
2020 IEEE International Conference on Big Data (Big Data)

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

5037

Learning with Missing Data

1st Carlos A. Escobar

Global Research & Development

General Motors

Warren, MI, USA

carlos.1.escobar@gm.com

2nd Jorge Arinez

Global Research & Development

General Motors

Warren, MI, USA

jorge.arinez@gm.com

3rd Daniela Macias

Escuela de Ingenieria y Ciencias

Tecnologico de Monterrey

Monterrey, NL, Mexico

a01195037@itesm.mx

4th Ruben Morales-Menendez

Escuela de Ingenieria y Ciencias

Tecnologico de Monterrey

Monterrey, NL, Mexico

rmm@tec.mx

Abstract—Many real-world data sets contain missing values,
therefore, learning with incomplete data sets is a common
challenge faced by data scientists. Handling them in an intelligent
way is important to develop robust data models, since there is no
perfect approach to compensate for the missing values. Deleting
the rows with empty cells is a commonly used approach, this
naive method may lead to estimates with larger standard errors
due to reduced sample size. On the other hand, imputing the
missing records is a better approach, but it should be used with
great caution, as it relies on often unrealistic specific assumptions
which can potentially bias results. In this paper, a new greedy-like
algorithm is proposed to maximize the number of records. The
algorithm can be used to generate various maximized sub-sets by
varying the number of columns (features) that can be used for
learning. It salvages more records than the naive method, and it
avoids the bias induced by imputation. The learning algorithms
would be able to learn from real sub-sets without the bias induced
by artificial data. Finally, the proposed algorithm is applied to
a case study, the COVID-19 Open Research data set (CORD-19)
that was prepared and posted by The White House and a coalition
of leading research groups as a call to action to the world’s
artificial intelligence experts to answer high priority scientific
questions. This data set contains missing records, therefore,
resulting maximized sub-sets from this analysis can be further
investigated by the research community.

Index Terms—machine learning, incomplete data, preprocess-
ing, manufacturing

I. INTRODUCTION

Many real-world data sets contain missing values for various

reasons, such as, corrupt data, failure to load the information,

or incomplete recording of data entries. For example, in

manufacturing, the unexpected faulty operating-conditions of

sensors and cameras are the main causes of incomplete data

sets, asi seen in Fig. 1. Handling the missing values, which are

often encoded as NaN (Not a Number) or blanks, is one of the

first relevant challenges faced by data scientists. Missing data

results in loss of learning power, therefore, selecting the right

approach on how to handle it, is very important to develop

robust models.

Deleting rows or columns with missing data is a widely

used approach. However, as it will be illustrated, if this naive

[Snapshot of the incomplete data set.]

[Full view of the data set, empty cells in black.]

Fig. 1. Incomplete data set derived from a real manufacturing process.

method is applied, oftentimes the sample size may be signif-

icantly reduced, leaving little information for the algorithm

to learn the patterns. This method is not advised unless the

proportion of eliminated records is very small (<5%) [1].

Imputing the missing records is a better approach, this

statistical technique refers to the process of replacing miss-

ing data with guessed/estimated values. Before selecting the

imputation method, the data set should be thoroughly assessed,

to determine the most appropriate statistical method to handle

missing data. Although imputation can be applied to preserve

all samples, it relies on often unrealistic specific assumptions,

which can potentially bias results. Therefore, this approach

should be used with great caution. A review of imputation

methods can be found in [1]–[3].

Learning with incomplete data sets requires careful planning

20
20

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

ig
 D

at
a 

(B
ig

 D
at

a)
 | 

97
8-

1-
72

81
-6

25
1-

5/
20

/$
31

.0
0 

©
20

20
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
B

ig
D

at
a5

00
22

.2
02

0.
93

77
78

5



5038

and attention, since there is no perfect way to compensate for

the missing values. Whereas removing the data will lead to

estimates with larger standard errors due to reduced sample

size, imputation can potentially bias results.

In this paper, a new greedy-like algorithm is proposed, it

maximizes the number of total records that can be used to

learn. As it will be demonstrated, the algorithm salvages more

records than the naive method, and may help to reduce the

bias induced by imputation, as the algorithms would be able

to effectively learn from real data without the biased induced

by artificially created data.

The rest of this paper is organized as follows. The proposed

algorithm is presented in Section III. Followed by two real case

studies in Section IV, one of them contributes in the pandemic,

by formally analyzing the COVID-19 Open Research data

set (CORD-19) that was posted by The White House as a

call to action to the world’s artificial intelligence experts to

answers high priority scientific questions. Finally, conclusions

and future research are presented in Section V.

