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Abstract— A novel coronavirus (COVID-19) was first 
reported in Wuhan, China in December 2109 and was 
declared a global pandemic by the World Health 
Organization on 11 March 2020. Identification of the 
critical factors that predict reduced mobility and human 
interaction is critical to developing successful 
transmission mitigation efforts globally.  Governments 
and localities around the world have responded with 
wide-ranging policies related to containment and closure 
such as travel restrictions and stay-at-home-orders, as 
well as economic benefits, expanded testing, and public 
health education, among others. Anonymized GPS-
enabled smartphone data is a novel tool to track human 
mobility and is becoming widely available. This study 
explores the relationships between containment and 
closure policies, disease trends, and human mobility 
patterns in 40 countries in Western, Eastern, Northern, 
and Southern Europe and North America. The principal 
component analysis was applied to reduce variable 
dimensions, followed by multivariate multiple regression. 
The model parameter estimations indicate that total 
cases, canceling activities (school, work, events), mask 
policies and the pandemic declaration all were significant 
predictors (p<.001) of change in workplace mobility from 
baseline. 

Index Terms - COVID-19, human mobility, 
multivariate regression, smartphones pandemic, 
principal component analysis. 

I. INTRODUCTION 

A novel coronavirus (COVID-19) was first reported in 
Wuhan, China in December 2019. The World Health 
Organization (WHO) issued a statement declaring COVID-
19 a Public Health Emergency of International Concern on 
30 January 2020. On 11 March 2020, it was escalated to the 
status of a global pandemic [1]. Officially known by the name 
of Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), it is a member of a large family of viruses [2], [3] 
which include MERS-CoV [4] and SARS-CoV [5]. While the 
primary means of transmission and associated risk of 
acquiring COVID-19 are not yet fully understood, it is 
currently thought that close person-to-person interactions 
pose the highest transmission risk, allowing disease spread 
through respiratory droplets [6]. Air pollution-to-human 
transmission has also been identified as a mechanism for 
disease spread [7]. As of July 30, 2020, 17,057,700 people 
have contracted the disease (confirmed cases) and 676,744 

deaths have been attributed to COVID-19 worldwide [8]. 
Between 15 February and 17 July 2020, the period within the 
scope of this study, the number of confirmed cases grew by 
20450% (from 67,104 to 13.79 million) globally [9]. COVID-
19 is more infectious than previous coronaviruses [10]. Due 
to its novelty, humans have no natural immunity. It has been 
estimated that the person-to-person transmission rate is 
between 1.4 and 6.7, meaning that each infectious person may 
transmit COVID-19 to an average of 1.4 to 6.7 people [11]. 
As of 29 July 2020, the highest proportion of confirmed 
COVID cases have been in Asia (32%), North America 
(30%) and South America (27%); with Europe and Africa 
comprising 6%, and Oceana less than 2% [9]. However, It is 
believed that these figures represent an underestimation of the 
true infection pattern since the total number of infections 
have reached almost 3 to 20 times higher than what reported 
as confirmed cases mainly due to incomplete testing and low 
accuracy of several testing techniques[12]. 

Since the disease was first identified as a major 
public health concern, response strategies have varied from 
highly coordinated federal-level responses in countries such 
as South Korea to a mosaic of state-issued mandates in 
countries such as the United States. While guidance from 
national and international sources did not offer coordinated 
policies with regard to transmission mitigation efforts, the 
best available evidence supports social or physical 
distancing, use of a face mask, hand washing, and reducing 
interactions with others as the most effective means to limit 
transmission  [13]–[16]. Eye protection has also been found 
to be associated with lower infection transmission [14]. 
Various restrictions on travel and protective measures such as 
masks have been implemented at different points since 
January of 2020. Stay-at-home orders (self-isolation) and 
restrictions on travel have been at the center of most efforts 
to mitigate disease transmission through physical distancing 
to “flatten the curve”. One measure of governmental response 
to COVID-19 is the government response stringency index or 
GSRI developed by Oxford University to track pandemic 
mitigation interventions globally [17]–[19]. GSRI is a 
composite measure of nine response strategies and includes 
containment and closure strategies as well as economic or 
financial support, and public education (see Fig.1). 

The volume of publicly available COVID-19 data, 
from epidemiological models of disease progression to 
dashboards providing real-time daily updates on leading 
indicators has grown as the pandemic has progressed. Access 
to COVID-19-related information is almost universally free 
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of cost. Public data, academic models and dashboards, social 
media platforms, search queries, and purchased products 
offer researchers a rich source of data for analysis. 
 
