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Abstract—Recently, Corona Virus Disease 2019 (COVID-19)
has rapidly spanned the globe. In particular, this viral disease
has infected more than 400,000 peoples and has caused more
than twenty thousand cases of death. Unfortunately, there is
no specific therapeutic drugs or vaccines for the disease, such
that an early screening protocol is highly required. Although
nucleic acid detection using real-time polymerase chain reaction
(RT-PCR) remains the standard, recent literature reported
that radiological imaging of human chests had shown a
more consistent result when used for COVID-19 diagnosis.
However, performing a manual evaluation on chest computed
tomography or CXR images is tedious and labour-extensive. In
this paper, we present COVID-19Net, a deep neural network-
based algorithm to assist doctors in diagnosing COVID-19
through the radiographic images. In the experimental parts,
our algorithm could diagnose COVID-19 and other related
diseases like SARS, Streptococcus, ARDS, and Pneumocystis
with average accuracy and area under the ROC curve (AUC)
of > 99% and > 0.99, respectively.

Index Terms—COVID-19, CXR images, deep learning, diag-
nosis.

I. INTRODUCTION

In early of 2020, the World Health Organization (WHO)
has declared COVID-19 to be a global health emergency.
This disease has spread across the world and has led to
more than twenty thousand cases of death. Unfortunately,
specific therapeutic drugs or vaccines for the disease has not
been found, such that an early screening protocol is highly
required. Although nucleic acid detection using real-time
polymerase chain reaction (RT-PCR) remains the standard,
recent literature reported that radiological imaging of human
chests is useful for COVID-19 diagnosis [1]–[3].

Although radiological imaging has shown a promising
result in COVID-19 diagnosis, manual evaluations on chest
computed tomography or CXR images by doctors are te-
dious, time-consuming, and labour-extensive. Moreover, to
the best of our knowledge, no research presents an algorithm
for the automatic diagnosis of COVID-19 from radiological
images. In this paper, we propose COVID-19Net, a deep
neural network-based algorithm to assist doctors in diag-
nosing COVID-19 through the chest radiographic (CXR)
images. To build the algorithm, we tailor the DenseNet-121
architecture to the COVID-19 and other related diseases like
SARS, Streptococcus, ARDS, and Pneumocystis characteris-
tics. In the experimental parts, our algorithm could diagnose

Fig. 1: DenseNet with 5 layers and the growth rate of k = 4
[4].

COVID-19 and other associated pathologies with average
accuracy and area under the ROC curve (AUC) of > 99%.

We organize the remaining sections of this paper as
follows. Section II describes the details of the proposed
COVID-19Net. In this section, we also describe the data
and training procedures. In Section III, we present and
discuss the experimental results. Finally, Section IV provides
a concluding remark and recommendations for future work.

II. METHODOLOGY

In this section, we describe the details of our proposed
methodology by initially providing a brief introduction to
several deep neural network architectures. Subsequently, we
present the configuration of COVID-19Net, followed by
explanations on the training procedures and CXR images.

A. Densely Connected Convolutional Networks

Deep neural networks have attained significant improve-
ments compared to the state-of-the-art machine learning
algorithms in many tasks. These include object recognition
[5]–[7], image classification [8]–[11], and image segmenta-
tion [12]–[18]. These successes are mainly due to the utilized
multiple layers to capture the features of input data. This fact
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Fig. 2: The schematic diagram of our proposed algorithm.

suggests that the developments of deeper networks for better
recognition, classification, and segmentation performance.

Although deeper networks may be useful to capture more
features of the input data, the realization procedure is not
straightforward, i.e., by solely stacking more layers to the
network. As reported by several works in the literature,
solely stacking a large number of layers to build a deeper
neural network is prone to a vanishing gradient problem [4],
[19], [20]. When the number of layers increases, the path for
the information and gradient are getting longer. Hence, the
information from the input layer or the gradient from the
opposite side could get vanished before they reach the other
side.

Recently, there exist several deep networks, such as Resid-
ual Neural Networks (ResNets) and Densely Connected
Convolutional Networks (DenseNets), proposed to tackle the
vanishing gradient problem. In general, such networks apply
particular connectivity patterns to maximise the information
and gradient flow. ResNets do the job by utilising skip
connections that allow the information and gradient to jump
over some layers. The models have successfully surpassed
the performance of the preceding models, such as AlexNet
[8] and VGG16 [11] in the image classification task with
fewer training parameters.

