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Abstract— Magnesium oxide (MgO) nanoparticles (NPs)
are used for nanofluid preparation in an effort to investigate
their dielectric response and thermal properties. The matrix
oil for the prepared samples is natural ester oil. Lightning
impulse voltage (1.2/50 us) is used to investigate the elec-
trical performance of the different concentration samples.
In addition, broadband dielectric spectroscopy is used for
the analysis of the dielectric constant and electrical con-
ductivity through a temperature range of 30 °C-90 °C and
a frequency spectrum of 0.1 Hz—1 MHz. Thermal properties
are studied by means of laser flash analysis and differential
scanning calorimetry. Thermal conductivity is calculated,
and the understudied results are evaluated. Results reveal
an improvement in different properties for the prepared
nanofluid samples, including an enhancement by 15.15%
and 12.63% of the lightning impulse breakdown voltage and
the thermal conductivity, respectively.

Index Terms— Dielectric properties, electrical conductiv-
ity, nanofluids, nanoparticles (NPs), permittivity measure-
ments, thermal conductivity.
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[. INTRODUCTION

IGH-VOLTAGE equipment, such as power transformers,
Hemploys numerous insulating fluids for both electrical
insulation and thermal cooling purposes [1], [2]. There are
many types of insulating fluids. Since the 19th century, mineral
oils have been used for their merits, such as lower cost and
insulating and cooling performance. Despite that, mineral oils
have disadvantages, such as the harmful impact on human
health due to their low biodegradability, flammability, toxicity
problems, and low moisture saturation limit. In addition, they
are a by-product of petroleum resources. Nowadays, it is
necessary to seek alternatives to these products with natural
ones.

Natural ester oils are produced from natural sources, such
as plants and seeds [3]. Natural ester dielectric liquids are
potentially considered as a replacement for mineral oil because
of their superior performance in overcoming biodegradability
and toxicity issues when using mineral oils [3], [4]. Recently,
oil-based nanofluids provided another option for insulating
fluids, which proved to have better thermal and dielectric
properties. An effort is done in parallel by the IEEE Technical
Committee on Liquid Dielectrics (TC-LD) focusing to add the
nanofluids in the forthcoming IEEE and potentially IEC stan-
dards [5]. Various types, morphologies, and concentrations of
nanoparticles (NPs) were used to get oil-based nanofluids with
enhanced properties [6], [7], [8], [9], [10]. This enhancement
is governed by the materialistic properties of NPs, including
permittivity, thermal conductivity, isoelectric point, relaxation
time, and so on.

Among different types of NPs, magnesium oxide (MgO)
NPs were considered to be used in this study with natural ester
oil due to their wide bandgap (~7.8 eV) and high electrical
resistivity (10'7 ©-m), which enlists the MgO among the high-
est nanoscale oxide by means of resistivity [11], [12]. Also,
MgO NPs have high thermal conductivity, good chemical
and thermal stability, low cost, and excellent surface reactiv-
ity [13]. In addition, MgO NPs in nanocomposite applications
have a good ability for charge trapping at their interfacing
with the surrounding dielectric, thereby suppressing space
charge accumulation and reflecting into improved dielectric
strength [14]. The latter properties were the triggering point for
considering the MgO NPs, among other oxides, into nanofluids
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applications. Last but not least, the MgO NPs demonstrate low-
toxicity levels [15], making them a potentially safe NPs for
large-scale industrialization.

Prior art of nanofluids with MgO, focusing mainly on the
ac breakdown voltage, was reported by Thomas [16], wherein
a 25% ac BDV improvement was reported for the concen-
tration of 0.005%w/w. In [17], thermally simulated current
measurement was used to evaluate the quantity of trapped
charges in low-density polyethylene (LDPE) and MgO/LDPE
nanocomposites. It was found that MgO/LDPE nanocompos-
ites have more trapped charges than LDPE. Consequently, the
breakdown strength of these nanocomposites was increased.
These results were confirmed in [18], where the mean volume
density of space charge decreased after adding MgO NPs to
LDPE. In [19], using MgO NPs with epoxy could increase the
thermal conductivity of the nanocomposites by 75% higher
than pure epoxy. In the same research, the volume resistiv-
ity and breakdown strength of MgO/epoxy nanocomposites
increased by 26.8% and 11.1%, respectively, compared to pure
€poxy.