Fig. 1. Stringency index by countries during timeframe Feb. 15 to Jul. 17 

 

Location data gathered through GPS-enabled 
smartphones has been identified as an important potential 
data source for understanding and predicting human 
movement [17], [18]. Geographic information systems (GIS) 
have been in use since the 1990s [20] to track disease 
transmission and to develop and refine responses and 
preparedness. Responses to SARS-CoV and influenza are 
two such examples [10], [16], [21]. The utility of aggregated 
population mobility data in assessing the impact of social 
distancing interventions and refining them in real-time has 
been specifically identified with respect to COVID-19 [10], 
[22]. Google has made mobility change data publicly 
available, specifically to be used to assist in the COVID-19 
response [23]. This data provides daily, aggregated percent 
change from baseline in mobility patterns covering six 
location types, including parks, workplaces, residences, 
grocery/pharmacies, retail/recreation, and transit. Apple has 
also made mobility data publicly available that is based on 
requests for directions to locations compared to a baseline 
value. 

In this study, we explore the factors that influenced 
human mobility during the COVID-19 pandemic in 34 
countries and seek to shed light on which public health-
related strategies might be most effective in reducing 
mobility and disease transmission rate. Using data from 
multiple sources, we explore governmental response factors 
such as stay-at-home orders and school closings; disease 
prevalence factors such as new cases, deaths, 
hospitalizations, and whether they predict changes in 
mobility. 

II. LITERATURE REVIEW 

Understanding human mobility patterns and the 
resulting high rate of face-to-face interactions and shared 
spaces or surfaces that contribute to disease transmissions has 
been long recognized as fundamental to a better 

understanding of the spread of disease as well effects of 
armed conflict and environmental disasters on migration and 
displacement of communities [24]. The widespread use of 
GPS-enabled smartphones has suddenly made available 
aggregated electronic mobility data not previously widely 
recorded or shared. This has accelerated with the COVID-19 
pandemic where data of all types are being made available to 
the public at no cost.  Google Location History (GLH) was 
identified as a novel information source in a 2018 study that 
noted the underutilization of smartphone location tracking for 
infectious disease response [18].  In April of 2020, Google 
made its anonymized Community Mobility Reports freely 
available [23]. That paper also recognized the limitations of 
these tools, noting a lack of universal access as well as user 
understanding of opt-in and opt-out settings.   
 

Many risk factors for COVID-19 transmission and 
COVID-19-related deaths have been identified including 
socioeconomic factors, underlying health conditions (Fang et 
al., 2020), mobility factors [25]–[27], social distancing rules, 
demographic [28] and environmental variables [27].  Finding 
these risk factors help public health administrators to identify 
populations at greater risk and develop different health 
intervention plans to reduce and mitigate disease 
transmission.  
 

Badr et al. (2020) utilized aggregated cell-phone 
mobility data representing unique daily trips to developing a 
mobility ratio as a proxy for social distancing. A generalized 
linear model was developed for counties in the US to evaluate 
the extent to which social distancing reduced COVID-19 case 
rates. A COVID-19 growth rate ratio was computed based on 
publicly available epidemiological data. The study found that 
individual behavior, rather than official mandates, drove 
social distancing practices as measured by mobility. It also 
suggested that behavior change often preceded official 
response policies. 

