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Abstract—Traditional communication system design has
always been based on the paradigm of first establishing
a mathematical model of the communication channel,
then designing and optimizing the system according to
the model. The advent of modern machine learning tech-
niques, specifically deep neural networks, has opened
up opportunities for data-driven system design and opti-
mization. This article draws examples from the optimi-
zation of reconfigurable intelligent surface, distributed
channel estimation and feedback for multiuser beam-
forming, and active sensing for millimeter wave initial
alignment to illustrate that a data-driven design that
bypasses explicit channel modeling can often discover
excellent solutions to communication system design and
optimization problems that are otherwise computation-
ally difficult to solve. We show that by performing an
end-to-end training of a deep neural network using a
large number of channel samples, a machine learning-
based approach can potentially provide significantly sys-
tem-level improvements as compared to the traditional
model-based approach for solving optimization prob-
lems. The key to the successful applications of machine
learning techniques are in choosing the appropriate
neural network architecture to match the underlying
problem structure.

Introduction
Modern machine learning techniques, specifically deep neu-
ral networks (DNNs), have enabled tremendous progress for
diverse applications, ranging from speech recognition, natu-
ral language processing, and image classification, to data ana-
lytics and self-driving cars, and many more. In this article, we

ask the following question: Is there a role for machine learn-
ing in physical-layer wireless communications system
design? If so, where do opportunities lie, and where would
the potential benefits come from?

Fundamental to the phenomenal success of the machine
learning techniques across a wide range of applications is
its apparent universal ability to approximate any func-
tional mapping from an input space to an output space,
given sufficiently complex neural network structure and
enough training data [1]. In fact, common characteristics
of application domains where machine learning has made
the most impact, are that the inputs to these tasks are
high-dimensional complex data, whose structure needs to
be explored, while the outputs of these tasks can either
be categorical (e.g., classification, segmentation, and
sentiment analysis) or have complex structures them-
selves (e.g., machine translation, image labeling). The field
of machine learning has developed myriad techniques to
enable automatic feature extraction and to explore the
structure of the problem in order to efficiently train a
DNN to map the input to the desired output. The machine
learning paradigm essentially solves optimization prob-
lems by pattern matching. This is a vastly different phi-
losophy as compared to the traditional model-based
information theoretical approach to communication sys-
tem design.

This article aims to illustrate that machine learning has an
important role to play even in the physical-layer wireless
communications, which has traditionally been dominated by
model-based design and optimization approaches. This is so
for several reasons:

(i) Traditional wireless communication design methodol-
ogies typically rely on the channel model, but models
are inherently only an approximation to the reality. In
applications where the models are complex and the
channels are difficult to estimate, a data-driven meth-
odology that allows the system design to bypass
explicit channel estimation can potentially be a better
approach.
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(ii) Modern wireless communication applications often
involve optimization problems that are highly dimen-
sional, nonconvex, and difficult to solve efficiently. By
exploiting the availability of training data, a machine
learning approach may be able to learn the solutions of
the optimization problems directly. This can lead to a
more efficient way to explore the nonconvex optimiza-
tion landscape than the traditional model-based optimi-
zation approaches.

(iii) Traditional communication system designs are based on
the principle of source-channel separation and the opti-
mal design of compression and channel codes. But
when the encoder and the decoder are block-length
and/or complexity constrained, or when the overall
communication scenario involves multiple transmitters
and multiple receivers, the optimal design of a practical
encoder and decoder is highly challenging. In this realm,
there is the potential for discovering better source and
channel encoders and decoders using machine learning,
as many of these code design problems boil down to
solving optimization problems over the codebook struc-
ture for which data-driven methods may be able to
identify better solutions more efficiently.

The field of machine learning for communication system
design has exploded in recent years [2], [3], [4] [5]. We
mention some of the references here, e.g., in source and
channel coding [6], [7], [8], waveform design [9], signal
detection [10], [11], [12], resource allocation [13], [14],
[15], [16], [17] [18], and channel estimation [19], [20],
etc. This article does not attempt to do justice in survey-
ing the entire literature and the recent progress on this
topic. Instead, we focus on the questions of why and how
machine learning can benefit wireless communication
system design by presenting the following three specific
examples.

First, we consider communication scenarios in which a naive
parameterization of the channel would involve a large num-
ber of parameters, thus making the channel estimation is a
challenging task. Specifically, we show that in a wireless
communication system involving a reconfigurable intelligent
surface (RIS), comprising of a larger number of reflective ele-
ments, a machine-learning approach that directly optimizes
the reflection coefficients without first estimating the chan-
nel can significantly improve the overall performance [21].

Second, we consider a distributed source coding problem
in the context of channel estimation and feedback for a
massive multiple-input multiple-output (MIMO) system,
and show that short block-length code design for distrib-
uted data compression with system-level objectives is
feasible and can result in significant performance improve-
ments over the single-user data compression codebook
design [22].

Third, we use an active sensing problem for the millime-
ter wave (mmWave) initial alignment to illustrate the
role of machine learning in exploring the optimization
landscape in a complex sequential learning problem [23].
We show that selecting the right neural network architec-
ture to match the problem structure is crucial for its
success.

Information Theoretical Approach
to Communication System Design
Information theory has been the guiding principle in the
development of communication system design in the past
seventy years. The driving philosophy in information theory
has always been reductionist—putting it in words of a
famous quote: everything should be as simple as possible, but
no simpler. A celebrated example of this philosophy is the
additive white Gaussian noise (AWGN) channel model, in
which the choice of the Gaussian noise distribution is justi-
fied both by a central limit theorem argument based on the
assumption that the overall noise is comprised of many inde-
pendent small components and by the fact that the Gaussian
distribution is the worst-case noise distribution for the addi-
tive channel. The AWGN model is cherished in the research
community and has played a central role in many historical
developments in communication theory (e.g., from time-
domain equalization, to orthogonal frequency-division multi-
plex, to multiuser detection), in coding theory (e.g., from
maximum likelihood decoding, to Viterbi algorithm, to Turbo,
low-density parity-check, and polar codes), and in multiuser
information theory (e.g., from multiple-access, to broadcast,
and to interference channel models).

The wireless channels are, however, much more compli-
cated than the AWGN channel model. The wireless chan-
nel can be frequency selective; it is inherently time-
varying; it often involves multiple users and multiple
antennas. Historically, communication engineers have
invested heavily in developing models for various types
of wireless channels. These models are often based on
the physics of electromagnetic wave propagation; many
of these models are statistical in nature; these channel
models have played an important role in the design, anal-
ysis, performance evaluation, and standardization of gen-
erations of wireless systems [24].