For oil-based nanofluids, MgO NPs were used effectively
as nanofillers with mineral oil [20]. A maximum enhancement
of 69.2% was obtained at a concentration of 0.2 wt.%. MgO
NPs combined with Fe3;O4 were used in transformer oil;
they proved an excellent ability to absorb and trap charges,
thereby hindering the electrical discharge growth [21]. Thus,
this article aims to use MgO NPs to parallelly improve the
thermal along with the dielectric response of natural ester
dielectric liquid. For dielectric strength, lightning impulse
breakdown strength is considered instead of ac breakdown
strength to cover different electrical performance parameters
than already published research studies [16], [22]. Lightning
impulse breakdown strength is a critical test for power trans-
formers, as specified in IEC standard 60076-3 [23]. Following
a typical approach, a needle-plane electrode configuration was
used to assess lightning impulse breakdown strength [24],
while dielectric constant and dielectric losses were studied.

[l. EXPERIMENTAL SECTION
A. Nanofluid Preparation

Nanofluid samples were prepared using commercially
obtained MgO NPs of size less than 50 nm with an ester
oil of Cargill FR3. In addition to the base oil sample, only
two nanofluid samples (0.006%w/w and 0.010%w/w) were
prepared due to marginal change of the LIBDV and thermal
conductivity, as analyzed in Section III, while further addi-
tional of NPs above 0.010%w/w would increase the risk of
agglomeration [25] in the absence of surface modification.
The detailed preparation procedure starts by adding the desired
nanopowder amount to the corresponding oil volume. Then,
oil and nanopowder were mechanically agitated for 15 min at a
speed of 700 r/min. Following that, an ultrasonic homogenizer
was used through two processes. The first process is the
dispersion process of NPs and takes 120 min, while the
second process is the degassing one and takes only 10 min to
remove any produced bubbles. Ultrasonication was repeated
15-20 min prior to each experiment to ensure the proper

Fig. 1.
voltage test setup.

Test setup and the custom-made test cell for lightning impulse

dispersion of the nanofluids. Long-term dispersibility is a
critical aspect for industrialization of nanofluids, employing
various surface modification techniques (functionalization),
along with dispersion stability analysis; the latter lies within
the targets of our future work.

B. Lightning Impulse Breakdown Voltage

Fig. 1 demonstrates the experimental setup of lightning
impulse breakdown voltage measurement. The used cell con-
sists of a needle-plane electrode with a 2.5-cm separation
distance. The needle has a curvature of 50 pum radius, while
the plane electrode has a diameter of 2 cm. Both electrodes
are brassy. A single-stage Marx impulse voltage generator was
used, providing a wave shape of 1.2-/50-us lightning impulse
voltages across the gap. A current sensor is implemented in
the path to the ground to monitor the discharge current, and a
capacitive divider is used to monitor the voltage. Both current
and voltage are recorded digitally using a digital recorder.

Similar to previous studies [25], [26], the impulse dielectric
strength was evaluated using the step-up method, in which a
2-kV step voltage was used, and three shots per step were
executed. The time after each shot was set at 1 min in case of
no breakdown, while it was set at 10 min in case of breakdown
to exclude any residual charge affecting the test results. Once
breakdown occurs, the corresponding voltage is recorded as
the breakdown strength. A total of 20 shots were performed to
enable statistical analysis and to obtain breakdown probability
curves.

C. Thermal Properties

Heat conduction model was described in (1) [27], where
the thermal conductivity (A) was calculated considering the
measured thermal diffusivity () along with the specific heat
(cr) as follows:

A=qacyp ey

while p represents the understudied dielectric liquids matrix
oil density (g/cm?) as adopted from the suppliers’ specifica-
tions of FR3 as p = 0.92 g/cm’.

Thermal diffusivity (o) was measured by means of a
NETZSCH LFA 467. The same method and techniques were
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adopted as per [27] and [28]. Thermal diffusivity was calcu-
lated per the following equation:

o= 1.38L2/7'[2l1/2 2)

wherein L is the device under test thickness, while #;,, is the
time to half the maximum temperature between the measuring
electrodes.

Specific heat was measured using a differential scanning
calorimetry (TA Instruments DSC Q200) calibrated with
indium for the temperature and enthalpy and with sapphires
for the heat capacity. The mass of each sample was ~10 mg
and Tzero aluminum pans with hermetic lids were used to
avoid any leakage. Temperature modulation was applied with
a fixed temperature rise of 2 °C/min (10 °C-100 °C).

