefficient’ [5], which is defined as 
the ratio between the width (D) and the length of the tree (L), 
as defined in Figure 1a. Second, the accumulated damage [8], 
is the area covered by the tree structure in the projected image. 
Third, the relationship between number of branches and 
branch orders as deployed by Kudo [10]. 

 

Figure 1. (a) Tree structure magnitudes in 2D images: length (L) and width 
(D), (b) Definition of the coordinate system of a 3D tree [12]. 

Analysis of tree growth using these parameters is limited 
because they are from 2D projected images. For example, the 
lengths determined from 2D projections are not the true 
branch lengths, and depend on the observation angle of the 
projection. Moreover, as pointed out by Kudo [9], the fractal 
dimension of 2D projections is not the same as the 3D value. 

Recently, the authors have developed new methods of 
imaging electrical trees using serial block-face SEM 
(SBFSEM) and X-ray computed tomography (XCT) [2], [11]. 
This paper presents new methods of characterization and 
illustrates the deeper insight that 3D analysis can provide. 

2  METHODOLOGY 

The procedure for 3D imaging and analysis of electrical 
trees comprised the following: sample preparation, electrical 
tree creation, image acquisition, image segmentation and 

quantitative analysis [2, 11, 12]. The samples were cubes of 25 
mm edge, prepared using a conventional needle-to-plane 
geometry with a gap of 2 mm between the needle tip (high 
voltage electrode) and the bottom of the sample (grounded). 
Two epoxy systems were studied: Araldite® LY5052-
Aradur® HY5052, (glass transition temperature, Tg, of 120-
130ºC), and Araldite® CY221-Aradur® HY2966 (Tg of 25-
29ºC). An additional sample was made of a transparent 
photopolymer (Norland® Optical Adhesive 61). A summary 
of the samples is given in Table 1. In the first stage of this 
work, acupuncture needles (Hwato® 0.35 mm, ~5 µm tip 
radius) were used as the HV electrode. After realizing the 
importance of a highly symmetric needle tip for 3D imaging, 
Ogura needles of 1 mm diameter and 3 µm tip radius were 
used. Details of sample preparation are given in [12]. 

Table 1. Description of samples and electrical tests. 

 

Trees were grown in each sample by applying a 50 Hz AC 
voltage of between 8 and 12 kV until the desired tree length 
was reached. Tree growth was monitored by an optical camera 
and by measuring PD activity. The magnitude of the RMS 
voltage and the duration of the test are shown in Table 1. 
Sample 5 was selected for a two-stage tree-growth experiment, 
detailed in Section 4.5. After tree growth, samples were 
machined to create a 2-3 mm diameter cylinder of polymer 
containing the tree to be imaged. Images of trees were 
obtained using XCT and SBFSEM. In this work we analyze 
only the datasets from XCT experiments but the techniques 
are equally applicable to SBFSEM data. A variety of XCT 
technologies were deployed [12]: micro or nano-XCT, and 
laboratory or synchrotron XCT. The lab systems are in 
Manchester and the synchrotron-based experiments were 
conducted at the Paul Scherrer Institut. A summary of the scan 
settings for image acquisition is presented in Table 2. 

Table 2. Settings used for XCT scans. 

 
Distances: S-S: Source-Sample. S-D: Source-Detector 
Energy: Synchrotron: keV. Laboratory: kV. 

Length
Voltage (kV) Duration (Optical)

1 LY5052/HY5052 Acup. ~5 µm 10 few sec. < 0.1 mm
2 NOA 61 Acup. ~5 µm 8.5 3 h ~ 1.2 mm
3 Ogura 3 µm 10-12 40 min ~ 0.1 mm
4 Ogura 3 µm 10-11 35 min ~ 1.1 mm
5 Ogura 3 µm 10 35 min ~ 0.7 mm
6 Ogura 3 µm 10 50 min ~ 1 mm
7 Ogura 3 µm 8 1h 55min ~ 1.2 mm
8 Ogura 3 µm 10 1h 55min ~ 1.2 mm
9 Ogura 3 µm 12 1h 55min ~ 1.4 mm

