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Abstract—Many real-world data sets contain missing values,
therefore, learning with incomplete data sets is a common
challenge faced by data scientists. Handling them in an intelligent
way is important to develop robust data models, since there is no
perfect approach to compensate for the missing values. Deleting
the rows with empty cells is a commonly used approach, this
naive method may lead to estimates with larger standard errors
due to reduced sample size. On the other hand, imputing the
missing records is a better approach, but it should be used with
great caution, as it relies on often unrealistic specific assumptions
which can potentially bias results. In this paper, a new greedy-like
algorithm is proposed to maximize the number of records. The
algorithm can be used to generate various maximized sub-sets by
varying the number of columns (features) that can be used for
learning. It salvages more records than the naive method, and it
avoids the bias induced by imputation. The learning algorithms
would be able to learn from real sub-sets without the bias induced
by artificial data. Finally, the proposed algorithm is applied to
a case study, the COVID-19 Open Research data set (CORD-19)
that was prepared and posted by The White House and a coalition
of leading research groups as a call to action to the world’s
artificial intelligence experts to answer high priority scientific
questions. This data set contains missing records, therefore,
resulting maximized sub-sets from this analysis can be further
investigated by the research community.

Index Terms—machine learning, incomplete data, preprocess-
ing, manufacturing

I. INTRODUCTION

Many real-world data sets contain missing values for various
reasons, such as, corrupt data, failure to load the information,
or incomplete recording of data entries. For example, in
manufacturing, the unexpected faulty operating-conditions of
sensors and cameras are the main causes of incomplete data
sets, asi seen in Fig. 1. Handling the missing values, which are
often encoded as NaN (Not a Number) or blanks, is one of the
first relevant challenges faced by data scientists. Missing data
results in loss of learning power, therefore, selecting the right
approach on how to handle it, is very important to develop
robust models.

Deleting rows or columns with missing data is a widely
used approach. However, as it will be illustrated, if this naive

2" Jorge Arinez
Global Research & Development
General Motors
Warren, MI, USA
jorge.arinez @gm.com

Missing Data

3" Daniela Macias
Escuela de Ingenieria y Ciencias
Tecnologico de Monterrey
Monterrey, NL, Mexico
a01195037 @itesm.mx

[Snapshot of the incomplete data set.]

p% cells in black]

i
It it
i i
I Hilii

Incomplete data set derived from a real manufacturing process.

Fig. 1.

method is applied, oftentimes the sample size may be signif-
icantly reduced, leaving little information for the algorithm
to learn the patterns. This method is not advised unless the
proportion of eliminated records is very small (<5%) [1].

Imputing the missing records is a better approach, this
statistical technique refers to the process of replacing miss-
ing data with guessed/estimated values. Before selecting the
imputation method, the data set should be thoroughly assessed,
to determine the most appropriate statistical method to handle
missing data. Although imputation can be applied to preserve
all samples, it relies on often unrealistic specific assumptions,
which can potentially bias results. Therefore, this approach
should be used with great caution. A review of imputation
methods can be found in [1]-[3].

Learning with incomplete data sets requires careful planning
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and attention, since there is no perfect way to compensate for
the missing values. Whereas removing the data will lead to
estimates with larger standard errors due to reduced sample
size, imputation can potentially bias results.

In this paper, a new greedy-like algorithm is proposed, it
maximizes the number of total records that can be used to
learn. As it will be demonstrated, the algorithm salvages more
records than the naive method, and may help to reduce the
bias induced by imputation, as the algorithms would be able
to effectively learn from real data without the biased induced
by artificially created data.

The rest of this paper is organized as follows. The proposed
algorithm is presented in Section III. Followed by two real case
studies in Section I'V, one of them contributes in the pandemic,
by formally analyzing the COVID-19 Open Research data
set (CORD-19) that was posted by The White House as a
call to action to the world’s artificial intelligence experts to
answers high priority scientific questions. Finally, conclusions
and future research are presented in Section V.