The skip connections concept has instigated the develop-
ment of the dense connectivity pattern used in DenseNets
[4]. Unlike the skip connection that let the information to
jump only over some layers, the dense connectivity pattern
allows any layer in DensNets to connect with all subsequent
layers. As a result, the lth layer in DenseNets would take
the feature maps of the preceding layers, x0, . . . , xl−1, as
the input:

xl = Hl ([x0, x1, . . . , xl−1]) , (1)

where Hl (.) refers to any composite function of operations
like batch normalization (BN). Figure 1 illustrates the layout
of DenseNets with five layers and the expanding factor of
k = 4. The connectivity pattern of DenseNet helps this
model to solve the vanishing gradient problem. Also, since
layers in DenseNets are very narrow, it would require fewer
parameters compared to those of ResNets.

B. COVID-19Net

Developing an algorithm for COVID-19 diagnosis is a
very challenging task. In particular, the algorithm should

TABLE I: The configuration of COVID19-Net.

Layers Output Size Operations
Input 224× 224
Convolution 112× 112 7× 7 conv, stride 2
Pooling 56× 56 3× 3 max pool, stride 2

Dense Block (1) 56× 56

[
1× 1 conv
3× 3 conv

]
× 6

Transition Layer (1) 56× 56 1× 1 conv
28× 28 2× 2 average pool, stride 2

Dense Block (2) 28× 28

[
1× 1 conv
3× 3 conv

]
× 12

Transition Layer (2) 28× 28 1× 1 conv
14× 14 2× 2 average pool, stride 2

Dense Block (3) 14× 14

[
1× 1 conv
3× 3 conv

]
× 24

Transition Layer (3) 14× 14 1× 1 conv
7× 7 2× 2 average pool, stride 2

Dense Block (4) 7× 7

[
1× 1 conv
3× 3 conv

]
× 16

Pooling 1× 1 7× 7 global average pool
Over-fitting
Combatant Layer 1× 1

drop-out, 0.5 drop-out rate
Batch Normalization (BN)

Classification Layer 6D fully connected layer, softmax

satisfy at least three aspects as follows. First, the developed
algorithm should have a high rate of accuracy. Second, the
algorithm should have a satisfactory generalization ability.
Finally, since it is intended for broad early screening instru-
ments, the algorithm should not lead to any computational
problem.

In general, deep neural networks would satisfy the first
requirement. However, to have a good generalization ability,
most deep neural networks would render a large number
of data and a very deep architecture. As a result, most deep
networks would lead to computational problems. As pointed
out by [4], DenseNets could achieve better classification
results than their counterparts on the ImageNet dataset with
fewer parameters. Hence, DenseNets would be an ideal
solution for the COVID-19 diagnosis algorithm. Moreover,
using DenseNets, we could build a very deep network
without causing vanishing gradient problems.

Figure 2 shows the schematic diagram of our proposed
algorithm for COVID-19 diagnosis. As shown in the figure,
we build an algorithm for COVID-19 diagnosis by tailoring
DenseNet-121 to the COVID-19 and other related diseases
characteristics. For the easiness of referencing, from now on,
we call the developed algorithm as COVID-19Net. Table
I shows the configuration of COVID-19Net. Similar to
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(a) (b) (c) (d) (e) (f)

Fig. 3: Several examples of training samples from (a) ARDS, (b) COVID-19, (c) No Finding, (d) Penumocystis, (e) SARS,
and (f) Streptococcus classes.

DenseNet-121, we build COVID-19Net using four dense
blocks on 224 × 224 input images. Before the first dense
block, we use a convolutional layer followed by a pooling
layer. The convolutional layer consists of 2k stride 2 convo-
lutions, each with 7×7 of size. For the value of k, we follow
the setting in DenseNet-121; k = 32. The last dense block
is followed by a 7×7 global average pooling layer. To avoid
over-fitting, we then place a drop-out layer with 0.5 of the
drop rate and a batch normalization layer. Finally, we feed
the features map to a classification layer that comprises a
6D fully connected layer with a softmax activation function.