Channel modeling is important in wireless communication
engineering because most modern wireless systems operate
under the framework of first estimating the channel, then
feeding back the estimated channel to the transmitter, and
finally optimizing transmission and reception strategies to
maximize the mutual information between the input and the
output. In this article, we argue, however, that this model-
then-optimize approach is not necessarily always the best
approach.
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From Model-Based Optimization to
Learning-Based Design
In traditional communication system design, maximizing
the capacity of a wireless link typically requires channel
estimation; the process of channel estimation always
depends on the channel model. Choosing which model to
use is, however, an art rather than a science. This is
because wireless channels often have inherent structures
that make certain models more appropriate than others.
For example, a MIMO channel with M transmit antennas
and N receive antennas can simply be modeled as a M �
N matrix. But a mmWave massive MIMO channel often
has a sparsity structure, corresponding to the finite num-
ber of propagation paths from the transmitter to the
receiver, so that a sparse path-based model in the spatial
domain is a more efficient representation of the channel.
Likewise, a frequency-selective channel can be modeled
by its channel response across frequencies. But, the fre-
quency selectivity is usually a consequence of the differ-
ent delays across the multiple paths, so the channel
variations across the frequencies are correlated. Instead
of estimating the channel in the frequency domain, a mul-
tipath time-domain model may be more appropriate.

Moreover, the channel estimation process requires specifying
a loss function. The squared-error metric is often adopted for
tractability reasons, but minimizing the mean-squared-error
(MSE) of the estimates of the channel parameters does not
necessarily correspond to maximizing the overall system
objective. For example, some parts of the channel may be
more important to describe than others. Clearly, the specific
parameterization of the channel and the choice of the estima-
tion errormetric have a significant impact on the ultimate sys-
tem performance.

Traditionally, wireless researchers rely on experience and
engineering judgment in choosing the best channel model
and the best optimization formulation. The design decisions
need to balance the inherent tradeoffs between:

i) how complex the model is, e.g., the number of parame-
ters in the model;

ii) how well the model approximates the reality;

iii) how easy it is to estimate the model parameters;

iv) how easily the model can be used for subsequent trans-
mitter and receiver optimization.

We emphasize that in a wireless fading channel with limited
coherence time/frequency, model estimation comes at a sig-
nificant cost in terms of the coherence slots occupied by pilot
transmissions. For example, a highly complex model may
better approximate the reality, but may require too many
pilots for parameter estimation, hence may not be worth the
effort. The point is that there is no universal theory about

how to choose the best channel model and how to best per-
form channel estimation. To characterize and to take advan-
tage of the underlying channel structure in the design of the
channel estimation process require engineering intuition and
highly nontrivial tasks.

In contrast, this article shows that a machine-learning
approach can be used to allow automatic discovery of the
appropriate representation of the channel based on training
data. Furthermore, it allows the optimization of the system
metric that actually matters (e.g., the achievable rate as
opposed to the MSE of the channel reconstruction) without
having to first explicitly estimate the channel. This can have
a significant advantage as illustrated in the example of opti-
mizing the RIS coefficients directly based on the received
pilots to maximize the capacity of RIS system and the appli-
cation of neural networks for channel feedback for the mas-
sive MIMO system.

Model-Based Optimization
In many communication system design problems, even if
the model parameters are perfectly estimated, the result-
ing transmitter and receiver optimization problem may
still be not so easy to solve. The formulation of the opti-
mization problem is also an art rather than a science. In
fact, wireless engineers often adopt optimization formula-
tions, because the resulting mathematical programming
problem is amendable to either analytic or computation-
ally efficient numerical solution. We remark that a mathe-
matical optimization problem can often be parameterized
in many different ways. The “holy grail” of mathematical
optimization is often thought of as to transform a prob-
lem into a convex form so that computationally efficient
numerical procedures can be developed to find the global
optimal solution of the resulting mathematical program-
ming problem. But there is no universal theory about
how best to transform the optimization landscape.

In contrast, this article shows that a machine-learning
approach can be used for the automatic discovery of the
mapping from the problem representation to the optimal
solution based on training data. This is illustrated in the
examples of optimizing RIS coefficients based on received
pilots to maximize the capacity of RIS system, and optimizing
beamformers based on channel feedback for FDD massive
MIMO system, finally optimizing a sequence of active sensing
strategies for mmWave channel initial alignment in the sub-
sequent sections.

Data-Driven Communication
System Design
The article advocates the viewpoint that a data-driven
approach can circumvent many of the modeling and opti-
mization difficulties for wireless system design as
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mentioned in the previous section. The main idea is
shown in Figure 1. Instead of the traditional model-then-
optimize approach, which involves choosing an appropri-
ate parameter space, then characterizing the associated
optimization landscape, and finally performing the result-
ing mathematical optimization, we adopt a data-driven
approach to directly map the problem instances to the
corresponding optimized solutions. By training such a
neural network over many problem instances, the task of
optimization is essentially turned into pattern matching.
When a new optimization task comes along, the trained
neural network can then simply output the corresponding
solution. This is akin to a human learner who is trained
to use past experience to perform future optimization
tasks.

The advantages of the proposed data-driven paradigm are
the following:

(i) It allows direct system-level optimization without the
intermediary step of channel estimation. The model-
ing uncertainty and the channel estimation error are
implicitly taken into account in the overall optimiza-
tion process.

(ii) It allows an end-to-end design with a realistic system-
level objective function, instead of relying on some arbi-
trary metric in the model parameter estimation process.

(iii) It allows the problem instances to be represented in an
arbitrary fashion. Additional side information which is
often not easy to incorporate into a model can now be
accounted for in the optimization process.

(iv) By using a large number of problem instances as train-
ing data, it allows the optimization process to efficiently
explore the high-dimensional optimization landscape in
the training stage.

(v) Once trained, the neural network can efficiently output
the optimized solution for new problem instances. In
effect, the computational complexity is moved from the
optimization stage to the neural network training process.