D. Dielectric Relaxation Spectroscopy

Dielectric relaxation spectroscopy was used to measure the
dielectric response under a wide frequency spectrum (0.1 Hz
up to 1 MHz), while heating (20 °C-100 °C) and cooling
were considered to investigate the nanofluids response under
various operating conditions of electrical power systems (high
loads and high-/low-frequency events). The methods adopted
were the same as [28] with a cylindrical test cell for dielectric
liquids, as per Fig. 2.

Relative permittivity (e,) is calculated per

I . M
Er) = &rw) ~ JErw) 3)

where ¢ is the dielectric constant and ¢ stands for the
imaginary part expressing the dielectric losses. Accordingly,
electrical conductivity (o) is calculated from

Olw) = WEHE] ) “4)

where o is the angular frequency of the wave and ¢, is the
absolute dielectric permittivity of vacuum [29].

I1l. RESULTS AND DISCUSSION
A. Lightning Impulse Breakdown Voltage

Fig. 3 presents a typical record of the current and voltage
waveforms through breakdown conditions. It indicates that
there is an initial transient current pulse at the triggering
point of the Marx generator. Fig. 3 shows a sudden drop in

0 1 2 3 4 5 6 7 8 9 10
Time (us)

Fig. 3. Waveforms of voltage and current for breakdown conditions.
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Fig. 4. Lightning impulse voltage probability of breakdown curves for

the prepared samples.

voltage with underdamped oscillations during the breakdown
conditions. In addition, a current waveform with a range
of 2000 A as a secondary current is depicted following the
voltage waveform pattern for breakdown occurrence.

Fig. 4 shows that the breakdown voltage for the proba-
bility of 50% increases based on the addition of MgO NPs
from (71.43 kV, 0%w/w) to (80.89 kV, 0.006%w/w) and
(82.25%w/w, 0.010%w/w). Thus, the acquired improvement
was 13.24% for 0.006%w/w and 15.15% for 0.010%w/w.

B. Thermal Properties

Fig. 5 shows the thermal diffusivity results at different
temperatures and concentrations. Thermal diffusivity shows a
decreasing tendency by increasing the temperature, probably
associated with the high effect of the interaction between the
oil molecules [30]. Additionally, by increasing the nanofluid
concentration, the thermal diffusivity was increased, indicating
a proper dispersion of the NPs in the matrix dielectric liquid.

As mentioned in [28], the specific heat of nanofluid samples
revealed similar values to the pure oil. So, specific heat was
measured only for the matrix oil to be used as a base for the
different samples through thermal conductivity calculations.
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Fig. 7. Calculated thermal conductivity for different concentrations
of NPs. C. Dielectric Relaxation Spectroscopy (Relative
Dielectric Permittivity)

Fig. 6 shows the specific heat values for natural ester oil at Fig. 8 demonstrates the understudied results of the dielectric
different temperatures. It shows that the specific heat increases  constant in the understudied frequency spectrum, temper-
almost linearly against the temperature. atures, and nanofluid concentrations. For higher frequen-
Fig. 7 shows the thermal conductivity results for each cies (>1 kHz), relative permittivity values remain constant
sample at various temperatures based on (1). It indicates (frequency-independent) for all samples. In addition, it reveals
that thermal conductivity increases under any increment in  enhanced values at low frequencies (~ <1 kHz). The increment
nanofluid concentration and decreases under any increment in  of the dielectric constant at the megahertz range may be an
temperature. The results show the enhancements for thermal artifact in the measuring cell due to resonance effects.
conductivity that reach 10.87% for 0.006%w/w and 12.63% As presented with the aid of Fig. 9, relative permittivity
for 0.010%w/w at 30 °C. values at 1 kHz or higher frequencies decrease with any
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concentrations at 1 kHz.

temperature increment. This effect can be described by assum-
ing that dipolar orientation processes that scale with 1/T are
the main contributors to the polarizability rise. In addition,
enhancements in the dielectric constants are obtained under
an increment in nanofluid concentration. The highest obtained
enhancements at the concentration of 0.010%w/w are 9.38%,
10.66%, and 7.72% at 20 °C, 30 °C, and 40 °C, respectively.