II. STATE OF THE ART

In the current state of the art, handling missing values has

been tested thoroughly. There is an existing concept, called

missing data mechanism, where there is a probability for each

data point to be missing [1]. That probability is governed by

three categories, which are:

• Missing completely at random (MCAR) Where the

probability of being missing is the same for all the data

points in the set. This is due to unforeseen circumstances

that are not related to a problem from the data.

• Missing at random (MAR) When the data is missing

at random, the probability is caused by a group

defined by the observed data. A circumstance that may

cause missing data could vary from one condition to

another. When those conditions are known, and the

data is collected knowing the difference between those

conditions, then the data will be MAR. This is a more

realistic approach than MCAR, and may be the starting

point for analysis.

• Not missing at random (NMAR) When there is a known

cause to be missing data, which could be a situation or

condition, then the data will be NMAR. The obtained

data will need more in-depth analysis to handle and fix

the origin of those missing values.

There is no distinction between MCAR, MAR or MNAR

approaches. Practically, MCAR is unrealistic and the least

plausible of the three, leaving MAR or MNAR mechanisms.

For practical issues, modern missing data methods use the

MAR assumption as the standard for analyzing the data.

Imputation is one of the most widely used methods for

dealing with missing values; assuming the NMAR approach,

but not knowing the data, could lead to use it in the wrong

way. As imputation mechanisms, obtaining mean and mode of

the existing data, among other old techniques, and replacing

it in the NaN values is proven to be ineffective, because

imputation has to be adequate and follow the pattern of

the NaN values [4]. Hot deck imputation has also shown

inadequate results due to a high error probability caused by

multiple missing values in the same row.

To avoid any possible bias induced by imputation methods,

authors recommend -when possible- to apply the proposed

algorithm to maximize the number of records used for

learning. Thus, the learning algorithm will learn only real

patterns. However, imputation methods should be evaluated

and selected as part of the modeling solution to ensure

estimates are readily available when needed, to keep the

predictive systems running.

III. INFORMATION OPTIMIZATION ALGORITHM

The proposed algorithm is based on a greedy-like selection,

algorithms in this category make whatever choice seems the

best at each iteration. The pool of options depends on the

choices made so far, but not on the future ones. It iteratively

makes one greedy choice after another, reducing the problem

into smaller subproblems. A greedy algorithm is not subject

to combinatorial explosion, as it never reconsiders its choices,

therefore, there is no guarantee of finding an optimal solution.

The basic idea of the proposed algorithm, is to maximize the

number of total records that can be used to learn. This problem

is solved iteratively by a two-step approach that considers the

number of empty (NaN) cells. First, the column(s) with the

minimum number of NaN is selected, if there are two or more

columns with the same number of NaNs, the one with the

maximum number of associated NaNs is selected. Since the

rows of the NaNs in the selected column will be deleted, in

this second step the algorithm is selecting the column that will

minimize the deletion of useful information. The algorithm

has three components, inputs, outputs and initialization. The

pseudo-code is presented in Fig. 2:

• Inputs

-X, matrix with m rows (samples) and n columns (fea-

tures).

• Outputs

-Order, vector with the final order of the columns in the

solution.

-RowsSalvagedbyCol (RSC), vector with the number of

rows included in the solution by column. Either constant

or decreasing.

-PercentofRowsSalvagedbyCol(PRSC), vector with the

percentage of RowsSalvagedbyCol relative to m.

-CumulativeRecordsSalvagedbyCol(CRSC), vector with

the number of records (cells) by column.

-PercentofCumulativeRecordsSalvagedbyCol(PCRSC),

vector with the percentage of CumulativeRecordsSal-

vagedbyCol relative to the matrix size (m× n).

-TotalRecordsSalvaged(TRS), number that describes the



5039

total number of records salvaged by the solution (sum of

RowsSalvagedbyCol).

-PercentofTotalRecordsSalvaged(PTRS), Total-

RecordsSalvaged expressed in percentage relative

to the matrix size (m× n).

-PermutedMatrix, matrix sorted based on Order.

• Initialization -Define nc as 1 to n vector.

-Define Remaining as 1 to n vector.

-Define Tracker as 1 to n vector.

-Define SelectedF as an empty vector of size n.

-Define RSC as an empty vector of size n.

-Define PRSC as an empty vector of size n.

-Define CRSC as an empty vector of size n.

-Define PCRSC as an empty vector of size n.

-Define TRS as an empty vector of size n.

-Define PTRS as an empty vector of size n.

Fig. 2. Records optimizer pseudo-code.