Thus, instead of using a mathematical optimization approach
that requires highly structured models over well-defined
problems and relies on the specific (e.g., convex) structure of
the optimization landscape, a machine-learning approach is
capable of solving relatively poorly defined problems and
exploring high-dimensional optimization space without first
identifying the problem structure. This is made possible
because of the ability of the neural network to find patterns in

Figure 1
Traditional wireless system design follows the paradigm of model-then-optimize (top branch). The design problem is modeled

mathematically; the model parameters are then estimated, which allows the associated optimization landscape to be
characterized; finally, the optimal solution is obtained by mathematical programming. The machine-learning approach (bottom

branch) aims to directly learn the optimal solution from a representation of the problem instance. The neural network is
trained over many problem instances, by adjusting its weights according to the overall system objective as a function of the

representation of the problem instances.
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the vast amount of training data, thanks to the nowadays
prevalent highly parallel computer architectures for both neu-
ral network training and implementation processes [25], [26].

Machine learning is about approximating functions—its
broad impact comes from the fact that it is particularly effec-
tive in processing high-dimensional data. The phenomenal
success of deep learning in domains such as image and
speech processing is due to the fact that the specific task at
hand is often governed by some low-dimensional character-
istics (e.g., labels) embedded in high-dimensional observa-
tions (e.g., images). As we shall see in the examples in the
sequel, the wireless communications scenarios in which the
data-driven optimization can be shown to substantially out-
perform the traditional model-driven design are also pre-
cisely the situations in which the problem instances have
some low-dimensional structure and are observable only
through a limited number of high-dimensional outputs. In
the communications setting, the observations are typically
the received pilots; the low-dimension problem structure
is typically due to the sparsity of the underlying wireless
channel. The benefit of machine learning comes from
bypassing the explicit modeling of the channel structure
and instead using a DNN to directly process the high-
dimensional received pilots to arrive at the desired com-
munication action. The remaining of this article uses
three examples to illustrate the success of machine learn-
ing in wireless applications.

Capacity Maximization Using
Reconfigurable Intelligent Surface
Wireless channels are often highly dimensional. This is the
case for massive MIMO systems in which the transmitters
and the receivers are equipped with large antenna arrays,
and is also true of emerging devices such as a class of meta-
surfaces known as RIS, which consists of a large number of
reflecting elements and can be dynamically reconfigured
to focus electromagnetic waves to the intended receivers for
the purpose of maximizing the overall channel capacity [27].

The physical electromagnetic propagation environment of a
wireless channel is also often sparse, especially as compared
to the number of elements in the antenna array or the reflec-
tive surface. This is because the propagation characteristics
typically only depend on a small number of scatters, and the
number of propagation paths in the environment can be sig-
nificantly less than the number of transmitting and receiving
antennas or the number of reflecting elements. On the other
hand, due to the limited number of radio-frequency (RF)
chains and the finite pilot overhead, the available observa-
tions of the channel are typically limited.

How can we estimate a sparse high-dimensional channel
through a limited number of observations? The traditional
approach is to take advantage of the channel sparsity and to

build a channel model with a small number of parameters,
then proceed with estimating the parameters of the channel
based on the received pilots, followed by optimizing the sys-
tem according to the estimated channel. How well such an
approach works would depend on how well the model
approximates the actual channel. In this section, we advocate
an alternative data-driven approach that bypasses the
explicit modeling stage and directly optimizes the system
using a neural network with the received pilots as inputs.
We use the RIS as an example in which explicit channel esti-
mation is especially challenging, but the proposed approach
can be adopted equally well in many other scenarios, includ-
ing the conventional massive MIMO system.

A commonly used model for RIS is to regard it as a
device consisting of a large number of tunable elements
that can reflect incoming signals with arbitrary phase shifts
(see Figure 2). The goal is to dynamically reconfigure the
phase shifts at the RIS according to the channel realizations
of the users in order to maximize a system-level metric, e.g.,
the system downlink throughput. The problem is that chan-
nel estimation is highly nontrivial for the RIS system.
Assuming a time-division duplex (TDD) system with chan-
nel reciprocity, channel estimation can be done using uplink
pilots. However, the large number of RIS elements gives
rise to a high-dimensional channel, which would require
many pilots to estimate. Furthermore, even if the channel
can be accurately estimated, the optimization of the RIS
coefficients is a highly complex and nonconvex optimization
problem, which is difficult to solve.

We show that the approach of using machine learning to
directlymap the received pilots to the optimized RIS reflective
coefficients can yield a significant performance improvement
as compared to the traditional channel estimation based
approach [21]. The performance gain comes from the fact that
channel models are only an approximation of the reality and
that traditional channel estimation always needs to assume
an estimation error metric (such as the MSE), but such metric
does not perfectly match the system-level objective. This
problem can be alleviated by bypassing the modeling stage,

Figure 2
Geographic layout of an RIS-assisted downlink system [21].
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by using the true system objective as the loss function, and by
training a neural network to directly output the optimized
reflective coefficients based on the received pilots. Essentially,
the wireless channel is now represented by the received
pilots. The complexity of high-dimensional optimization is
shifted to the training stage, where a large number of channel
instances and the corresponding reflecting coefficients are
processed by the neural network so that it can produce the
desired solution when a new channel realization is observed.

Choosing the right architecture for the neural network turns
out to be important. For this application, we experimentally
find that the best system-level performance is obtained by
adopting a graph neural network (GNN) [15], [16], [28] that
captures the spatial relationship between the base-station
(BS), the RIS, and the users. The proposed approach and the
interpretations of the solutions are presented in the following.

SystemModel and Problem Formulation

Consider an RIS-assisted MIMO system with a BS equipped
with M antennas serving K single-antenna users as shown
in Figure 2. An RIS consisting of N elements is deployed
between the BS and the users to enable a reflection link. Let
hd
k 2 CM denote the direct channel from the BS to user k,

and hr
k 2 CN denote the channel from the RIS to user k, and

G 2 CM�N denote the channel from the RIS to the BS. We
assume a block-fading channel model. In the downlink, the
BS sends the data symbol sk 2 C with E½jskj2� ¼ 1 to user k
using a beamforming vector wk 2 CM , which satisfies a total
power constraint

PK
k¼1 kwkk22 � Pd. The RIS reflection coeffi-

cients are denoted by v ¼ ½ejv1 ; ejv2 ; . . . ; ejvN �>, where vi 2
ð�p;p� is the phase shift of the ith element. Then, the

received signal at user k is represented as

rk ¼
XK
j¼1

ðhd
k þG diagðvÞhr

kÞ>wjsj þ nk

¼
XK
j¼1

ðhd
k þAkvÞ>wjsj þ nk (1)

where Ak ¼ Gdiagðhr
kÞ 2 CM�N denotes the cascaded chan-

nel from the BS to user k through reflection at the RIS, and
nk � CNð0; s2

0Þ is the AWGN. The kth user’s achievable rate
Rk is computed as

Rk ¼ log 2 1þ jðhd
k þAkvÞ>wkj2P

i 6¼k jðhd
k þAkvÞ>wij2 þ s2

0

 !
: (2)