II. STATE OF THE ART

In the current state of the art, handling missing values has
been tested thoroughly. There is an existing concept, called
missing data mechanism, where there is a probability for each
data point to be missing [1]. That probability is governed by
three categories, which are:

e Missing completely at random (MCAR) Where the
probability of being missing is the same for all the data
points in the set. This is due to unforeseen circumstances
that are not related to a problem from the data.

e Missing at random (MAR) When the data is missing
at random, the probability is caused by a group
defined by the observed data. A circumstance that may
cause missing data could vary from one condition to
another. When those conditions are known, and the
data is collected knowing the difference between those
conditions, then the data will be MAR. This is a more
realistic approach than MCAR, and may be the starting
point for analysis.

¢ Not missing at random (NMAR) When there is a known
cause to be missing data, which could be a situation or
condition, then the data will be NMAR. The obtained
data will need more in-depth analysis to handle and fix
the origin of those missing values.

There is no distinction between MCAR, MAR or MNAR
approaches. Practically, MCAR is unrealistic and the least
plausible of the three, leaving MAR or MNAR mechanisms.
For practical issues, modern missing data methods use the
MAR assumption as the standard for analyzing the data.
Imputation is one of the most widely used methods for
dealing with missing values; assuming the NMAR approach,
but not knowing the data, could lead to use it in the wrong
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way. As imputation mechanisms, obtaining mean and mode of
the existing data, among other old techniques, and replacing
it in the NaN values is proven to be ineffective, because
imputation has to be adequate and follow the pattern of
the NaN values [4]. Hot deck imputation has also shown
inadequate results due to a high error probability caused by
multiple missing values in the same row.

To avoid any possible bias induced by imputation methods,
authors recommend -when possible- to apply the proposed
algorithm to maximize the number of records used for
learning. Thus, the learning algorithm will learn only real
patterns. However, imputation methods should be evaluated
and selected as part of the modeling solution to ensure
estimates are readily available when needed, to keep the
predictive systems running.

ITI. INFORMATION OPTIMIZATION ALGORITHM

The proposed algorithm is based on a greedy-like selection,
algorithms in this category make whatever choice seems the
best at each iteration. The pool of options depends on the
choices made so far, but not on the future ones. It iteratively
makes one greedy choice after another, reducing the problem
into smaller subproblems. A greedy algorithm is not subject
to combinatorial explosion, as it never reconsiders its choices,
therefore, there is no guarantee of finding an optimal solution.
The basic idea of the proposed algorithm, is to maximize the
number of total records that can be used to learn. This problem
is solved iteratively by a two-step approach that considers the
number of empty (NaN) cells. First, the column(s) with the
minimum number of NaN is selected, if there are two or more
columns with the same number of NaNs, the one with the
maximum number of associated NaNs is selected. Since the
rows of the NaNs in the selected column will be deleted, in
this second step the algorithm is selecting the column that will
minimize the deletion of useful information. The algorithm
has three components, inputs, outputs and initialization. The
pseudo-code is presented in Fig. 2:

o Inputs
-X, matrix with m rows (samples) and n columns (fea-
tures).

o Outputs
-Order, vector with the final order of the columns in the
solution.
-RowsSalvagedbyCol (RSC), vector with the number of
rows included in the solution by column. Either constant
or decreasing.
-PercentofRowsSalvagedbyCol(PRSC), vector with the
percentage of RowsSalvagedbyCol relative to m.
-CumulativeRecordsSalvagedbyCol(CRSC), vector with
the number of records (cells) by column.
-PercentofCumulativeRecordsSalvagedbyCol(PCRSC),
vector with the percentage of CumulativeRecordsSal-
vagedbyCol relative to the matrix size (m X n).
-TotalRecordsSalvaged(TRS), number that describes the



total number of records salvaged by the solution (sum of
RowsSalvagedbyCol).
-PercentofTotalRecordsSalvaged(PTRS),
RecordsSalvaged expressed in percentage
to the matrix size (m X n).

-PermutedMatrix, matrix sorted based on Order.