Abramov and Junior (2020) studied the relationship 
between lockdown period and coverage in controlling the 
growth rate of a pandemic comparable to COVID-19 by 
developing a multivariate prediction network model. They 
concluded that a 65% to 75% increase in lockdown duration 
will result in reduction of the spread of the virus by 40%. 
They concluded that lockdown and social distancing should 
be relatively long, as early release of quarantine will cause a 
speedy spike in the number of incidences [29]. Couto et al. 
(2020) used a susceptible-exposed-infected-recovered 
(SIER) model along with a logistic regression model to 
predict the transmission dynamics of COVID-19 and 
investigate the impact of each Google Map mobility 
restriction components on the spread of the virus. They found 
that, out of all six Google Map mobility variables, when 
people stayed at home more (residential mobility variable) it 
was associated with greater impact in controlling the outbreak 
in the country. One drawback of their model is that they 
overlooked the interrelationships among parameters by 
making separated logistic models for each mobility 
component. Roda et al. (2020) investigated the impact of 
strict quarantine measures undertaken in the city on the time 
course of the epidemic and used the SEIR and SIR model to 
assess the potential return of a second outbreak after return to 
a work situation [30].  
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With respect to other factors influencing disease spread, a 
study done by Li et al. (2020) developed linear and logistic 
regression to explore the effect of different factors on death 
rates by using a publicly available COVID-19 data collected 
from 661 U.S. counties. They found that factors such as GDP 
per capita, social distancing, age, percentage of different 
races, income level, presence of heart disease, and access to 
primary care have the most significance on the death rate. In 
addition, they found that independent of other factors, a 
higher proportion of Black people were dying from COVID-
19, and that lower daily temperatures are associated with 
higher death rate and caseload, respectively [11]. One of the 
limitations in the study was imbalanced data as they excluded 
counties having lower than 50 cases or lower than 10 deaths. 
Another limitation of this model is that it offers a snapshot of 
the specific timeframe, rather than real-time data, and does 
not considering all counties and their related cases in the 
analysis. In fact, as the model uses outdated data, it also fails 
to capture accurate changes in respect to the updated number 
of cases, the number of deaths, and changes in the 
temperature. Furthermore, additional latent variables were 
not considered in the model. 

III. METHODOLOGY 

A. Data sources and description 

We used openly-licensed country-level data from 
the DELVE Global COVID-19 dataset which provides 
aggregated data updated daily from multiple sources 
including Google, Our World in Data, Oxford Blavatnik 
School of Government’s Coronavirus Government Response 
Tracker (OxCGRT), and the European Center for Disease 
Prevention and Control (ECDC).  A total of 23 variables were 
extracted from the DELVE dataset including Google Human 
Mobility Data (6 variables), COVID-19 Cases and Deaths 
(ECDC) (7 variables), mask policies (1 variable) (ACAPS 
Government Measures Dataset, Masks4All), as well as 
testing information and government containment and closure 
policies (7 variables) [31]. Data points were extracted from 
the period beginning 15 February 2020 and ending 17 July 
2020. For the purposes of this study, each country was coded 
by geographic region as defined by the UN (UNSTATS).  A 
single binary variable denoting whether a day was a national 
or major religious holiday was added.  An additional binary 
variable is added to the dataset indicates the pre/post-
pandemic period declared by WHO. A description of 
variables and sources can be found in Table I. 
A convenience sample of 34 countries was chosen 
representing four geographic regions: North America, and 
Western, Eastern, Southern, and Northern Europe. Within 
this sample, countries represent a wide range of infection and 
response dynamics and fall within the top and bottom range 
of total cases worldwide. 

B. Data Pre-Processing and Dimension Reduction 

Due to a large number of observations/magnitude of the 
dataset and a high number of highly correlated variables, we 
applied user-controlled variable selection, dimension 
reduction, and clustering of variables in the preprocessing 
phase to manage our variables in the research and create real 
value out of the COVID-19 data.  Data analyses were carried 

out using R 4.0.2. First, data was preprocessed to address 
missing data points and assess for outliers. 

 

TABLE I.  DESCRIPTION AND SOURCES FOR VARIABLES 

 

 
In the dataset, invalid inputs such as too big values, 

mismatch between related columns, and outliers were 
checked and cleaned.  To address multicollinearity and high 
correlations among variable set, Principal Component 
Analysis (PCA) using the covariance technique was applied 
to three sets of variables to create new, uncorrelated variables 
and reduce dimensions of a set of variables while preserving 
the total amount of original variance among variables. No 
standardization was required as the PCA equalizes the 
correlation matrix with the covariance matrix. In this study, 
we assume that all variables included in the model have some 
measurement error and thus add noise to the results.  

 
Due to the fact that the DELVE dataset was 

aggregated from multiple sources acquired in different time 
intervals, and reporting was not even across all countries for 
all indices, rows with all missing values were eliminated. 
Outliers were detected through boxplot and quantile analysis 
and extreme outliers that were inconsistent with other data 
were removed. To account for differences in the ordinal 
scales for the government containment and closure variables, 
these were unified to a three-level scale.  