Lines 1-2 define initial values used by the algorithm. In

lines 3-39, n number of iterations are performed to develop

the solution, where n is the number of columns. In lines 4-6,

the vectors used in this process are defined, since the number

of remaining columns decreases by one after each iteration,

their size also decreases by one. In lines 7-17, the information

required to select the next column is generated. In lines 8-9,

the variable that stores the sum of empties by row is reset and

the positions of the NaNs by column are identified. In lines 10-

13, these positions, are then used to determine the associated

NaNs by row (line 11). The sum of these values is stored

in line 12. The vectors defined in lines 4-6, are populated in

lines 14-16. In line 18, the column with the minimum number

of NaNs is selected. If there are two or more columns with

the same number of NaNs, the column with the maximum

number of associated NaNs by row is selected, this can be

observed in lines 18-23. Line 24 populates the vector with

the solution. Line 25 keeps track of the remaining columns.

Since the selected columns are moved to the left, their order

needs to be updated, stated in line 26. In lines 27-28, the

original matrix X is rearranged, based on the updated order.

Line 29 helps to keep track of the original column number

in each iteration. In lines 30-31, the rows of the empty cells

in the selected column are deleted. In line 32, the size of the

matrix is recorded. In lines 33-34, the PermutedMatrix is

generated; the empty records of each preprocessed column are

filled with NaN. In lines 35-43 statistics are reported and, at

the end of the iterations, they store the information of the

solution. Where Order contains the order of the matrix and

RowsSalvagedbyCol contains the number of associated rows,

this number exhibits a constant or a decreasing pattern. Finally,

PermutedMatrix shows the overall solution.

A. Solution Process Overview

A virtual data set is created to show the solution step by

step. The data set contains 11 columns and 10 rows with empty

cells in the diagonal of columns 1-10, Table I. In this case,

if rows with empty cells are eliminated, all the data set is

deleted, if columns with empty cells are deleted only one

column is salvaged (11), leaving very little information for

the algorithm to learn from. Besides the data set, the table has

two more rows at the bottom: (1) Empty by column (EBC),

which describes the number of empty cells in each column,

and (2) Associated empties (AE), which describes the sum

of the row’s associated empty cells to each of the empty

cells in a column. Moreover, another column is added at the

end which describes the number of empty cells by row, this

information is used to determine the values of AE. A color

convention is also included to keep track of the decisions and

actions of the algorithm. The feasible options (i.e., minimum

number of EBC) at each step are highlighted in gray, if there

is a tie, the AE values (maximum) are used as tiebreaker to

maximize the information extraction. If still, there are two or

more columns with the same numbers, the smallest index is

arbitrarily selected. The green color keeps track of the selected

columns. Finally, based on the empty cells of the selected

column, the yellow color is used to highlight which rows will

be deleted. The full solution process is graphically described

in Table II, the solutions are summarized in Table III and

Table IV shows the PermutedMatrix. The solutions are

interpreted as follows: in iteration one, column 11 is selected,

which includes include 10 rows, the updated order column

keeps track of selected columns (in bold) in each iteration, as

well as remaining columns.

In iteration 1 (Table I), column 11 is selected since the EBC

value is the smallest one (0), which means all the records in

that column are available. In iteration 2 (upper left, Table II),

there is a tie between columns eight and five, as both have a

EBC = 1, however, column eight has three associated empty

cells (AE = 3) vs two (AE = 2) of column five. In this

situation, it is better to remove row eight (in yellow) to salvage

more records. The remaining steps follow the same logic.

Figure 3 shows how the number of records decreases (rows



5040

TABLE I
VIRTUAL DATA SET.

TABLE II
SOLUTION PROCESS (ITERATIONS FROM LEFT TO RIGHT).

salvaged) by including more columns, whereas the number of

cumulative records increases and eventually decline. In this

case, if all columns are included, no rows are salvaged.

This algorithm addresses the tradeoff between the number of

columns (features) and rows (samples). In real life problems,

this is a common situation, as an example, medical files

of patients tend to have a lot of missing records, or in

manufacturing, as described earlier, sensors may randomly

break down or may be systematically turned off. Whereas this

algorithm helps to maximize the information extraction, the

main question remains: which sub-data set should be used to

learn? In this context, this algorithm cannot straight forward

answer this question, instead, it is a guide on how to cleverly

define sub-data sets to explore. For example, in this data set,

two useful insights can be derived, per Table III, the sub-

data set generated in iteration six is a better solution than the

sub-data set generated in iteration five, as both have the same

number of rows but the former has more features (6 vs 5)

or cumulative records (30 vs 25). Finally, if all features are

included, there are no samples left to learn from. In real life

problems, this situation refers to the columns on the extreme

right, that oftentimes have very little information, making the



5041

TABLE III
SOLUTIONS.

TABLE IV
PermutedMatrix, OVERALL SOLUTION.

data set ineffective, as illustrated in the following section.

Fig. 3. Salvaged rows and cumulative cells by columns.