CY221/HY2966

Sample Material Needle
Electrical stress

S-S S-D

1 Lab. 30 25 20X 80 50 1501 22:27 0.371 160
2 Lab. 30 15 20X 80 60 1301 23:18 0.4535 1589
3 Lab. 11 5 40X 60 15 2001 9:46 0.2322 461
4 Syn. N/A 21 10X 16 0.045 6001 0:05 0.65 1694
5 Lab. 17 8 20X 80 20 1301 8:19 0.4509 1434
6 Syn. N/A 21 10X 16 0.045 6001 0:05 0.65 1328
7 Syn. N/A 21 10X 16 0.045 6001 0:05 0.65 1833
8 Syn. N/A 21 10X 16 0.045 6001 0:05 0.65 1914
9 Syn. N/A 21 10X 16 0.045 6001 0:05 0.65 2096

# slices 
used

Instru-
ment

Distan. (mm)

Obj.

Energy 
(kV-
keV)Sample

Exp. 
Time 

(s) # Proj.

Scan 
time 
(h:m)

Voxel 
size 
(µm)
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In 3D imaging, the dataset comprises a stack of images 
(cross-sectional slices) obtained after the reconstruction 
process from the XCT scans. The image segmentation process 
uses the grey-scale levels of the slices, to identify and extract 
the electrical tree. The result is a new stack of images, where 
pixels are no longer grey-scale levels but color-labelled, each 
color representing a different material. In the case of electrical 
trees in unfilled epoxy, images are composed of only two 
colors: representing void (air) and epoxy resin. Segmentation 
was carried out using Avizo image processing software. More 
detail is given in [12]. This process yields 3D models (virtual 
replicas), as shown in Figure 2, for visualization and further 
quantification, as presented in the following section. 

 
Figure 2. Virtual replicas of the samples. 

3  CHARACTERIZATION METHODS FOR 3D 
ELECTRICAL TREES 

3D visualization of complex structures provides great 
benefit by removing obfuscation of interior features. 
Moreover, it provides a 3D model (virtual replica) that can be 
fully categorized. Here features are classified as either global 
(associated with the macro tree), local (cross-sectional 
analysis of features), or parameters derived from the skeleton 
(center-lines) of the tree [12, 13]. To exemplify the calculation 
of the parameters, Sample 1 will be used throughout the 
following. A summary of the values obtained for all the 
samples is presented in Table 3. Analysis and interpretation of 
the parameters is provided in Section 4. 

3.1  GLOBAL PARAMETERS 

Global parameters are the indices calculated considering the 
entire structure of the tree: length, distribution of channel 
diameters, surface area, volume and convex hull volume. 

Tree length was calculated by multiplying the number of 
slices in the virtual replica by the pixel size (the slice 
separation). This is the length of the tree in the needle axial 

direction. The diameters of tree channels are calculated using 
the method described in [14]. This involves determining the 
diameter of the largest sphere which contains the voxel under 
consideration and which is completely inside the structure. 
The result is a list with values representing the diameter of the 
sphere in which the voxel is contained, for all the voxels in the 
tree. Thus, the mean thickness corresponds to a volume-
weighted distribution. Analysis of the diameter of tree 
channels is provided in Section 4.1.  

The surface of the electrical tree is generated by computing 
a triangular approximation of the interface between the tree 
and the epoxy using Avizo software. The surface area, tree 
volume, and convex hull volume were also determined in 
Avizo. Tree volume is determined by multiplying the number 
of voxels labelled as ‘electrical tree’ by the voxel volume. The 
convex hull is the smallest convex polyhedral surface that 
contains the entire feature [2]. The convex hull is mainly used 
to calculate the proportion of volume occupied by the tree. 
Surface-to-volume and volume-to-length ratios were also 
determined.  

The fractal dimension of the tree was estimated using the 
box-counting method (available in Matlab). The ‘3D fractal 
dimension’ denoted 3DDf is the box-counting fractal dimension 
using 3D data, and 2DDf is the box-counting fractal dimension 
estimated from 2D projected patterns [15]. 2D patterns were 
obtained by projecting the 3D virtual replica (as in Figure 2) 
onto one of the orthogonal planes (xz, yz) (Figure 1b). This  
is equivalent to experimental optical images. The 2DDf  
value generated corresponds to the average of 2DDf from 
projections of xz and yz planes, since they were similar for all 
the samples. The analysis of fractal dimensions is presented in 
Section 4.2. 