Total-
relative

« Initialization -Define nc as 1 to n vector.
-Define Remaining as 1 to n vector.
-Define Tracker as 1 to n vector.
-Define SelectedF as an empty vector of size n.
-Define RSC as an empty vector of size n.
-Define PRSC as an empty vector of size n.
-Define CRSC as an empty vector of size n.
-Define PCRSC as an empty vector of size n.
-Define TRS as an empty vector of size n.
-Define PTRS as an empty vector of size n.

1 i=1

2. [mnj=size(X);

3. fori=im

4. Define SumEmptyinRowbyCol as an empty vector of sizen — i
5. NumofEmptyinCol as an empty vectar af

6. SumDeletesbyCol as an empty vector of sizen — i

7. fo

8.

sizen —i

fi=i

or n
SumEmptybyRow = 0;

9. EmptyinCol = fin X(:, i)

for iii = Linumel( Col);
11 pi = (X (EmptyinCol(iii),:)));
12, EmptybyRow + EmptybyRow;
13 end
14, ol(ii —i+1) = 5
15 NumofEmptyinCol(ii — i + 1) = numel(EmptyinCol);
16.

SumDeletesbyCol(ii — i + 1) = NumofEmptyinCol(ii — i +1) = n — SumEmptyinRowbyCol(ii — i + 1);

nd
PreSelCol = find(min(Numof EmptyinCol) == NumofEmptyinCol);
if mumel(PreSelCol) > 1
Selected = PreSelCol(min(find (max(SumEmptyinRowhyCal(PreSelCal)) == SumEmptyinRawbyCal(PreSelCal))));

[mxwip, nzwip] = size(X);

Fills = NaN(m —mawip, 1);
Xwip(:, ) = [X(:,0); Fills];
RowsSalvagedbyCol(i) = mxwip;

Percentof yCol(D) =
¢ i 0l(i) = i *
yCol(i) = Cumulativ

0i(i) fm;
byCol(i);

Percentof 1
39. end

40. T = sum(}

. PercentofT =T
42. Order = UpdatedOrder;

. PermutedMatriz = Xwip;

ol(i)/(m * n);

Jomwm);

Fig. 2. Records optimizer pseudo-code.

Lines 1-2 define initial values used by the algorithm. In
lines 3-39, n number of iterations are performed to develop
the solution, where n is the number of columns. In lines 4-6,
the vectors used in this process are defined, since the number
of remaining columns decreases by one after each iteration,
their size also decreases by one. In lines 7-17, the information
required to select the next column is generated. In lines 8-9,
the variable that stores the sum of empties by row is reset and
the positions of the NaNs by column are identified. In lines 10-
13, these positions, are then used to determine the associated
NaNs by row (line 11). The sum of these values is stored
in line 12. The vectors defined in lines 4-6, are populated in
lines 14-16. In line 18, the column with the minimum number
of NaNs is selected. If there are two or more columns with
the same number of NaNs, the column with the maximum
number of associated NaNs by row is selected, this can be
observed in lines 18-23. Line 24 populates the vector with
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the solution. Line 25 keeps track of the remaining columns.
Since the selected columns are moved to the left, their order
needs to be updated, stated in line 26. In lines 27-28, the
original matrix X is rearranged, based on the updated order.
Line 29 helps to keep track of the original column number
in each iteration. In lines 30-31, the rows of the empty cells
in the selected column are deleted. In line 32, the size of the
matrix is recorded. In lines 33-34, the PermutedM atriz is
generated; the empty records of each preprocessed column are
filled with NaN. In lines 35-43 statistics are reported and, at
the end of the iterations, they store the information of the
solution. Where Order contains the order of the matrix and
RowsSalvagedbyCol contains the number of associated rows,
this number exhibits a constant or a decreasing pattern. Finally,
PermutedM atriz shows the overall solution.