IV. CASE STUDY

In this section, two public data sets are analyzed, they

are particular relevant because they were not preprocessed

before being posted, therefore they have a lot of missing

records: (1) COVID-19 Open Research Data Set [5], this

data set calls to action to the world’s artificial intelligence

experts to develop text and data mining tools that can help the

medical community develop answers to high priority scientific

questions, in this context, by analyzing this data set, we

support the ongoing COVID-19 response efforts worldwide.

A. COVID-19 Open Research Data Set

This data set contains 111 features and 5644 samples,

most of its cells are empty, as shown in Fig. 4. If rows

with empty cells are eliminated, no rows would be salvaged,

whereas if columns with empty cell are eliminated, only six

columns would be salvaged, leaving the potential contribution

of some of the 105 remaining features out of the learning

part. The proposed algorithm is applied, Table V displays the

set of solutions, in which column one describes the number

of features, column two the feature index, and column three

describes the number of salvaged rows, refer to Table VI

in Appendix A to match the indexes with the actual names.

Based on the set of solutions, a couple of relevant sub-data

sets are exhibited, the first sub-data set would contain six

features with 5644 records, the second data set would contain

23 features with 1352 records, then the third data set would

contain 37 features with 362 records, if necessary, a few more

sub-data sets can be created, but they would contain very little

information, this information is graphically displayed in Fig. 5.

V. CONCLUSIONS AND FUTURE WORK

Learning with incomplete data sets is a common challenge

faced by data scientists. Handling them in an intelligent way

is important to develop robust data models. While deleting

rows/columns or imputing missing values are common ap-

proaches, they may have serious implications such as loosing

most of the training data (as demonstrated in the real case

studies) or biasing the estimates. In this context, the authors



5042

Fig. 4. Screen-shot of COVID-19 data set, empty cells in black.

Fig. 5. Salvaged rows by number of columns, the green color describes good data sets.

advocate –when possible– to learn from real data and impute

missing values on deployment.

In this paper, a new greedy-like algorithm is presented, the

algorithm is aimed at maximizing the information (cells) of in-

complete data sets. It develops different sub-sets that solve the

trade-off between number of features and number of samples

differently. The user can choose a sub-set with either more

features and less number of samples or the other way around.

Since the best sub-set cannot be determined in advance, it is

recommended to apply the learning algorithm to select the

best, like wrapper-type feature selection algorithms [6].

Moreover, this paper reports a small contribution in address-

ing the pandemic challenge from an analytical perspective, by

formally analyzing the COVID-19 Open Research Data Set

(CORD-19) that was prepared and posted by The White House

and a coalition of leading research groups as a call to action

to the world’s artificial intelligence experts to answer high

priority scientific questions.

The proposed algorithm iteratively considers the number of

empty cells in each remaining column to select the next one in

a greedy fashion. This study can be enhanced by considering

the predictive information associated to each columns too.

This information can be obtained by using a filter-type feature

selection algorithm [6]. Thus, columns are selected based on

two criteria, the number of cells and their quality.



5043

TABLE V
SOLUTIONS, THE GREEN COLOR DESCRIBES GOOD DATA SETS.

APPENDIX A

This appendix includes the table with the names of the

COVID-19 features.



5044

TABLE VI
NAMES OF COVID-19 FEATURES.

REFERENCES

[1] J. C. Jakobsen, C. Gluud, J. Wetterslev, and P. Winkel, “When and
how should multiple imputation be esed for handling missing data
in randomised clinical trials–a practical guide with flowcharts,” BMC

medical research methodology, vol. 17, no. 1, p. 162, 2017.

[2] J. Barnard and X.-L. Meng, “Applications of multiple imputation in
medical studies: from aids to nhanes,” Statistical methods in medical

research, vol. 8, no. 1, pp. 17–36, 1999.

[3] M. M. Rahman and D. N. Davis, “Machine learning-based missing
value imputation method for clinical datasets,” in IAENG transactions

on engineering technologies. Springer, 2013, pp. 245–257.



5045

[4] P. Royston, “Multiple imputation of missing values,” The Stata Journal,
vol. 4, no. 3, pp. 227–241, 2004.

[5] G. U. C. f. S. This dataset was created by the Allen Institute for AI in
partnership with the Chan Zuckerberg Initiative, I. Emerging Technology,
Microsoft Research, i. c. w. T. W. H. O. o. S. the National Library
of Medicine National Institutes of Health, and T. Policy., “Covid-
19 open research dataset challenge (cord-19),” kaggle, Aug. 2020.
[Online]. Available: https://www.kaggle.com/allen-institute-for-ai/CORD-
19-research-challenge

[6] G. Chandrashekar and F. Sahin, “A Survey on Feature Selection Meth-
ods,” Computers & Electrical Eng, vol. 40, no. 1, pp. 16–28, 2014.