3.2  LOCAL PARAMETERS 

Local parameters were developed by considering cross-
sections in the xy plane, to investigate the change in the tree 
structure along its axial direction. These are defined as ‘local’ 
because they belong to a specific slice and not to the entire 
tree. For each slice the number, area and 2D convex hull area 
of tree channels were determined. From these, the proportion 
of area degraded, defined as the ratio of the sum of the 
channels’ areas to the convex hull area, was calculated. The 
progression of these parameters along the axial direction of the 
tree is shown in the graphs of Figure 3. Analysis of these 
parameters is presented in Section 4.3. 

 

Figure 3. Progression of the number of tree channels and the proportion of 
area degraded in every cross-sectional slice as a function of the tree initiation 
point – Sample 1. 
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3.3  PARAMETERS FROM THE TREE SKELETON 

Interconnected structures can be analyzed as networks by 
generating a 'skeleton', consisting of line segments following 
the centers of the channels connected at branch points (nodes). 
Thus, a segment (i.e. a branch) is the path between two nodes, 
and a node can be: an initiation point, a branching (bifurcation 
or merging) point, or an end point (tree tip). The skeleton was 
generated in Avizo software and is displayed in the form of a 
spatial graph as shown in Figure 4a. The number of nodes and 
segments are counted, and the end-point fraction, the 
proportion of nodes which are end points of the channels 
rather than branch points, is calculated.  

 
Figure 4. (a) Skeleton of the tree in Sample 1: interconnected network of 
segments and nodes. (b) Sphere-tree of Sample 1: composed of spheres with 
colors representing local channel diameter. 

Node degree, segment length, tortuosity and branch angle 
are presented in the form of frequency distributions and the 
mean value and standard deviation determined. The node 
degree is the number of segments connected to each node (the 
branch order must be ≥3 in order for the node to be a branch 
point). The segment length is the distance between nodes, 
following the tree path. Tortuosity is a measure of the 
‘straightness’ of the branches of the tree, calculated as the 
 

ratio between the length along the shortest route and the 
Euclidean distance from the initiation point to the end point of 
the branch. Shortest paths were determined using Dijkstra’s 
algorithm [16]. The branch angle is the angle between line 
segments at a branch point. The branch angle was derived by 
first specifying a ‘parent’ line segment for a given node, this 
being the line segment that is reached first when traversing the 
tree from the initiation point of the tree. The vector angle 
between the beginning sections of the parent and each child 
line-segment was then calculated. 

Other useful quantities can be calculated from the skeleton, 
such as node density and segment length-to-diameter ratio. 
Node density is the ratio between the number of nodes and the 
volume of the tree. The segment length-to-diameter is the 
mean segment length divided by the mean diameter of tree 
branches. The values obtained are presented in Table 3. 

4  ANALYSIS 
A variety of trees has been imaged with a range of 

instruments, allowing the impact of the imaging techniques on 
quantitative parameters to be determined [11]. 

4.1  THE DIAMETER OF TREE CHANNELS 

The distribution of diameters of tree channels in Sample 1 is 
shown in Figure 4b, where the tree is modelled by colored 
spheres that represent the local diameter. The mean diameter 
provides a parameter for characterizing electrical trees. 
However, a single value cannot capture the complexity of the 
distribution of diameters, as shown in Figure 5. The 
histograms were generated from a random sample of 5,000 
points of the entire list of diameters. The values for mean 
diameter and standard deviations in Table 3 were calculated 
using the entire set of data. Some bush-type samples had 
larger local diameters calculated than are shown on the 
 

Table 3. Global parameters and parameters from the skeleton of the trees. 

Sample 1 2 3 4 5 6 7 8 9

Pixel size (xy / z) (µm) 0.371 0.4535 0.2322 0.65 0.4509 0.65 0.65 0.65 0.65
Slices used 160 1,589 461 1,695 1,434 1,328 1,833 1,914 2,099

Length (µm) 59 720 107 1,102 647 863 1,191 1,244 1,364
Diameter (µm) 2.0 (18%) 3.1 (38%) 1.2 (28%) 2.7 (43%) 2.5 (25%) 3.1 (38%) 2.1 (21%) 2.4 (43%) 3.0 (43%)