A. Solution Process Overview

A virtual data set is created to show the solution step by
step. The data set contains 11 columns and 10 rows with empty
cells in the diagonal of columns 1-10, Table I. In this case,
if rows with empty cells are eliminated, all the data set is
deleted, if columns with empty cells are deleted only one
column is salvaged (11), leaving very little information for
the algorithm to learn from. Besides the data set, the table has
two more rows at the bottom: (1) Empty by column (EBC),
which describes the number of empty cells in each column,
and (2) Associated empties (AE), which describes the sum
of the row’s associated empty cells to each of the empty
cells in a column. Moreover, another column is added at the
end which describes the number of empty cells by row, this
information is used to determine the values of AE. A color
convention is also included to keep track of the decisions and
actions of the algorithm. The feasible options (i.e., minimum
number of EBC) at each step are highlighted in gray, if there
is a tie, the AE values (maximum) are used as tiebreaker to
maximize the information extraction. If still, there are two or
more columns with the same numbers, the smallest index is
arbitrarily selected. The green color keeps track of the selected
columns. Finally, based on the empty cells of the selected
column, the yellow color is used to highlight which rows will
be deleted. The full solution process is graphically described
in Table II, the solutions are summarized in Table III and
Table IV shows the PermutedMatrixz. The solutions are
interpreted as follows: in iteration one, column 11 is selected,
which includes include 10 rows, the updated order column
keeps track of selected columns (in bold) in each iteration, as
well as remaining columns.

In iteration 1 (Table I), column 11 is selected since the EBC
value is the smallest one (0), which means all the records in
that column are available. In iteration 2 (upper left, Table II),
there is a tie between columns eight and five, as both have a
EBC = 1, however, column eight has three associated empty
cells (AE = 3) vs two (AE = 2) of column five. In this
situation, it is better to remove row eight (in yellow) to salvage
more records. The remaining steps follow the same logic.
Figure 3 shows how the number of records decreases (rows



TABLE I
VIRTUAL DATA SET.