As noted, significant correlations are present among 
the variables. For the purposes of the analysis, the variables 
were grouped into three sets. Set 1 included government 
responses - containment and closure policies, Set 2 included 
disease prevalence/testing variables; and Set 3 included the 

Original Variables Description
Source; Original Source
URL

Predictor Variables
Containment/Closure Policies

npi_school_closing (schools and 
universities)
npi_workplace_closing
npi_cancel_public_events
npi_gatherings_restrictions
npi_close_public_transport
npi_stay_at_home

Governmental Containment and 
closure policies issued in response 
to the pandemic.  Included six of 
eight total available. Ordinal scale. 

DELVE Global COVID-19 Dataset; Oxford COVID-19  
Government Response Tracker (OxCGRT)
https://www.bsg.ox.ac.uk/research/research-
projects/coronavirus-government-response-tracker
Codebook at https://github.com/OxCGRT/covid-policy-
tracker/blob/master/documentation/codebook.md

npi_stringency_index Summary of governmental 
response (school, workplace, public 
transport closing, restricutions on 
gatherings, cancellation of public 
events, stay at home orders, 
internal and interational 
travel/movement restructions, and 
public information. Ordinal scale.

DELVE Global COVID-19 Dataset; Oxford COVID-19  
Government Response Tracker (OxCGRT)
https://www.bsg.ox.ac.uk/research/research-
projects/coronavirus-government-response-tracker
Codebook at https://github.com/OxCGRT/covid-policy-
tracker/blob/master/documentation/codebook.md

masks Mask policy in place. Ordinal 
variable.

DELVE Global COVID-19 Dataset; ACAPS + Masks4all + 
Manual
https://github.com/rs-
delve/covid19_datasets/blob/master/docs/codebook.md

Disease Prevalence
cases_total
cases_new
deaths_total
deaths_new

COVID-19 prevalence and deaths DELVE Global COVID-19 Dataset; Our World in Data 
Coronavirus Pandemic (COVID-19)
https://ourworldindata.org/coronavirus

cases_days_since_first
deaths_days_since_first

Derived from Human Mortality Database / The Economist 
excess mortality tracker / EuroStat

days since the first recorded 
case 

Derived from Human Mortality Database+ The Economist 
excess mortality tracker +EuroStat

Descriptive
National or Major Religious 
Holiday

Binary variable 1=holiday; 0=no 
holiday

Holidays and Observances Around the World
https://www.timeanddate.com/holidays/

Region Code. Western, Eastern, 
Northern, South Europe, North 
America

Geographic region assigned. 
Categorical variable.

UNSTATS https://unstats.un.org/unsd/methodology/m49/

Pre/post pandemic period Before or after 11 March 2020. 
Binary variable.

WHO declaration

country_name English name according to ISO. 
Categorical variable.

DELVE Global COVID-19 Dataset; ACAPS + Masks4all + 
Manual
https://github.com/rs-
delve/covid19_datasets/blob/master/docs/codebook.md

Response Variables
Human Mobility

mobility_retail_recreation
mobility_grocery_pharmacy
mobility_parks
mobility_transit_stations
mobility_workplaces
mobility_residential

Daily change in mobility to 
locations measured by percent 
change over baseline days (median 
value from 5-week period 3 Jan - 6 
Feb 2020).  Aggregated, 
anonymized cellphone data 
recorded by Google Maps.

DELVE Global COVID-19 Dataset; Google COVID-19 
Community Mobility Reports Dataset
https://www.google.com/covid19/mobility/

Variables: Description and Source
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six mobility variables. Sets 1 and 2 represent predictor 
variables and Set 3 represents response or dependent 
variables.  

We aim to identify the most important variables in these 
3 sets. We cannot examine all possible models, as the size of 
the model will grow exponentially, as we add one new 
variable to the model.  A correlation analysis establishes that 
some variables in each set are highly correlated to each other, 
therefore we choose to implement PCA on each set to reduce 
the size of each set into small number of informative 
variables. A description of the PCA methodology and 
resulting new variables are discussed next. 

C. Set 1 Government Response Containment and Closure 
PCA 

Variables describing government response containment 
and closure policies were significantly correlated (see Fig. 2). 
For Set 1, three principal components were retained based on 
an assessment of the Scree Plot (Fig. 3).   The first three 
principal components (PC) account for 81% of the original 
total variance (Table II). Additional PCs do not account for a 
significant portion of variance and were disregarded. The first 
retained principal component (PC1) can be understood as 
representing policies activity cancelling orders (Eigenvectors 
= 0.432, 0.447, 0.426, and 0.421). The second retained 
principal component (PC2) can be understood as representing 
mask wearing directives (Eigenvector = 0.943). The third 
retained principal component (PC3) is positive and can be 
understood as representing closures in public transit 
(Eigenvector = 0.683). 
 