The overall problem is to maximize some network utility
function UðR1; . . . ; RKÞ by optimizing the beamforming vec-
tors at the BS fwkgKk¼1 and the RIS reflection coefficients v.
Now, since the channel coefficients are not known, we need
to use a pilot training phase to learn the channel. Assuming a
TDD system with channel reciprocity, we let each user k
send an uplink pilot sequence xkð‘Þ; ‘ ¼ 1; . . . ; L, with
jxkð‘Þj2 � Pu, to the BS. Then, the received pilots at the BS
can be denoted as

yð‘Þ ¼
XK
k¼1

hd
k þAk~vð‘Þ

� �
xkð‘Þ þ nð‘Þ (3)

where ~vð‘Þ is the vector of RIS reflection coefficients at
the uplink transmission slot ‘ and can be thought of as
part of the pilot, and nð‘Þ � CN ð0; s2

1IÞ is the additive Gauss-
ian noise. Denoting Y ¼ ½yð1Þ; yð2Þ; . . . ; yðLÞ� 2 CM�L and

Figure 3
Deep learning framework for directly designing the multiuser beamformers and reflection coefficients based on the received uplink

pilots for a downlink RIS-assisted multiuser system.
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W ¼ ½w1; . . . ;wk�, our goal is to design the downlink beam-
formers W and the reflection coefficients v, based on the
received uplink pilots Y, which contains information about
the channel. This overall process can be thought of as solving
the following optimization problem over the mappings from
Y to ðW; vÞ

maximize
ðW; vÞ ¼ GðYÞ

E UðR1ðW; vÞ; . . . ; RKðW; vÞÞ½ � (4a)

subject to
X

k
kwkk22 � Pd (4b)

jvij ¼ 1; i ¼ 1; 2; . . . ; N (4c)

where the function Gð�Þ : CM�L ! CM�K �CN is the math-
ematical representation of the mapping to be optimized over,
and the expectation is taken over the random channel real-
izations and the uplink noise.

Directly solving problem (4) is challenging, because it
involves optimizing over the high-dimensional mapping
Gð�Þ. The conventional approach is to first estimate the
channels from the received pilots Y, then to solve the
subsequent network utility maximization problem based
on the estimated channel. Instead, we propose a machine-
learning approach to directly learn such a mapping using
a GNN.

Learning to Beamform and to Reflect

The overall learning framework is shown in Figure 3, where
the received pilots after matched filtering f~YkgKk¼1 is the
input to a neural network that learns the optimized reflec-
tion coefficients v and the beamforming matrix W without
the intermediary channel estimation step.

The remaining key question is how to choose the neural net-
work architecture. In theory, a fully connected neural net-
work can already learn the mapping from the received pilots
to the optimization variables. However, a more efficient
architecture is one that captures the structure of the network
utility maximization problem (4). Specifically, observe that in
(4), if the indices of users permute, the optimal RIS coeffi-
cients v should remain the same, while the optimal beam-
forming vectors fwkgKk¼1 should permute in the same
manner. These properties are known as permutation invari-
ance and permutation equivariance.

It is possible to design a neural network to automatically
enforce these properties. This can be done using a GNN based
on a graph representation of the RIS and the users. The details
of the GNN structure are described in [21]. The idea is to associ-
ate a representation vector zdk with each user and also with the
RIS. The representation vectors are updated layer-by-layer,
but the connections between the layers are based on aggrega-
tion and combination operations that are invariant with

respect to input permutation, e.g., the meanðÞ or maxðÞ func-
tions. After multiple layer iterations, the node representation
vectors are mapped to the beamforming matrixW and the RIS
coefficients v. To make the architecture generalizable with
respect to the number of users, the neural network weights
across the users are tied together. The overall neural network
can be trained tomaximize the network utility function.

Numerical Results

To illustrate the performance of the machine-learning
approach for optimizing the beamformers and the reflective
coefficients, we report the simulation results1 in [21] on a
scenario with M ¼ 8 antennas at the BS, N ¼ 100 elements
at the RIS, and three users. The direct-link channel hd

k is
assumed to be Rayleigh fading, and the BS-RIS and RIS-users
channels are assumed to be Rician fading with Rician factor
set as 10. The geographic locations of the BS, RIS, and users
are shown in Figure 2. The uplink pilot transmits power and
the downlink data transmit power are respectively set to be
15 and 20 dBm. The uplink and downlink noise power are
�100 and �85 dBm, respectively.

Figure 4 plots the average sum rate versus pilot length for dif-
ferent approaches. As can be seen from Figure 4, the

Figure 4
Sum rate versus pilot length for an RIS-assisted multiuser

downlink system with an 8-antenna BS, a 100-element RIS, and
three single-antenna users, comparing end-to-end deep

learning approach to the conventional approach of channel
estimation (CE) followed by RIS coefficients and BS

beamforming optimization [21].

1The code for this simulation is available at https://github.com/
taojiang-github/GNN-IRS-Beamforming-Reflection.
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performance of the linear minimum mean-squared-error
(LMMSE) channel estimation basedmethod is able to approach
the perfect channel state information (CSI) baseline as the pilot
length increases. However, the end-to-end deep learning
method approaches the perfect CSI baselinemuch faster, show-
ing that the GNN can utilize the pilots in amore efficient way.

We also provide the simulation results of the model-then-
optimize approach in which a GNN is used for explicit chan-
nel estimation, and the beamforming matrix and RIS coeffi-
cients are optimized based on the estimated channel. While
this method shows better performance as compared to the
LMMSE-based approach, its performance is still much worse
than the GNN approach, which directly learns the solution
from the pilots. This shows the benefit of bypassing explicit
channel estimation. Moreover, additional information, such
as the locations of the users, can be easily incorporated into
the end-to-end deep learning framework, which can further
improve the performance, as shown in Figure 4.

The GNN produces interpretable solutions. Figure 5 shows
the array responses learned by the GNN for a problem of
maximizing the minimum rate for three users at different
locations. We observe from Figure 5(b) that the learned RIS
coefficients indeed focus the beams to the corresponding
user locations, but the three users get different focusing
strengths. Interestingly, because the BS beamformers and
the RIS reflective coefficients are designed jointly, the user
corresponding to the weakest RIS focusing is compensated
by a stronger BS beamforming gain as seen in Figure 5(a).
Thus, the combined channel strengths are equalized across
the three users. Overall, these results show that the GNN

indeed is able to learn interpretable solutions, based on
much fewer pilots than the conventional strategies.