Features
Index 1 2 3 4 5 6 7 8 9 10 11 Empty by row (EBR)
NaN 1 1 1 1 NaN 1 1 1 NaN 1 3
2 NaN 2 2 2 2 2 2 2 2 2 1
3 3 NaN 3 3 3 3 3 NaN 3 3 2
NaN 4 4 NaN 4 4 NaN 4 4 4 4 3
5 NaN 5 5 NaN 5 5 5 5 NaN 5 3
Samples
6 6 NaN 6 6 NaN 6 6 6 NaN 6 3
7 7 NaN NaN 7 7 NaN 7 7 NaN 7 4
NaN 8 NaN NaN 8 8 8 NaN 8 8 8 4
9 9 9 9 9 NaN 9 9 NaN 9 9 2
10 10 10 10 10 10 10 10 10 NaN 10 1
Empty by column (EBC) 3 2 4 3 1 3 2 1 2 5 0 26
Associated empties (AE) 7 2 9 8 2 5 5 3 2 9 0
TABLE II
SOLUTION PROCESS (ITERATIONS FROM LEFT TO RIGHT).
11 3 4 5 6 7 8 9 10 EBR 118 1 2 3 4 5 6 7 9 10 EBR
1T NaN 1 1 1 T NaN 1 1 1T NaN 3 T 1 NaN 1 1 1 T NaN 1 1 NaN 3
2 NaN 2 2 2 2 2 2 2 2 1 2 2 2 NaN 2 2 2 2 2 2 2 1
3 3 NaN 3 3 3 3 3 NaN 3 2 3 3 3 3 NaN 3 3 3 3 NaN 3 2
4  NaN 4 4 NaN 4 4 NaN 4 4 4 3 4 4  NaN 4 4  NaN 4 4 NaN 4 4 3
5 5 NaN 5 5 NaN 5 5 5 5 NaN 3 5 5 5 NaN 5 5 NaN 5 5 5 NaN 3
6 6 6 NaN 6 6 NaN 6 6 6 NaN 3 6 6 6 6 NaN 6 6 NaN 6 6 NaN 3
7 7 7 NaN NaN 7 7 NaN 7 7 NaN 4 7 7 7 7  NaN NaN 7 7 NaN 7 NaN 4
8 NaN 8 NaN NaN 8 8 8 NaN 8 8 4 9 9 9 9 9 9 9 NaN 9 NaN 9 2
9 9 9 9 9 9  NaN 9 9  NaN 9 2 10 10 10 10 10 10 10 10 10 10 _NaN__ 1
10 10 10 10 10 10 10 10 10 10 NaN__ 1 _cec DNONNNNGNN > 2 3 5 a3 5 2 5 m
eec OB 3 2 a4 3 T 3 2 A 2 5 2% AE__ 0 0 4 2 6 5 2 5 5 3 9
AE___ O 7 2 9 8 2 5 5 3 2 9
118 5 2 3 4 6 7 9 10 EBR 118 5 2 1 3 4 6 7 9 10 EBR
1 1 1 NaN 1 1 1 NaN 1 1 NaN 3 1 1 1 1T NaN 1 1 NaN 1 1 NaN 3
2 2 2 2 NaN 2 2 2 2 2 2 1 3 3 3 3 3 NaN 3 3 3 NaN 3 2
3 3 3 3 3 NaN 3 3 3 NaN 3 2 4 4 4 4 NaN 4 NaN 4 NaN 4 4 3
4 4 4  NaN 4 4 NaN 4 NaN 4 4 3 6 6 6 6 6 NaN 6 NaN 6 6 NaN 3
6 6 6 6 6 NaN 6 NaN 6 6 NaN 3 7 7 7 7 7 NaN NaN 7 NaN 7 NaN 4
7 7 7 7 7 NaN NaN 7 NaN 7 NaN 4 9 9 9 9 9 9 9 NaN 9 NaN 9 2
9 9 9 9 9 9 9 NaN 9 NaN 9 2 10 10 10 10 10 10 10 10 10 10 _NaN_ 1
10 10 10 10 10 10 10 10 10 10 NaN__ 1 EBC 2 3 2 3 2 2 418
EBC 2 1 3 2 3 2 2 419 AE___ 0 0 0 0 4 6 5 3 5 2 7
AE_ 0 0 0 4 0 6 5 5 5 2 7
118 5 2 4 1 3 6 7 9 10 EBR 118 5 2 4 7 1 3 6 9 10 EBR
T T T 1 1T NaN T NaN 1 T NaN 3 1 1 1 1 1 1 NaN 1 NaN 1 NaN 3
3 3 3 3 3 3 NaN 3 3 NaN 3 2 3 3 3 3 3 3 3 NaN 3 NaN 3 2
6 6 6 6 6 6 NaN NaN 6 6 NaN 3 6 6 6 6 6 6 6 NaN NaN 6 NaN 3
9 9 9 9 9 9 9 NaN 9 NaN 9 2 9 9 9 9 9 9 9 9 NaN NaN 9 2
10 10 10 10 10 10 10 10 10 10 NaN__ 1 10 10 10 10 10 10 10 10 10 10 _NaN__ 1
AE__ 0 0 0 0 0 2 3 5 0 2 4 AE__ 0 0 0 0 0 0 2 3 3 2 4
118 5 2 4 7 1 3 3 9 10 EBR 118 5 2 4 7 1 3 [3 9 10___EBR
3 3 3 3 3 3 3 NaN 3 NaN 3 2 9 9 9 9 9 9 9  NaN NaN 9 2
6 6 6 6 6 6 6 NaN NaN 6 NaN 3 10 10 10 10 10 10 10 10 10 10 NaN__ 1
9 9 9 9 9 9 9 NaN NaN 9 2 EBC 1 1 1 3
10 10 10 10 10 10 10 10 10 10 NaN_ 1 AE__ 0 0 0 0 0 0 0 0 0 0 0
EBC 2 2 2 2 B
AE___ O 0 0 0 0 0 0 3 3 2 2
118 5 2 4 7 1 6 9 10 EBR 118 2 4 7 1 3 [3 10 EBR
10 10 10 10 10 10 10 10 10 10 NaN__ 1 10 10 10 10 10 10 10 10 10 10 NaN__ 1
EBC 0 1 1 EBC 1 1
AE__ 0 0 0 0 0 0 0 0 0 0 0 AE__ 0 0 0 0 0 0 0 0 0 0 0
Solution
118 5 2 [ 7 1 3 3 910

salvaged) by including more columns, whereas the number of
cumulative records increases and eventually decline. In this
case, if all columns are included, no rows are salvaged.