D. Dielectric Relaxation Spectroscopy
(Electrical Conductivity)

Fig. 10 indicates that electrical conductivity increases dur-
ing the temperature rise for all nanofluid concentrations.
Moreover, it describes that increasing nanofluid concentra-
tion leads to a decrement in electrical conductivity values.
Fig. 11 reveals the studied results of electrical conductivity
based on different frequencies, temperatures, and nanofluid
concentrations. According to the effect of the frequency, elec-
trical conductivity has a constant value through low-frequency
region, demonstrating the activation of dc conductivity in
the samples. For higher frequencies, electrical conductivity
has higher values. The thermal activation process is clarified
through electrical conductivity results based on increasing its
values with increasing the temperature.
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Fig. 11. Electrical conductivity for the prepared samples.

Fig. 12 represents the Arrhenius plot for dc conductivity
that spectra revealed. The corresponding activation energies
have been calculated for each sample. Fig. 12 shows that
nanofluid samples have lower activation energies than that for
the pure oil implying that the NPs modify the charge transport
mechanism. This result agrees with the results obtained from
lightning impulse breakdown voltage, as shown in Fig. 4.
The interesting finding here is that adding the NPs reduces
the dc conductivity value and, on the other hand, leads
to the enhancement of the dielectric polarizability. This finding
supports the interpretation that such NPs may act as traps for
charge carriers, thus, improving the dielectric strength of the
nanofluids.
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V. PHYSICAL DISCUSSION

In oil-based nanofluids, there are three polarization pro-
cesses. The first polarization process is attributed to the polar-
ization of oil molecules, while the second polarization process
comes from the NPs themselves. The third and last polarization
process is originated due to the interfacial polarization at the
oil/NPs interfaces [31], [32]. From the obtained results, it is
clear that nanofluids have higher dielectric constant and lower
dielectric losses. This can be attributed to the confinement of
some oil molecules to the surface of NPs, forming what is
called an electrical double layer (EDL).

According to EDL theory, a stern layer along with a diffuse
layer is formed in the vicinity of NPs when coming in contact
with transformer oil [33]. With increasing temperature, the
EDL thickness increases [34], causing more charges at the
interfaces between NPs and oil. These charges increase &,
due to their role in increasing the interfacial polarization at
these interfaces. At the same time, these charges became less
confined to the surface, resulting in an increase in electrical
conductivity. Thus, both ¢/ and electrical conductivity increase
under the effect of increasing temperature. Since charges
became less confined to the surface with increasing EDL
thickness, they become more affected by the frequency. On the
other hand, when applying high electrical fields, active elec-
trons are generated; however, EDL acts toward hindering and
trapping these electrons, thereby enhancing lightning impulse
breakdown strength.

The increasing thickness of EDL against temperature (7) is
positively reflected in thermal properties as follows. First, the
growing thickness of EDL leads to a subsequent increase in
the Brownian motion of NPs. The following formula describes
how Brownian motion increases thermal conductivity [35]:

kgT
3107 fny

(&)

where Ang, Ar, and A, denote the thermal conductivities of
nanofluid, base fluid, and nanoparticles, respectively, ¢ is the
volume concentration, p, and ¢, are the density and specific
heat of nanoparticles, respectively, kg is Boltzmann constant,
r is the radius, and p,r is the nanofluid viscosity coefficient.

PpPCp
2h ¢

Mng Ap+ 2%y +20(hs +1p)
A hp 20— oAy + )

The second term in (5) is responsible for the Brownian motion-
based enhancement. Second, EDL results in a Coulomb force
that repels NPs, causing them to move further and dissipate
more heat. These phenomena are responsible for thermal
conductivity enhancement against temperature.

V. CONCLUSION

In this article, MgO NPs were used to prepare natural ester
(FR3)-based nanofluids with different concentrations. Light-
ning impulse breakdown voltage and broadband dielectric
spectroscopy were used to inspect the dielectric properties of
the understudied nanofluids. Thermal conductivity was used
to assess the thermal response of the prepared nanofluids.
The analysis revealed that using MgO NPs enhances more
than 10% of the lightning dielectric strength or thermal
conductivity. The results obtained from broadband dielectric
spectroscopy were described and discussed in terms of the
effect of different concentrations and temperatures for a wide
frequency range.

Finally, proposed mechanisms were presented in an effort
to describe the experimental results. The higher values for the
dielectric constant and the lower values for the dielectric losses
for the prepared nanofluid samples can be attributed to the
formed EDL (stern and diffuse layers) around the surface of
the NPs during their contact with the oil. In addition, the thick-
ness of EDL increases by increasing the temperature resulting
in forming more charges through EDL. The formed charges
increase &, due to the polarization effect and increase electrical
conductivity due to less surface confinement. Moreover, less
surface confinement made the results greatly affected by the
frequency.
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