Surface area  (µm
2
) 3.50×10

3
7.67×10

5
2.49×10

5
2.07×10

6
2.60×10

6
1.71×10

6
1.29×10

6
2.54×10

6
7.11×10

6

Volume (µm
3
) 1.62×10

3
6.53×10

5
6.72×10

4
1.46×10

6
1.59×10

6
1.10×10

6
6.44×10

5
1.55×10

6
6.52×10

6

Conv. hull volume (µm
3
) 5.62×10

4
2.25×10

8
5.68×10

5
7.93×10

8
1.03×10

8
4.34×10

8
6.10×10

8
8.40×10

8
1.70×10

9

Surface/Volume  (µm
-1

) 2.16 1.18 3.70 1.42 1.64 1.55 2.00 1.64 1.14

Volume/length (µm
2
) 27 907 628 1,326 2,453 1,277 541 1,245 4,588

Prop. volume degraded 2.9% 0.3% 11.8% 0.2% 1.5% 0.3% 0.1% 0.2% 0.4%
3D

Df 1.69 1.94 2.33 1.86 2.16 1.89 1.78 1.89 1.99
2D

Df - Average 1.46 1.75 1.76 1.66 1.79 1.69 1.63 1.69 1.76

Number of nodes 78 6,768 28,967 16,609 23,028 17,511 31,626 30,685 37,044
Number of segments 78 6,908 38,792 12,739 29,431 17,499 38,723 32,063 32,072
End point fraction 0.5 0.4 0.1 0.7 0.3 0.5 0.3 0.5 0.6
Node degree 3.2 (12%) 3.1 (9%) 3.4 (22%) 3.0 (8%) 3.1 (10%) 3.3 (21%) 3.4 (26%) 3.4 (27%) 3.1 (9%)

Segment length (µm) 7.3 (60%) 11.7 (118%) 2.3 (63%) 25.5 (107%) 12.7 (86%) 17.6 (118%) 10.6 (68%) 15.5 (102%) 32.9 (114%)

Tortuosity 1.2 (6%) 2.5 (38%) 1.5 (6%) 1.3 (7%) 1.5 (12%) 1.4 (19%) 1.5 (16%) 1.5 (28%)

Branch angle (deg) 69 (39%) 63 (49%) 69 (46%) 64 (47%) 60 (45%) 69 (46%) 70 (45%) 71 (46%) 64 (47%)

Node density (µm
-3

) 4.8×10
-2

1.0×10
-2

4.3×10
-1

1.1×10
-2

1.5×10
-2

1.6×10
-2

4.9×10
-2

2.0×10
-2

5.9×10
-3

Seg. length/diameter 3.7 3.8 1.9 9.4 5.0 5.7 4.8 6.1 10.7
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histogram because in those samples the region near to the 
needle tip was highly degraded resulting in large regions of 
damage. This destroyed the original tree structure and it is 
therefore inappropriate to determine the diameter of tree 
channels in that region as it is effectively a degraded volume 
rather than a network of channels. This degraded volume 
presents a significant void of 50-100 µm diameter in which 
PD may occur [17]. It is noted that the smallest diameter 
measured relates to the spatial resolution of the imaging 
system, and does not necessarily correspond to the smallest 
feature in the real tree. This issue is discussed in Section 5.1. 

 
Figure 5. Histogram of diameter of tree channels for Samples 1 and 2. 

4.2  FRACTAL DIMENSION 
This section evaluates the error incurred when the fractal 

dimension is estimated from 2D projected images of the tree, 
rather than the 3D model. The authors have also reported 
previously that the method of determining the fractal 
dimension through box-counting affects the values of fractal 
dimension obtained [15]. However, the fractal dimension from 
2D projections was not affected greatly by the angle of 
observation (counter to the finding in [18]). Values determined 
from the xz and yz projections are found to be within 5%. This 
is expected in a broadly rotationally symmetric structure, 
which is the case here. 

The difference between the fractal dimension determined 
from the 2D projected patterns and from the 3D model is 
larger for dense bush trees such as Samples 3 and 5 (24% and 
17% respectively); this is due to the loss of superimposed 
information in the projection. To correct the fractal dimension 
determined from 2D images, complex expressions to relate the 
true fractal dimension of the 3D structures and their projected 
2D patterns have been proposed [9], [18]. Here we find that 
for dense bush trees for which 3DDf > 2, 2D projections do not 
represent the complexity adequately and cannot be relied 
upon. However for 3DDf < 2, the simple formula  

3DDf = 2DDf + 0.2    if  2DDf <1.75 (1) 

represents the data well. Figure 6 illustrates the fit of equation 
(1), and that proposed by Kudo [8]. We find that for 3DDf > 2 
there is no quantitative equivalence to the Df values because of 
the lost information from superimposed features. 