This algorithm addresses the tradeoff between the number of
columns (features) and rows (samples). In real life problems,
this is a common situation, as an example, medical files
of patients tend to have a lot of missing records, or in
manufacturing, as described earlier, sensors may randomly
break down or may be systematically turned off. Whereas this
algorithm helps to maximize the information extraction, the
main question remains: which sub-data set should be used to

5040

learn? In this context, this algorithm cannot straight forward
answer this question, instead, it is a guide on how to cleverly
define sub-data sets to explore. For example, in this data set,
two useful insights can be derived, per Table III, the sub-
data set generated in iteration six is a better solution than the
sub-data set generated in iteration five, as both have the same
number of rows but the former has more features (6 vs 5)
or cumulative records (30 vs 25). Finally, if all features are
included, there are no samples left to learn from. In real life
problems, this situation refers to the columns on the extreme
right, that oftentimes have very little information, making the



TABLE III

SOLUTIONS.

Iteration  Selected column  Rows salvaged Columns included Cumulative cells Updated order
1 11 10 1 10 11,1,2,3,4,5,6,7,8,9,10
2 8 9 2 18 11,8,1,2,3,4,5,6,7,9,10
3 5 8 3 24 11,8,5,1,2,3,4,6,7,9,10
4 2 7 4 28 11,8,5,2,1,3,4,6,7,9,10
5 4 5 5 25 11,8,5,2,4,1,3,6,7,9,10
6 7 5 6 30 11,8,5,2,4,7,1,3,6,9,10
7 1 4 7 28 11,8,5,2,4,7,1,3,6,9,10
8 3 2 8 16 11,8,5,2,4,7,1,3,6,9,10
9 6 1 9 9 11,8,5,2,4,7,1,3,6,9,10
10 9 1 10 10 11,8,5,2,4,7,1,3,6,9,10
11 10 0 11 0 11,8,5,2,4,7,1,3,6,9,10

TABLE IV

PermutedM atrixz, OVERALL SOLUTION.

Features
11 8 5 2 4 7 1 3 6 9 10
1 2 3 4 5 6 7 8 9 10 NaN
2 3 4 5 6 7 8 9 10 NaN NaN
3 4 5 6 7 8 9 10 NaN NaN NaN
4 5 6 7 8 9 10 NaN NaN NaN NaN
5 6 7 8 9 10 NaN NaN NaN NaN NaN
6 7 8 9 10 NaN NaN NaN NaN NaN NaN
7 8 9 10 NaN NaN NaN NaN NaN NaN NaN
8 9 10 NaN NaN NaN NaN NaN NaN NaN NaN
9 10 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

data set ineffective, as illustrated in the following section.

Solution overview

35
30
25

20

oIIIlIII.--

Feature Feature 8 Feature 5 Feature 2 Feature 4 Feature 7 Feature 1 Feature 3 Feature & Feature9 Feature
1 10

n

W Rows salvaged M Cumulative cells

Fig. 3. Salvaged rows and cumulative cells by columns.

IV. CASE STUDY

In this section, two public data sets are analyzed, they
are particular relevant because they were not preprocessed
before being posted, therefore they have a lot of missing
records: (1) COVID-19 Open Research Data Set [5S], this
data set calls to action to the world’s artificial intelligence
experts to develop text and data mining tools that can help the
medical community develop answers to high priority scientific
questions, in this context, by analyzing this data set, we
support the ongoing COVID-19 response efforts worldwide.