Fig. 2. Correlation Matrix for Government Response PCA (Set 1) 

 

 
 

 

 

Fig. 3. Scree Plot for Government Response PCA (Set 1) 

 

TABLE II. EIGENVECTORS AND EXPLAINED VARIANCE FOR GOVERNMENT 

RESPONSE PCA (SET 1) 

 

D. Set 2: Disease Prevalence Variables PCA 

Variables describing the prevalence, spread, and death rates 
for COVID-19 during the period were likewise significantly 
correlated (see Fig. 4). 
 

Fig. 4. Correlation Matrix for COVID-19 Prevalence PCA (Set 2) 
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Fig. 5. Scree Plot for COVID-19 Prevalence PCA (Set 2) 

 

TABLE I.  EIGENVECTORS AND EXPLAINED VARIANCE FOR DISEASE 
PREVALENCE PCA (SET 2) 

 
 
For the disease prevalence variables (Set 2), the first principal 
component is retained based on an assessment of the Scree 
Plot (Fig. 4).   The first principal component (PC) accounts 
for 100% of the original total variance (Table III). The first 
retained principal component (PC1) can be understood as 
representing total new cases of COVID-19 (Eigenvector = 
0.996). 

E. Set 3: Mobility Variables PCA 

The correlation matrix for the six mobility variables are 
described in Fig. 6.   
 

Fig. 6. Correlation Matrix for Mobility Variables (Set 3) 
 

 
For the mobility variables, three principal components were 
retained based on an assessment of the Scree Plot (Fig. 7).   
The first two principal components (PC) account for 98% of 
the original total variance (Table IV). Additional PCs do not 
account for a significant portion of variance and were 
disregarded. The first retained principal component (PC1) 

can be understood as representing changes in workplace 
mobility (Eigenvector=0.998). The second retained principal 
component (PC2) can be understood as representing changes 
in visits to parks (Eigenvector = 0.915). 
 

Fig. 7. Scree plot mobility pca (set 3) 

 

TABLE II.  EIGENVECTORS AND EXPLAINED VARIANCE FOR 
MOBILITY VARIABLES PCA (SET 3) 

 

 

A summary of the original and new principal components for 
the three sets of variables can be found below.  
 

Fig. 8. Original Variable Sets and New Principal Components (PC) 

 
 
The new principal component scores for each set of new, 
uncorrelated variables were computed and used in the 
multiple regression analysis to assess which factors were the  
most significant predictors of mobility. 
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IV. MULTIVARIATE MULTIPLE REGRESSION ANALYSIS 

Multivariate regression analysis was conducted to assess 
which of the predictor variables – government response PC 
1, PC 2 and PC 3, disease prevalence PC 1, holiday or not, or 
pre/post-pandemic period or not – significantly predicted the 
two dependent variables: workplace mobility (PC1), park 
mobility (PC2). We implemented the analysis using SAS 9.4. 
𝛽 is the intercept and 𝛽 , 𝑖 =  1, 2, . . . , 8 show the regression 
coefficients and the symbol ε represents the error of the 
model. Therefore, our first model is:  
(1) 

Workplace mobility = 𝛽0 +  𝛽1 × pc1୲୭୲ୟ୪ୡୟୱୣୱ +
𝛽2 × 𝑝𝑐1௧௩௧௬ + 𝛽3 × 𝑝𝑐2௦௦௬  

+ 𝛽4 × 𝑝𝑐3௨௧௦௧+ 𝛽5 × 𝑝𝑟𝑒ௗ+ 𝛽6 ×

𝑝𝑎𝑛𝑑𝑒𝑚𝑖𝑐 +  𝛽7 × 𝑛𝑜𝑡 ℎ𝑜𝑙𝑖𝑑𝑎𝑦+ 𝛽8 × ℎ𝑜𝑙𝑖𝑑𝑎𝑦 + 𝜀 
 
And so, the second model becomes:  
(2) 