Distributed Source Coding for
Channel Estimation and Feedback in
FDD Massive MIMO
The channel estimation problem is more challenging in the
frequency-division duplex (FDD) system, which cannot rely
on channel reciprocity. In this case, as shown in Figure 6, the
pilots are sent by the BS in the downlink and are observed
by the users. The users need to estimate their channels, then
send quantized versions of the channels through rate-limited
feedback links to the BS, so that the BS can design a precod-
ing strategy to serve all the users. The conventional approach
to this problem relies on model-based channel estimation
followed by independent codebook-based quantization and
feedback [29], [30], [31]. This is far from optimal. We show
here that machine-learning techniques can be used to train a
set of optimized distributed source encoders together with a
centralized decoder in an end-to-end fashion in order to
maximize a system-level objective. Such an approach can sig-
nificantly reduce the length of pilots needed to achieve the
maximum throughput in an FDD massive MIMO system.

The channel estimation and feedback design for amultiuser FDD
massive MIMO system can be thought of as a distributed source
coding problem. Distributed source coding is a long-standing
information theoretical problem in which distributed encoders
compress their observations for centralized reconstruction at
the decoder. Here, the users are the distributed source encoders

Figure 5
Array response of the BS and the RIS obtained from the GNN for N ¼ 100 andM ¼ 8 for a three-user system for maximizing the

minimum rate. The true ðf�
3; u

�
3Þ are ð�1:176;�0:994Þ, ð0;�0:980Þ, and ð1:176;�0:994Þ, respectively, for the three users [21].

(a) Array response of the BS. (b) Array response of the RIS.
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who observe and then quantize a noisy version of the channels.
The BS is the centralized source decoder, which aims to compute
a function of the channels, namely the precoder.

The optimal design of distributed source encoders and
decoders is highly nontrivial. Information-theoretic optimal
coding strategies involve concepts, such as binning, which
can be thought of as a multiuser codebook. While it is
unlikely for a neural network to learn structured binning, it
can help design good codebook-based quantization and feed-
back strategies that reap the benefit of distributed source
coding. This is an example in which a data-driven approach
can play an important role in designing short block-length
quantization codes under rate constraints.

SystemModel and Problem Formulation

Consider an FDD multiuser MIMO system in which a BS
equipped with M antennas serves K single-antenna users.
Analogues to the previous section, we consider the downlink
scenario in which the BS aims to communicate the data sym-
bol sk 2 C with E½jskj2� ¼ 1 to user k using a precoding vec-
tor wk 2 CM , which satisfies a total power constraintPK

k¼1 kwkk22 � Pd . Assuming a narrowband block-fading
channel model, the received signal at the kth user in the data
transmission phase can be written as

rk ¼ h>
k wksk þ

X
i 6¼k

h>
k wisi þ zk (5)

where hk 2 CM is the channel between the BS and user k
and zk � CNð0; s2

0Þ is the AWGN. The achievable rate of user
k is given by

Rk ¼ log 2 1þ jh>
k wkj2P

i 6¼k jh>
k wij2 þ s2

0

 !
: (6)

The aim is to maximize a network utility function
UðR1; . . . ; RKÞ, which is a function of the precoding vectors
fwkgKk¼1 . To design the optimal precoding vectors, the BS
must first acquire the instantaneous CSI. We consider a pilot
phase for the FDD system in which the BS sends pilots X 2
CM�L of length L, and the kth user receives yk 2 C1�L as

yk ¼ h>
k Xþ nk (7)

where the pilots in the ‘th transmission satisfy the power
constraint, i.e., kx‘k22 � Pd with x‘ being the ‘th column of X,
and nk � CNð0; s2

0IÞ is the AWGN at user k. Subsequently,
the kth user abstracts the useful information in the received
pilots yk for the purpose of multiuser downlink precoding,
and feeds back that information to the BS under a feedback
constraint of B bits, i.e.,

qk ¼ F k yk
� �

(8)

where the function F k : C
1�L ! f	1gB is the kth user’s

feedback scheme. Finally, the BS designs the multiuser pre-
coding matrix W ¼ ½w1; . . . ;wk� based on the feedback bits
received from allK users (i.e., q ¼ ½q>

1 ;q
>
2 ; . . . ;q

>
K �>), i.e.,

W ¼ P qð Þ (9)

where the function P : f	1gKB ! CM�K denotes the multi-
user downlink precoding scheme.

The overall problem formulation is therefore

maximize
X; fFkð�Þg8k; Pð�Þ

UðR1; . . . ; RKÞ (10a)

subject to W ¼ P q>
1 ; . . . ;q

>
K

� �>� �
(10b)

qk ¼ F kðh>
k Xþ nkÞ; 8k (10c)X

k
kwkk22 � Pd (10d)

kx‘k22 � Pd; 8‘ (10e)

in which the training pilots X, all K users’ feedback schemes
fF kð�ÞgKk¼1, and the multiuser precoding scheme Pð�Þ can be
designed to optimize the overall utility function of the system.

This problem can be viewed as a distributed source coding prob-
lem with the network utility as the “distortion” metric, because
channel estimation and quantization are performed across K
distributed users, and the feedback bits from allK users are cen-
trally processed at the BS for the purpose of designing themulti-
user precoder, as illustrated in Figure 7(a). Obtaining the
optimal distributed source coding strategy by directly solving
the optimization problem (10) is challenging. As shown in
Figure 7(b), the conventional design of FDD massive MIMO sys-
tem is based on independent quantization and feedback of the
channel vector (or channel parameters) at each user. However,
such independent quantization and feedback approach is quite
suboptimal, especially in the short pilot regime. In this section,

Figure 6
FDD massive MIMO system, in which the BS transmits the
pilots, the users estimate their channels then feedback a

quantized version of the channels to BS, and the BS designs the
precoders based on the feedback from all the users [22].
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we show that a deep learning approach can be used to design a
more efficient distributed source coding codebook for the FDD
massiveMIMO systems.

Learning Distributed Channel Estimation and
Feedback

The idea is to use DNNs to model the feedback scheme
fF kð�ÞgKk¼1 and the multiuser precoding scheme Pð�Þ in
Figure 7(a). The rest of this section briefly explains how we
solve the overall optimization problem (10) by employing
such a deep-learning framework.