A. COVID-19 Open Research Data Set

This data set contains 111 features and 5644 samples,
most of its cells are empty, as shown in Fig. 4. If rows
with empty cells are eliminated, no rows would be salvaged,
whereas if columns with empty cell are eliminated, only six
columns would be salvaged, leaving the potential contribution
of some of the 105 remaining features out of the learning
part. The proposed algorithm is applied, Table V displays the
set of solutions, in which column one describes the number
of features, column two the feature index, and column three
describes the number of salvaged rows, refer to Table VI
in Appendix A to match the indexes with the actual names.
Based on the set of solutions, a couple of relevant sub-data
sets are exhibited, the first sub-data set would contain six
features with 5644 records, the second data set would contain
23 features with 1352 records, then the third data set would
contain 37 features with 362 records, if necessary, a few more
sub-data sets can be created, but they would contain very little
information, this information is graphically displayed in Fig. 5.

V. CONCLUSIONS AND FUTURE WORK

Learning with incomplete data sets is a common challenge
faced by data scientists. Handling them in an intelligent way
is important to develop robust data models. While deleting
rows/columns or imputing missing values are common ap-
proaches, they may have serious implications such as loosing
most of the training data (as demonstrated in the real case
studies) or biasing the estimates. In this context, the authors
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Fig. 4. Screen-shot of COVID-19 data set, empty cells in black.
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Fig. 5. Salvaged rows by number of columns, the green color describes good data sets.

advocate —when possible— to learn from real data and impute
missing values on deployment.

In this paper, a new greedy-like algorithm is presented, the
algorithm is aimed at maximizing the information (cells) of in-
complete data sets. It develops different sub-sets that solve the
trade-off between number of features and number of samples
differently. The user can choose a sub-set with either more
features and less number of samples or the other way around.
Since the best sub-set cannot be determined in advance, it is
recommended to apply the learning algorithm to select the
best, like wrapper-type feature selection algorithms [6].

Moreover, this paper reports a small contribution in address-
ing the pandemic challenge from an analytical perspective, by
formally analyzing the COVID-19 Open Research Data Set
(CORD-19) that was prepared and posted by The White House
and a coalition of leading research groups as a call to action
to the world’s artificial intelligence experts to answer high
priority scientific questions.
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The proposed algorithm iteratively considers the number of
empty cells in each remaining column to select the next one in
a greedy fashion. This study can be enhanced by considering
the predictive information associated to each columns too.
This information can be obtained by using a filter-type feature
selection algorithm [6]. Thus, columns are selected based on
two criteria, the number of cells and their quality.



TABLE V
SOLUTIONS, THE GREEN COLOR DESCRIBES GOOD DATA SETS.

Num. of columns  Featureindex Num. of rows Num. of columns  Feature index Num. of rows

1 1 5644 57 ] 5
2 2 5644 58 60 6
3 3 5644 59 61 6
4 4 5644 60 63 6
5 5 5644 61 64 6

e 5 sM W 6 6
7 22 1354 63 16 1
3 23 1354 64 47 1
9 24 1354 65 72 1
10 25 1352 66 73 1
11 26 1352 67 74 1
12 27 1352 68 75 1
13 29 1352 69 76 1
14 30 1352 70 77 1
15 31 1352 71 79 1
16 32 1352 72 80 1
17 33 1352 73 81 1
18 34 1352 74 84 1
19 35 1352 75 85 1
20 36 1352 76 86 1
21 37 1352 77 87 1
22 38 1352 78 88 1

SR T - R 89 1
24 7 366 80 28 0
25 8 366 81 55 0
26 9 366 82 56 0
27 11 366 83 57 0
28 12 366 84 62 0
29 13 366 85 66 0
30 14 366 86 67 0
31 15 366 87 68 0
32 16 366 88 69 0
33 17 366 89 70 0
34 18 366 90 71 0
a5 20 366 91 78 0
36 19 365 92 82 0

o wm m 3 0
38 42 320 94 90 0
39 40 272 95 94 0
40 43 212 96 95 0
41 41 201 a7 97 0
42 45 179 98 98 0
43 44 178 99 99 0
44 21 114 100 100 0
45 51 52 101 101 0
46 52 52 102 102 0
47 53 52 103 103 0
48 48 41 104 104 0
49 49 41 105 105 0
50 50 36 106 106 0
51 54 36 107 107 0
52 92 27 108 108 0
53 91 19 109 109 0
54 96 11 110 110 0
55 93 10 111 111 0
56 58 6

APPENDIX A

This appendix includes the table with the names of the
COVID-19 features.