4.3  LOCAL PARAMETERS 

Local parameters can be used to investigate the change in 
structure as the tree grows, as shown in Table 4. This data was 
extracted from graphs such as Figure 3. Comparing the values  

 

 
Figure 6. Relation of fractal dimension from 2D and 3D images. The solid 
line of best fit does not consider the points for which 3DDf > 2. The dotted line 
is the equation proposed by Kudo [8]. 

Table 4. Summary of local parameters (in cross-sections orthogonal to the 
needle direction). 

 

gives information about the tree structure. It can be inferred, 
for example, that Sample 5 is a bush tree and conversely, 
Sample 1 a branch type. Bush and branch trees are more 
extensively compared in the next section. 

Local parameters can be measured at the same distance 
from the tree starting point for all the samples, and thus 
provide a common comparison point [13]. Table 5 presents the 
local parameters measured at a distance of 40 µm from the 
tree initiation point including the volume of the tree up to that 
distance. This distance is large enough to avoid the massively 
degraded un-treelike region near the needle tip but small 
enough so that comparison can be made for all trees. The 
method of comparing trees at a fixed comparative point or 
plane is more representative than some global parameters. 
Bush-type trees such as in Samples 3, 5 and 9 gave 
considerably higher accumulated degraded volumes than 
branch trees (e.g. Sample 1). The total channel area in the 
slice 40 µm from the needle had an appreciably higher number 
of tree channels and associated net area in the cases of bush 
trees. 

Table 5. Local parameters measured on a slice 40 µm distant from the tree 
initiation point. 

 

Avg Max Avg Max Avg Max Avg Max
1 59 5 11 27 80 7 24 27% 94%
2 720 58 115 906 1,714 16 51 1% 19%
3 107 202 446 628 1,328 4 48 19% 91%
4 1,102 99 209 1,326 2,977 14 150 3% 100%
5 647 306 684 2,453 5,867 11 293 5% 94%
6 863 112 302 1,277 3,870 11 42 2% 100%
7 1,191 56 141 541 1,519 9 33 3% 100%
8 1,244 110 438 1,245 4,051 12 106 3% 95%
9 1,364 227 491 4,581 11,254 18 69 1% 91%

area degraded

Channel 

area (µm2)

Eq. channel 

area (µm2)Length 
(µm)

Number of 
channels

Sample

Proportion

Sample 1 2 3 4 5 6 7 8 9

Number of channels 7 15 346 21 80 197 124 214 66

Channels area  (µm
2
) 32 630 1,242 560 1,839 2,478 695 2,433 1,548

Conv. hull area (µm
2
) 343 17,751 5,461 3,253 18,129 13,282 7,819 38,843 255,412

Prop. area degraded 9% 4% 23% 17% 10% 19% 9% 6% 1%

Acc. deg. volume (µm
3
) 1,396 9,772 23,866 8,735 40,887 41,495 18,433 38,421 15,502
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4.4  BUSH AND BRANCH TREE TYPES 

A basic differentiation between a bush and a branch tree is 
the number of branches. From cross-sectional analysis, the 
average number of tree channels per slice was over 100 in the 
cases of bush trees (e.g. Samples 3, 5 and 9) but less than 60 
for branch trees (e.g. Samples 1 and 7). As expected [17], 
there was also a difference in channel size: bush trees had a 
mean diameter in the range 3-4 µm, whereas for branch trees 
this was around 2 µm. This is considered to be due to PD in a 
non-conducting bush tree being located in the main channels 
and body of the tree [7,17], causing widening of the channels; 
while in a conducting branch-tree the PDs are mainly in the 
tree tips, removing that mechanism of channel diameter 
increase. This parameter showed more variation than the 
fractal dimension. In most of the cases, the fractal dimension 
of bush and branch trees was higher than 2 and lower than 2 
respectively, in accordance with the conventional 
classification [1]. 