C. Data Preparation

The CXR images with the corresponding class labels are
provided by [21] that are made available at https://github.
com/ieee8023/covid-chestxray-dataset. The dataset consists
of 123 CXR images that belong to 6 classes, namely ‘ARDS’
(4 images), ‘COVID-19’ (99 images), ‘No Finding’ (1 im-
age), ‘Pneumocystis’ (2 images), ‘SARS’ (11 images), and
‘Streptococcus’ (6 images). Since most class labels in the
dataset, particularly for the ‘No Finding’ and ‘Pneumocystis’

classes, consist of relatively a small number of images,
it may be difficult to ensure the generalization ability of
COVID-19Net. To remedy this problem, we perform data
augmentation, meant as producing additional examples by
applying (generally randomized) transformations to the ex-
isting data. In our study, we apply random image rotation and
translation operations on the images, such that for each im-
age in the dataset, 15 new augmented images are generated.
We perform the rotation and translation operations with the
range of {θ| − 60 ≤ θ ≤ 60} and {x, y| − 20 ≤ x, y ≤ 20},
respectively. From the augmentation process, we could gen-
erate 1845 new images altogether. Figure 3 shows several
examples of the training samples.

D. Training Procedures
To train and test COVID-19Net, we need to split the

augmented images into the training, validation, and testing
datasets. However, no division initially made by the authors
of the dataset [21]. Hence, we use the 10-fold cross-
validation to carry out the training, validation, and testing
procedures of COVID-19Net. For each fold, the proposed

234
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Fig. 4: The training-validation (a) losses and (b) accuracies of COVID-19Net. First and second columns in each of (a) and
(b) are for training and validation performance on folds 1 to 5 and folds 6 to 10, respectively.

network is trained and validated on 90% of the augmented
images using the Adam optimizer, mini-batch size of 10, and
learning rate of 10−4 for 15 epochs. The remaining images
are then used to test the trained COVID-19Net. The testing
accuracy of COVID-19Net is calculated as the average of
accuracies of all folds.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Training and Validation

We conduct our experiments on a CPU with Intel Xeon
Processors @2.30 GHz and a GPU with an NVIDIA Tesla
T4 card provided by Google Colaboratory. The machines
require approximately 10 minutes to finish the training
and validation processes on each fold. The COVID-19Net

performance during the training procedure is illustrated by
the accuracy and loss graphs in Figure 4.

From the figure, we may observe that COVID-19Net could
achieve perfect validation accuracies on most folds. This
fact suggests that the proposed network learns sufficient
features, mainly due to its deep configuration. Moreover, it
is interesting to note that no over-fitting spotted during the
training processes. It indicates that our augmentation strategy
could provide sufficient data for COVID-19Net to build a
satisfactory generalization ability. Besides, the use of Over-
fitting Combatant Layer may help the proposed network to
avoid over-fitting.
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Fig. 5: Classification results of COVID-19Net.

Fig. 6: The ROC curve of COVID-19Net on the two classes
classification problem.

B. Classification Results

The classification results of COVID-19Net are presented
in Figure 5. In the figure, we show the accuracy on each
fold achieved by COVID-19Net. From the graphs, we may
observe that the proposed network could classify all CXR
images with COVID-19 indications to the correct class.
The wrong classification happens only on two data with
Pneumocystis indications. Since our main interest is to build
an algorithm for COVID-19 diagnosis, it may be beneficial
to investigate the performance of our network only in two-
class labels, namely ‘COVID-19’ and ‘Non COVID-19’. In
this case, we may combine all classes other than ‘COVID-
19’ into a single class ‘Non COVID-19’. The ROC curve
in Figure 6 illustrates the result of such an investigation.
From the figure, it is observed that COVID-19Net achieves
an almost perfect area under the ROC curve (AUC = 0.9972),
indicating our proposed network could maintain excellent
detection of COVID-19 with only a small number of false
positives. In this respect, our algorithm would be beneficial
for practical applications.

IV. CONCLUSION

In this paper, we have proposed COVID-19Net, a deep
neural network-based algorithm to assist doctors in diag-

nosing COVID-19. The algorithm takes the CXR images
in automatically diagnosing COVID-19. In the experimental
parts, our algorithm could maintain an average classification
accuracy of > 99% in diagnosing the viral COVID-19 and
other related diseases like SARS, Streptococcus, ARDS, and
Pneumocystis. While being used on the two classes classi-
fication problem, namely ‘COVID-19’ and ‘Non COVID-
19’, COVID-19Net maintains an almost perfect area under
the ROC curve (AUC = 0.9972), indicating our network
could provide an ideal diagnosis of COVID-19 with only
a small number of false positives. For future works, in
developing COVID-19 screening frameworks, it would be
desirable to include visualization techniques, such as Grad-
CAM and occlusion sensitivity that are capable of explaining
the diagnosis results provided by COVID-19Net.
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