5043



TABLE VI

NAMES OF COVID-19 FEATURES.

Index Feature name Index Feature name
1  PatientID 57 Magnesium
Patient age quantile 58 pCO2 (venous blood gas analysis)
3 SARS-Cov-2 exam result 59  Hb saturation (venous blood gas analysis)
4 Patient addmited to regular ward (1=yes, 0=no) 60  Base excess [venous blood gas analysis)
5  Patient addmited to semi-intensive unit (1=yes, 0=na) 61 pO2 (venous blood gas analysis)
6  Patient addmited to intensive care unit (1=yes, O=no) 62  Fio2 (venous blood gas analysis)
7 Hematocrit 63 Total COZ (venous blood gas analysis)
8  Hemoglohin 64  pH (venous blood gas analysis)
9  Platelets 65 HCO3 {venous blood gas analysis)
10 Mean platelet volume 66 Rods#
11 Red blood Cells 67 Segmented
12 Lymphocytes 68 Promyelocytes
13 Mean corpuscular hemoglobin concentration (MCHC) 69  Metamyelocytes
14 Leukocytes 70 Myelocytes
15 Basophils 71  Myeloblasts
16 Mean corpuscular hemoglobin (MCH) 72 Urine - Esterase
17  Eosinophils 73 Urine - Aspect
18 Mean corpuscular volume (MCV) 74 Urine - pH
19 Monocytes 75  Urine - Hemoglobin
20 Red blood cell distribution width (RDW) 76 Urine - Bile pigments
21 Serum Glucose 77 Urine - Ketone Bodies
22 Respiratory Syneytial Virus 78  Urine - Nitrite
23 Influenza A 79  Urine - Density
24 Influenza B 80  Urine - Urobilinogen
25 Parainfluenza 1 81  Urine - Protein
26  CoronavirusNL63 82 Urine -Sugar
27 Rhinovirus/Enteravirus 83 Urine - Leukocytes
28 Mycoplasma pneumoniae &4 Urine - Crystals
29  Coronavirus HKU1 85  Urine - Red blood cells
30 Parainfluenza 3 86  Urine - Hyaline cylinders
31 Chlamydophila pneumoniae 87  Urine - Granular cylinders
32 Adenovirus 88  Urine - Yeasts
33 Parainfluenza 4 89 Urine - Color
34  Coronavirus229€ 90  Partial thromboplastin time (PTT)
35  CoronavirusQC43 91 Relationship (Patient/Normal)
36 Inf AHIN1 2009 92 International normalized ratio (INR)
37 Bordetella pertussis 93  Lactic Dehydrogenase
38 Metapneumovirus 94 Prothrombin time (PT), Activity
39  Parainfluenza 2 95 Vitamin B12
40  Neutrophils 96 Creatine phosphokinase (CPK)
41 Urea 97  Ferritin
42 Proteina C reativa mg/dL 98  Arterial Lactic Acid
43 Creatinine 99 Lipase dosage
44 Potassium 100 D-Dimer
45 Sodium 101 Albumin
46  Influenza B, rapid test 102 Hb saturation (arterial blood gases)
47 Influenza A, rapid test 103 pCO2 (arterial blood gas analysis)
48  Alanine transaminase 104 Base excess (arterial blood gas analysis)
49  Aspartate transaminase 105 pH (arterial blood gas analysis)
50 Gamma-glutamyltransferase 106 Total CO2 (arterial blood gas analysis)
51 Total Bilirubin 107 HCOS3 (arterial blood gas analysis)
52  Direct Bilirubin 108 pQ2 (arterial blood gas analysis)
53 Indirect Bilirubin 109 Arteiral Fio2
54 Alkaline phosphatase 110 Phosphor
55 lonized calcium 111 ctO2 (arterial blood gas analysis)

56 Strepto A
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