As the first step of the downlink training phase, the BS sends
L training pilots and the kth user observes the pilots through
its channel as yk ¼ h>

k Xþ nk. Since the received signal yk is
a linear function of the channel hk, we can simply model it as
the output of a single-layer neural network with a linear acti-
vation function in which the input is the channel hk . In this
single-layer neural network, the weight matrix is the pilot X
and the bias vector is the noise vector nk. To enforce the total
power constraint on each pilot transmission, we adopt a
weight constraint under which each column of X satisfies
kx‘k22 � Pd. It is worth mentioning that such a weight con-
straint is often used in the machine-learning literature for
regularization in order to reduce overfitting, e.g., [32]. Here,
we use the weight constraint to capture the physical con-
straint on the downlink power level of transmit antennas of
a cellular BS.

On the user side, upon receiving yk , the user seeks to summa-
rize the useful information in yk and to feedback that infor-
mation to the BS in a form of B information bits. We can
simply model this process by a DNN which maps yk to feed-
back bits qk. To make sure that the final output of the DNN is
in the form of binary bits, we use the sign activation function
at the last layer of the user-side DNNs.

Finally, assuming an error-free feedback channel between
each user and the BS, the BS designs precoding vectors as a
function of the received feedback bits from all K users. We
propose to use another DNN to map the received feedback
bits q to the design of the multiuser precoding matrix W. To
ensure that the precoding matrix designed by the DNN satis-
fies the total power constraint, we employ a normalization
layer at the last layer of the BS-side DNN.

The overall distributed source coding strategy is designed by
training the end-to-end deep-learning framework to maxi-
mize the network utility using stochastic gradient descent.
But care must be taken, due to the fact that the derivative of
the sign activation function is always zero, so the conven-
tional backpropagation method cannot be directly used to
train the overall network. It is possible to circumvent this dif-
ficulty by adopting the straight-through approximation in
which the sign activation function is approximated by
another smooth differentiable function for the backpropaga-
tion step [33]. By gradually tightening the approximation, we
eventually arrive at a beamforming codebook that maps the
noisy version of the channels from all the users to an opti-
mized set of downlink beamformers.

Figure 7
Comparison between end-to-end design and conventional scheme in FDD downlink precoding problem. (a) FDD downlink precoding

design problem can be viewed as a distributed source coding problem in which the downlink pilots and the feedback schemes adopted
at the users can be thought of as the source encoders and the precoding scheme adopted at the BS can be thought of as the decoder.

(b) Conventional channel feedback scheme can be regarded as a separate source coding strategy of independent quantization of each
user’s channel. In the machine-learning approach, the feedback scheme at the user side and the precoding scheme at the BS side are

replaced by DNNs that can be trained in an end-to-end fashion [22] .
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Numerical Results

We now present the performance evaluation of the end-to-
end deep-learning framework in a scenario where a BS with
M ¼ 64 antennas servesK ¼ 2 users in a mmWave propaga-
tion environment with two dominant paths as reported
in [22].2 The fading coefficient of each path is modeled by a
Gaussian random variable and the corresponding angle of
departure is modeled by a uniform random variable in the
range of ½�30
; 30
�. The signal-to-noise ratio (SNR) Pd=s

2
0 is

set to 10 dB and the pilot length L ¼ 8.

Figure 8 plots the average sum rate versus per-user feedback
rate constraint B. It can be seen that the end-to-end deep-
learning framework with relatively low rate feedback links
(i.e., about 15 bits per user) can already outperform the max-
imum-ratio transmission (MRT) precoding baseline with full
CSI. The MRT precoding design does not take the interuser
interference into account. This shows that the trained DNN
has actually learned a precoding mechanism capable of alle-
viating interuser interference in a multiuser FDD massive
MIMO system.

Furthermore, we compare the performance of the end-to-end
deep-learning framework with that of the conventional
design methodology based on channel estimation fol-
lowed by linear precoding schemes, such as zero forcing.
For the channel estimation part of the conventional

approach, two different methods are used: 1) a com-
pressed sensing algorithm called orthogonal matching
pursuit (OMP) and 2) deep learning-based channel esti-
mation method.

Figure 8 shows that the end-to-end deep learning frame-
work can achieve significantly better performance as com-
pared to the conventional channel estimation based design
methodology (either when the channel estimation is imple-
mented by OMP or by deep learning). This confirms the
intuition that in practical massive MIMO systems in which
the pilot length is much smaller than the number of anten-
nas, the conventional approach of first estimating and then
quantizing the sparse channel parameters is quite subopti-
mal. The end-to-end deep learning framework can achieve
much better performance, because it is able to better
explore the channel sparsity. It implicitly estimates the
channel and designs the quantization codebooks jointly
across the multiple users in order to maximize an overall
true system objective, i.e., the sum rate in this case.

Active Sensing for mmWave Channel
Initial Alignment
Machine learning also has an important role to play in solv-
ing high-dimensional nonconvex optimization problems in
sensing applications. To illustrate this point, we consider the
mmWave initial alignment problem for a BS equipped with a
hybrid massive MIMO architecture consisting of an analog
beamformer and a low-dimensional digital beamformer. The
user transmits a sequence of pilot signals; the BS makes a
corresponding sequence of observations, via the analog
beamformers, which it can design, but the observations
reside only in the low-dimensional digital domain. The ques-
tion is in which analog directions should the BS choose to
observe in a sequential manner in order to obtain the most
accurate channel information for a communication or sens-
ing task of interest?

Because the sensing direction in each stage can be designed as
a function of the previous observations, this is an active sens-
ing problem for which the analytic solution is highly nontriv-
ial and the conventional codebook-based approach is highly
suboptimal [34], [35]. Specifically, [34] proposed a bisection
search algorithm to gradually narrow down the angle-of-
arrival (AoA) range. However, the performance of the bisec-
tion algorithm is very sensitive to the noise power, so it is suit-
able for the high SNR scenario only. To address this issue, [35]
proposed to select the next sensing vector from a predefined
codebook based on the posterior distribution of the AoA.
Furthermore, [17] eliminated the codebook constraint by
directly mapping the posterior distribution to the next
sensing vector using a DNN. However, as the computation
of posterior distribution is applicable only to the single-
path channel model, the generalization of these ideas to
the multipath channel is challenging.