Another parameter that is discriminative between bush and 
branch trees is the number of channels as a function of 
distance along the tree length, depicted in Figure 7a. Close to 
the tree origin, the rate of change is higher for bush trees than 
for branch trees. For bush trees the values were, for 
Samples 3, 5 and 9: 10.3, 4.0 and 2.7 channels/µm 
respectively; in contrast, branch trees had values below unity, 
e.g. Sample 1 develops at 0.8 channels/µm. 

 

Figure 7. (a) Rate of increment of the number of tree channels, obtained from 
the slope of the linear regression (Sample 5). (b) Virtual replicas of Sample 5: 
first (blue) and second (green) stages of growth superimposed. 

Another characteristic of bush trees is that the branches 
bifurcate more, thus the number of nodes per unit length can 
be used to distinguish between bush and branch trees. Branch 
trees had fewer than 5 nodes per µm, whereas bush trees had 
more than 10 nodes per µm. The end-point fraction index was 
also found to be discriminative. The end-point fraction for 
bush-type trees was generally smaller than for branch-type 
trees. Increased branching leads to tortuosity in branch trees of 
between 1.2 and 1.5, and in bush trees between 1.5 and 2.5. 

4.5  ANALYSIS OF TWO STAGES OF GROWTH 

Sample 5 was used for a two-stage tree-growth experiment. 
For the first stage, the sample was electrically stressed for 
5 minutes and then XCT imaged. In the second stage, the 
sample was stressed for a further 30 minutes and imaged 
again. The same scan parameters were used in each stage for 
consistency in the comparison. It should be noted that 

although Sample 5 referred to in previous sections is the same 
specimen as the second stage presented here, the datasets are 
not the same, since this specimen was scanned a third time 
with different scan settings for improved results. The 
improved imaging results from the third scan were used for 
quantitative analysis. Details of the two-stage experiment can 
be found in [12], while the virtual replicas of both stages are 
shown superimposed in Figure 7b.  

After the first stage a dense bush tree grew. The second 
stage of growth developed the bush tree further. The volume 
adjacent to the needle tip, which contained the tree after the 
first period, suffered a considerable increment in damage 
during the second period, resulting in a space with no 
distinguishable channels but an unstructured degraded volume 
instead. This degraded volume developed around, and even 
below the needle tip. 

The progression of the number of tree channels as a 
function of the distance from the needle tip is plotted in 
Figure 8a. The results quantify that after the first period of 
aging the tree contained more channels in the region 0-40 µm 
from the needle tip than after the second stage, however the 
area covered by the channels in the second stage was greater. 
This was due to widening of the tubes that eventually merged, 
increasing the area but decreasing the number of channels. 
The overall shape of the curves obtained for the first and 
second stages was similar. The key features of the bush tree, 
including 3DDf and tortuosity, remained unchanged despite the 
volumes of the stages being very different. 

 

Figure 8. (a) Number of channels as a function of the distance from the 
needle tip for the first and second stages of Sample 5. (b) Sample 2 with 
magnifications showing merged branches. 

A selection of tree characteristics of the first and second 
stage is presented in Table 6. As expected in a bush tree, the 
tree channels widened, increasing in mean diameter from 2.6 
µm after the first stage to 3.7 µm after the second. Although 
the duration of the stress of the second stage was only 6 times 
the duration of the first (30 min and 5 min), the volume of the 
second stage was 78 times greater than that of the first. The 
longer mean segment length of the second stage (8.8 µm 
compared to 5.1 µm) suggests that branches of a more mature 
bush tree grow further before they bifurcate. This is in 
accordance with the greater node density measured for the first 
stage (0.037 vs. 0.011 µm-3), revealing that more branching 
occurred in the first stage of growth. The fractal dimension of 
the tree and the tortuosity of the branches remained almost the 
same. A similar situation was reported in [4], in which bush 
trees were created in XLPE. 
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Table 6. Electrical tree characteristics of the first and second stage of growth 
in Sample 5. 

 

5  DISCUSSION 

5.1  3D STRUCTURAL CHARACTERISTICS 

The accuracy and meaningfulness of the indices determined 
depend on how close the virtual replica is to the original tree 
geometry. In XCT, image segmentation is greatly affected by 
the image quality of the slices that were acquired in the scans. 
Moreover, the strategy and methods used for image 
segmentation influence the resulting virtual replica, and 
therefore, the quantitative parameters. Another point to 
consider is that the characterization tool presented here can 
only quantify what has been identified by the XCT scan. It is 
likely that fine details existed smaller than the spatial 
resolution of the resulting dataset, and so were missed and not 
considered in the characterization.  