Parks mobility = 𝛽0 +  𝛽1 × pc1୲୭୲ୟ୪ୡୟୱୣୱ + 𝛽2 ×
𝑝𝑐1௧௩௧௬ + 𝛽3 × 𝑝𝑐2௦௦௬+ 𝛽4 ×

𝑝𝑐3௨௧௦௧+ 𝛽5 × 𝑝𝑟𝑒ௗ+ 𝛽6 × 𝑝𝑎𝑛𝑑𝑒𝑚𝑖𝑐 +

 𝛽7 × 𝑛𝑜𝑡 ℎ𝑜𝑙𝑖𝑑𝑎𝑦+ 𝛽8 × ℎ𝑜𝑙𝑖𝑑𝑎𝑦 + 𝜀 
 

V. RESULTS 

Model (1) assessed the effects of disease prevalence, 
government responses, period (pre- or peri-pandemic), and 
holidays on the workplace mobility PC1. The global F Test 
(p<.001) indicates that the model is significant for predicting 
workplace mobility based on the independent variables.  The 
model gives a R-square value of 0.3261 for workplace 
mobility, or that 32.61% of the variance in workplace 
mobility is explained by that model. If we assume that all 
predictors are uncorrelated, we are dealing with a balanced 
design and the estimates of coefficients as they minimize the 
sum of squared of residuals are shown in Table V. The model 
parameter estimations indicate that total cases, canceling 
activities (school, work, events), mask policies and the 
pandemic declaration all were significant predictors (p<.001) 
of change in workplace mobility from baseline.   
If we assume that all predictors are uncorrelated, we are 
dealing with a balanced design. In a balanced design, a one-
unit change in total COVID cases predicts a mean change in 
workplace mobility of 24.74, while holding all other 
predictors fixed . Activity cancellations (workplace closure, 
school closure, event cancellations) is a more effective way 
to reduce mobility; having a negative correlation with change 
in mobility (reduction in workplace mobility). Due to 
correlations amongst predictors, uncertainty is introduced to 
the interpretation and model predictors will tend to change 
together. In this sense, we avoid the claim of causality, which 
implies that one single predictor causes the mobility change. 
 

TABLE V. MULTIPLE REGRESSION MODEL – DV= 
MOBILITY PC1_WORKPLACE 

 
 
 

TABLE VI. MODEL PARAMETER ESTIMATION – DV= 
MOBILITY PC1_WORKPLACE 

 

 Model (2) assessed the effects of the same independent 
variables on the parks mobility PC 2 variable. Table VII 
indicates that this model is also significant (p< .001).  The R-
square value for park mobility is equal to 0.3565 which means 
that approximately 35.65% of the variance in this park 
mobility is explained by that model.  

The estimates of parameters represent the mean change in 
the response variable (y) for every unit increase in the 
corresponding (xi ) when all other xi are held fixed. For Model 
2, the estimates of correlation coefficients of each independent 
variables are small and indicate that these variables are not 
powerful predictors of parks mobility PC2 (Table VIII). 

TABLE VII 
MULTIPLE REGRESSION MODEL – DV=MOBILITY PC2_PARKS 

TABLE VIII 
MODEL PARAMETER ESTIMATION – DV=MOBILITY PC2_PARKS 

VI. DISCUSSION AND CONCLUSION 

In this study, we examined the extent to which 
multiple factors related to government responses and disease 
prevalence were significant predictor of changes in human 
mobility during the COVID-19 pandemic period of February 
– July 2020. We implemented principal component analysis 
prior to the regression in order to decrease the correlation 
among independent variables. This also allowed for 
dimension reduction. The PCA results showed that the 
independent variables were highly correlated. For future 
studies of mobility, changes in visits to workplace and parks 
capture the majority of variance in mobility changes (as 
measured by Google data).  For disease prevalence, the PCA 
indicates that total cases are an important factor.   Reducing 
multicollinearity among the variables decreases the unique 
variance explained by that variable which leads to an increase 
of the shared prediction percentage. Therefore, the use of 
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principal components eliminates multicollinearity and may 
maximize the prediction power. In both models, due to large 
number of observations, the normality assumption of the data 
is maintained and the minimum R- square that can be found 
statistically significant is reduced. The sign, magnitude, and 
statistical significance of each independent variables shown 
in Table VI and Table VIII is representing the individual 
contribution of each in predicting mobility variables.  These 
estimated can be assessed more with the relative importance 
of each independent variables. 

Additional factors, variables need to be examined to 
ensure the validity and to maximize the overall predictive 
power of mobility variables by the independent variables as 
represented in two models.   
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