Figure 8
Sum rate versus feedback rate constraint in a two-user FDD

massive MIMO system with 64 antennas, sparse channels with
two dominant paths, pilot length of 8 and SNR of 10 dB [22] .

2The code for this simulation is available at https://github.com/
foadsohrabi/DL-DSC-FDD-Massive-MIMO.
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Instead, we show that an excellent solution can be obtained
by training a DNN to learn the sensing direction in an end-to-
end manner without needing to compute the posterior. Fur-
thermore, we explore the active nature of the problem and
show that by using a long short-term memory (LSTM)-based
architecture [36], the state representation in each observa-
tion stage can be learned then used to design the sensing
direction in the next stage. The results show that machine
learning can offer a significant advantage over the current
state-of-the-art.

SystemModel and Problem Formulation

Consider a TDD mmWave system in which a BS equipped with
M antennas and a single RF chain serves a single-antenna user.
The user transmits a sequence of pilots to the BS, and the BS
seeks to estimate the channel or to design a subsequent down-
link beamformer to maximize the beamforming gain, based on
the received pilots. Due to the limited RF chain, the BS can only
sense the channel through an analog beamformer (or com-
biner), but it can design the analog beamformers sequentially
to sense different directions over time. Specifically, in time
frame t 2 f1; . . . ; Tg, let wt 2 CM denote the sensing (i.e.,
combining) vector with kwtk22 ¼ 1 and let xt ¼

ffiffiffiffiffiffi
Pu

p
be the

pilot symbol, then the received pilot at the BS is given by

yt ¼ w>
t hxt þ nt (11)

where nt � CNð0; s2
1Þ is the effective noise, and h 2 CM is

the channel from the user to the BS. In a mmWave environ-
ment, the channel h is often sparse, and can typically be
modeled in the form of a multipath channel as follows:

h ¼
XLp

i¼1

aiaiðfiÞ (12)

where Lp is the number of paths, ai 2 CN ð0; 1Þ is the fading
coefficient of the ith path, and fi 2 ½fmin;fmax� is the AoA of

the ith path, and aðfÞ ¼ ½1; ejp sinf; . . .; ejðM�1Þp sinf�> is the
array response vector.

Assuming a fixed total number of pilot stages T , the objective
in the active sensing problem is to sequentially design the
sensing beamformers fwtgTt¼1 to maximize some utility func-
tion, i.e., J ðuuuuuuu; vÞ, where uuuuuuu ¼ fai; figLp

i¼1 contains all the chan-
nel parameters and v 2 CV is the parameter to be designed
or estimated after receiving all the pilots. For example, as
illustrated in Figure 9, v 2 CM can be the subsequent down-
link data transmission beamformer and the goal can be to
maximize the beamforming gain, i.e., J ðuuuuuuu; vÞ :¼ jh>vj2 . In
other applications, e.g., AoA-based localization, we might be
interested in estimating the AoAs of the multipath channel,
i.e., J ðuuuuuuu; vÞ :¼ �PLp

i¼1ðf̂i � fiÞ2, where v :¼ ½f̂1; . . . ; f̂Lp
�> .

The key characteristic of such problems is that the sensing
vector wtþ1 can be designed based on the historical observa-
tions at stage t. Accordingly, the overall problem can be for-
mulated as

maximize
Gtð�;�Þf gT�1

t¼0 ;Fð�;�Þ
E J ðuuuuuuu; vÞ½ � (13a)

subject to wtþ1 ¼ Gt y1:t;w1:t

� �
; t ¼ 0; . . . ; T � 1 (13b)

v ¼ F y1:T ;w1:T

� �
(13c)

where Gt : R
t �RtM ! RM is the adaptive sensing strategy

adopted by the BS in time frame t and F : RT �RTM ! RV

is the function for designing the vector v.

The active sensing problem (13) is challenging to solve,
because both the active sensing strategy fGtð�; �ÞgT�1

t¼0 and the
mapping Fð�; �Þ are functions in high-dimensional spaces.
Moreover, the input dimension of the function Gtð�; �Þ increases
as the number of sensing stages increases, making the sensing
strategy particularly difficult to design when T is large. The
conventional strategies are codebook based. For example, a
hierarchical beamforming codebook [34] can be designed
based on the principle of bisection as mentioned before. A pos-
terior matching based approach for sequentially selecting the
appropriate analog combiners from the hierarchical codebook
is proposed in [35]. But these approaches are by no means
optimal and are restricted to single-path channels. For themul-
tipath channel, nonadaptive sensing strategies which exploit
the channel sparsity are usually adopted [34].

In this section, we show that instead of using a model-based
approach, a codebook-free data-driven approach can be used
to design the analog combiners to sense a multipath channel.
Specifically, the sequential nature of the problem suggests
that a recurrent neural network (RNN) is an appropriate net-
work architecture. We show that a deep active sensing
framework based on the LSTM network, which is a variation
of RNN, can be used to efficiently solve the active sensing
problem (13).

Figure 9
Active sensing for mmWave initial alignment at a BS with a

single RF chain. The goal is to design the analog sensing
beamformerswt adaptively as a function of the previous

observations over multiple sensing stages t ¼ 1; . . . ; T for the
purpose of maximizing a utility function, e.g., the eventual
downlink transmission beamforming gain jh>vj2 after the

sensing stage [23].
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Learning Active Sensing Strategy

The proposed active sensing framework is shown in Figure 10.
It consists of T deep active learning units, corresponding to T
different sensing stages. Each active sensing stage is designed
based on an LSTM cell and a fully connected DNN. Specifically,
in the tth active sensing stage, the LSTM cell takes the previous
cell state vector ct�1, the previous hidden state vector st�1, and
the current measurement yt as input, and outputs the next cell
state vector ct and hidden state vector st. The LSTM cell is capa-
ble of automatically summarizing the previous observations
into state vectors. At each stage, we use the fully connected
DNN tomap the hidden state vector st to the sensing vectorwt.
After receiving the last pilot symbol yT , the LSTM cell updates
its cell state to cT , which is thenmapped to the desired parame-
ter v using another DNN. This active sensing framework is
trained end-to-end to maximize the objective function in (13),
with neural network weights tied together across the sensing
stages. Such an end-to-end training approach enables the learn-
ing of an active sensing policy that accounts for the ultimate
design or estimation objective after the T sensing stages.