Comparisons between bush and branch trees are 
summarized in Table 7. Two key differences between the bush 
and branch trees are the density of channels and the frequency 
of branching, which are efficiently characterized by the 
volume-length ratio, the rate of increment of tree channels and 
the number of nodes per unit length. 

Table 7. Comparison of parameters for bush and branch trees. 

 Relative 
comparison 

Bush tree Branch tree 

Channel diameter 
Wider in bush 

trees 3-4 m ~2 m 

Tree volume-to- 
length ratio 

Higher in bush 
trees > 1000 m2 < 500 m2 

Number of channels 
/branches * 

Higher in bush 
trees 

> 100 < 60 

Channel cross-
sectional area * 

Larger in bush 
trees > 10 m2 < 7 m2 

3D Fractal 
dimension 

Higher in bush 
trees 

> 2 < 2 

Rate of growth of 
change of number of 
channels close to the 
origin 

Higher in bush 
trees > 3 m-1 < 1 m-1 

Nodes per unit 
length 

Higher in bush 
trees 

> 10 nodes per 
µm 

< 5 nodes per 
µm 

Tortuosity 
 

Higher in bush 
trees 

1.5 – 2.5 1.2 – 1.5 

Branch angle 
 

Similar in both 
types 

60º-70º 65º-70º 

 * Average per cross-section along a tree 

The structure of electrical trees revealed in 3D contains 
information about the growth process in addition to the 

quantified characteristics. For example, Figure 8b shows 
merged branches in Sample 2. This observation suggests that 
this is a non-conducting structure. Tree growth is a field-
driven process, and it is unlikely that in a conducting structure, 
channels, which would be at the same potential, would grow 
together. This phenomenon could not have been confirmed 
using conventional 2D imaging, because there would have 
been uncertainty over whether the two branches were close but 
in different planes, or were indeed merged. 

5.2  INFORMING TREE MODELS 

The quantification methods presented in this work provide a 
tool to evaluate assumptions for the formulation of tree 
propagation models [19-23]. Tree structures generated by 
computational-growth models do not presently provide the 
level of detail observed in the experimental tree replicas 
obtained in this work. This is mainly due to computational 
constraints. Most models impose a rectangular grid and with 
this, the growth path is limited to the nodes provided. This 
limits the degree of freedom and thus, simulated trees 
normally have a fixed segment length and only a few 
possibilities of branch angle. Nevertheless, structural 
parameters such as segment length, required in tree growth 
models, can now be validated (or contradicted). For example, 
the length of the new extended branch used in the discharge-
avalanche model (DAM) [19] was 10 µm, which is in the 
range of the values measured here. Another key parameter is 
the branch angle. Most of the models for tree propagation use 
a rectangular grid. This allows branch angles of 0° or 90°. The 
model proposed in [20] allows branch angle values of 45°. 
Relatively more freedom of growth direction was provided by 
the model proposed by Noskov et al. [21]. The values obtained 
from the experiments presented here were in the range of 60-
70° and did not show a significant difference between bush 
and branch trees.  

Another consideration for the models that use the fractal 
dimension to simulate the growth is that the fractal dimension 
should be obtained from 3D tree structures and not from 2D 
projections. However equation (1) may be used if 2DDf <1.75, 
that is, if the tree is not too dense, otherwise 2D imaging is not 
adequate. 

Widening of tree channels was observed in the two-stage 
tree-growth experiment (Section 4.5); however, neither the 
DAM nor the Noskov models considered this effect. In the 
DAM case a 1 µm radius was assumed [19], and Noskov used 
5 µm radius spheres to create the tree structure. In contrast, 
Dodd [22] allowed widening of tree channels, with an initial 
radius of 1 µm for the newly-formed branch and a maximum 
radius of 25 µm (related to the grid spacing of 50 µm).  

Many of the physical models proposed for tree propagation 
are based on the concept that the material damage (and 
consequently tree extension) originates from the energy 
dissipated by PDs within the tree. Using the tools developed in 
this work, the external electrical energy fed into the terminals of 
a sample during PD activity and the tree volume degraded was 
directly compared [24]. The vaporization energy, which is the 
energy required to dissociate the atoms from the material 

1st stage 2nd stage

Length (µm) 80 605
Mean channel diameter (µm) 2.6 3.7

Volume (µm
3
) 2.50×10

4
1.95×10

6

Volume/length (µm
2
) 313 3,227

3D
Df Fractal Dimension 2.12 2.18

Number of nodes 927 21,121
Mean Segment length (µm) 5.1 8.8
Mean Tortuosity 1.6 1.6

Node density (µm
-3

) 3.7×10
-2

1.1×10
-2
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previously within the tree channels, was found to be around 7% 
of the PD energy at the external terminals. This free parameter, 
that in physical models such as [22] controls the tree 
propagation rate, was previously estimated to be around 1-5% 
[25]. The updated value of 7% can be used in the physical 
models of tree growth to relate PD energy and material damage, 
and thus to control the simulated tree growth rate. 

The bush tree characterized at two stages of tree-growth 
was imaged at lengths of 80 and 605 µm. The tree volume 
grew by a factor of 78 between images. Nonetheless, the key 
features of the tree remained unchanged, including fractal 
dimension and tortuosity. This indicates a consistency in 
mechanisms controlling the tree process. In this case, if it is 
assumed that the field at the tree tip is changing as the tree 
grows, we conclude growth is driven by partial discharge 
activity at the needle tip for the duration of the experiment. 

6  CONCLUSIONS 
A comprehensive tool for 3D analysis of electrical trees has 

been presented. Virtual replicas of electrical trees have been 
generated using XCT, from which conventional and new 
parameters were calculated and evaluated for structural 
discrimination. For a deep analysis of tree morphology, the 3D 
structure must be characterized with a set of parameters rather 
than only tree length or fractal dimension, as is common 
practice. 

The structure of electrical trees has been characterized 
through global parameters (considering the entire tree), local 
parameters (considering cross-sections of the tree) and 
parameters derived from the skeleton of the tree. Global 
parameters including: volume, surface area, the proportion of 
volume degraded, and the distribution of the diameter of tree 
channels were determined. The mean diameter of tree 
channels was around 2 µm and 3-4 µm for branch and bush 
tree types, respectively. The degraded-volume to length ratio 
is discriminative: for bush trees the ratio was thousands of 
µm2, while for branch trees it was in the range of tens to 
hundreds of µm2. The fractal dimensions from both the 3D 
volume and the 2D projected patterns were calculated. The 
fractal dimension from 2D projections was not greatly affected 
by the angle of observation because the trees were mostly 
rotationally symmetrical structures. 2D characterization of 
fractal dimensions were not representative of 3D structure in 
dense bush trees. However, a linear relationship was found 
between 2D and true 3D values if 2DDf <1.75 and 3DDf <2.0, 
that is, if the tree is not too dense. 

Local parameters from cross-sections at given locations 
along the tree were also calculated. Variation along the tree 
length was analyzed using the number of tree channels and the 
area covered by them. This methodology provided a powerful 
tool to quantify the internal structure of trees and compare 
different tree types. On average the number of branches 40 m 
into a bush tree was greater than 100, compared to fewer than 
60 for a branch tree. Close to the tree origin, the rate of change 
of the number of tree channels was over 3 channels/µm for 
bush trees and, in contrast, branch trees had values below 1. 

Using the tree skeleton, parameters such as number of 
nodes, node density, segment length, tortuosity and branch 
angle were calculated. Overall, the parameters were indicative 
of differences in tree growth and can be used to classify the 
structure of electrical trees. The number of nodes per unit 
length of tree channel and the tortuosity have been shown to 
be discriminative. Characteristic values for bush and branch 
trees are respectively: >10 and <5 µm-1; and 1.5-2.5 and 1.2-
1.5. For the first time the branching angle has been fully 
characterized: angles were in the range of 60-70º irrespective 
of tree type. 

One bush tree was characterized at two stages of tree-
growth, with lengths of 80 and 605 µm. The key topological 
features of the tree remained unchanged whilst the volume 
grew by a factor of 78. It is concluded that, in this case, the 
prime mechanism for tree growth is unaltered during the 
treeing process. 
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