Numerical Results

To illustrate the performance of the active sensing framework,
we now present the simulation results3 in [23] for a downlink
beamforming gain maximization problem in a setting with
M ¼ 64,Lp ¼ 3, and SNR ¼ 0dB. The AoAs are randomly gen-
erated from the range ½�60
; 60
�. We compare the proposed
active sensing method with the channel estimation based
approach as well as a design using a DNN to map the received
pilots to the beamforming vector, but the sensing beamform-
ers are fixed, either at random or learned from the statistics of
the channel. In Figure 11, we see that the deep learning

methods outperform the channel estimation based method
with OMP. This shows the benefit of bypassing channel estima-
tion. The active sensing method achieves better performance
than deep learning with fixed sensing vectors. This shows the
benefits of adaptive sensing and the ability of the LSTM net-
work to optimize the sensing vectors.

To seewhere the performance gain comes from, we examine the
output of the LSTM framework for an AoA estimation problem
in a single-path channel, and plot the posterior distribution of
the AoA at each stage t as well as the array response of the sens-
ing vectors designed by the LSTM and the DNN. As can be seen
from Figure 12, the posterior distribution gradually converges
to a distribution concentrated at the true AoA f ¼ 25:82
. In the

Figure 10
LSTM-based sequential learning architecture for solving an active sensing problem in mmWave initial alignment, in which the LSTM

cells aim to summarize the system state based on the observations made so far, and a DNN is used to produce the analog combiner to be
used in the next sensing stage [23].

Figure 11
Average beamforming gain in dB versus the number of sensing
stages T for different methods after beam alignment in a TDD

mmWave system withMr ¼ 64, SNR ¼ 0 dB, Lp ¼ 3, and
f1;f2;f3 2 ½�60
; 60
� [23].

3The code for this simulation is available at https://github.com/
foadsohrabi/DL-ActiveSensing.

68 THE INFORMATION THEORY MAGAZINE NOVEMBER 2022

https://github.com/foadsohrabi/DL-ActiveSensing
https://github.com/foadsohrabi/DL-ActiveSensing


meanwhile, the array response of the sensing vectors designed
by the active sensing framework is relatively flat across the
angles at the beginning, indicating that it is exploring all direc-
tions in searching for the AoA, but gradually narrows down to
around the direction of the true AoA as the sensing operation
progresses. This shows that the active sensing framework
indeed learns a meaningful sensing strategy. It is capable of
quickly converging to the true AoA. It is remarkable that
although finding the truly optimal sensing vectors is extremely
difficult to do computationally, the LSTM framework is able to
learn an excellent sensing strategy based on training over mil-
lions of channel instances.

Standardization Impact
While the experimental results reported in this article are still
generated using widely accepted wireless channel propagation
models so the proposed framework should be regarded as a
proof-of-concept rather than as field-tested, the standardiza-
tion of the wireless communications bodies have recognized
the potential for using machine-learning techniques in future

cellular networks and have taken steps toward standardizing
the communication protocols between the BS and the users in
order to enable learning-based system-level optimization.

Specifically, the 3rd Generation Partnership Project (3GPP) has
recognized channel estimation and feedback, mmWave beam
management, and positioning as the three initial areas where
machine learning can have a significant impact [37]. One of the
target scenarios related to the CSI feedback enhancement that
3GPP aims to study is CSI compression and feedback for FDD
massive MIMO systems where a wireless device has already
obtained the entire high-dimensional channelmatrix and it needs
to compress and feedback this CSI to the BS. Such a CSI acquisi-
tion process can be modeled by an autoencoder consisting of a
DNN encoder at the device and a DNN decoder at the BS. In par-
ticular, the DNN encoder first maps the high-dimensional chan-
nel to a low-dimensional quantized signal, then the compressed
signal is sent to the BS via the uplink feedback channel, and
finally, the BS reconstructs the channel by using the DNN
decoder. The goal of DNNs here is to capture the spatial-domain
and frequency-domain correlations in the channel matrix, so a

Figure 12
Posterior distributions of the AoA (left) and the beamforming patterns of the sensing vectors (right) learned from the proposed

active sensing framework over eight stages in a mmWave alignment problem for a single-path channel where SNR ¼ 0 dB,
Mr ¼ 64, and T ¼ 12 [23].
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convolutional neural network is an excellent candidate as an
autoencoder. Preliminary results reported by the different com-
panies suggest thatmachine learning can outperform the existing
5G codebook-based CSI compressionmethods, e.g., [38]. This use
case is closely related to the CSI estimation and feedback prob-
lem studied in an earlier section of this article.

The second use case is about beam management procedure
(e.g., alignment) to find the best transmit-receive beam pair.
The conventional practical beam management is based on
exhaustive beam sweeping. While these linear beam search
strategies lead to excellent performance, they suffer from sig-
nificant time delay and power consumption issues. To
address these concerns, sparse beam sweeping has been
introduced in 3GPP [39] in which a beam pair is selected by
employing multiple-stage beam narrowing strategies. How-
ever, the existing algorithms developed for sparse beam
sweeping are quite suboptimal, especially in higher fre-
quency bands and with high-mobility users. Data-driven
methods, on the other hand, can utilize the training datasets
to construct a mapping from sparse beam measurements to
the best beam pair. This use case is closely related to the ini-
tial beam alignment problem addressed in an earlier section
using a deep active sensing approach. The use case can actu-
ally be thought of as a nonactive version of the problem.

Accurate positioning is a crucial component in several 5G
industrial Internet of Things applications, such as smart fac-
tories, and is another promising area for data-driven designs.
The traditional model-based positioning relies on explicit
mappings from timing/angle measurements to the position
of the user. These mappings are effective when there are
multiple line-of-sight paths between the target user and
different reception points of the BS. But, practical applica-
tion scenarios usually have to deal with nonline-of-sight
conditions. In these scenarios, the traditional model-based
approach is not always feasible. Learning-based methods are
promising solutions for these difficult positioning tasks since
they can easily learn a good mapping from the radio meas-
urements to the position by discerning patterns in the avail-
able training datasets. Preliminary results already show
significant positioning accuracy enhancement over the con-
ventional methods, e.g., [40]. While this article has not
addressed the localization problem specifically, the techni-
ques presented are quite applicable to localization [41].

Conclusion
In conclusion, the modern machine-learning approach is
opening new opportunities in the optimization of physical-
layer wireless communication systems. It challenges the con-
ventional wisdom of always first modeling the channel, then
optimizing wireless system design given the estimated chan-
nel. This article shows that much can be gained by bypassing
explicit channel modeling, by designing the overall system in

an end-to-end manner, and by formulating and solving opti-
mization problems in a data-driven fashion.
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