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Abstract—Most developing countries suffer from inadequate
health care facilities and a lack of medical practitioners as most
of them emigrate to developed countries. The outbreak of the
COVID-19 pandemic has left these countries more vulnerable to
facing the worse outcome of the pandemic. This necessitates the
need for a system that continuously monitors patient status and
detects how their physiological variables will change over time.
As a result, it will reduce the rate of mortality and mitigate the
need for medical practitioners to monitor patients continuously.
In this work, we show how an autoencoder and extreme gradient
boosting can be merged to forecast physiological variables of a
patient and detect anomalies and their level of divergence. An
accurate detection of current and future anomalies will enable
remedial action to be taken by medical practitioners at the right
time and possibly save lives.

I. INTRODUCTION

Critical patients admitted to hospitals are typically con-
nected to systems that provide continuous monitoring of
multiple physiological variables. In most developing countries,
constant monitoring is used by medical practitioners to keep
track of patient condition deteriorating. Early detection of
patient condition deterioration will enable remedial action to
be taken by medical practitioners at the right time which will
reduce the need for patients to be transferred to the higher
acuity units, reduce their length of stay at the hospital, and
improve their survival rates [1], [2].

The vast majority of hospitals in developing countries
employ a traditional approach of bed-side monitoring and
rule-based monitoring. In a bed-side monitoring approach,
the medical practitioner observes the patient’s physiological
variable(s) to know the patient’s status. This approach can be
time-consuming and tedious. On the other hand, in a rule-
based approaches, the normal range is set; any value outside
the range is deemed abnormal otherwise healthy [3]. This
approach has been proven to be not accurate and produces
a large number of false positives leading to alarm fatigue.
Furthermore, it does not capture the correlation of the variables
[4].

Recently there has been an increasing body of work con-
cerning data-driven approaches that combines machine learn-

ing and the Internet of Things (IoT) to enable autonomous
continuous monitoring of physiological variables [5], [6], [7],
[8], [9]. This growth is due to the recent advancement in the
IoT technologies such as wireless communication and sensors
[10].

Anomaly detection is a data-driven technique that serves as
the basis of applications across a diverse variety of domains,
such as fault detection, intrusion and fraud detection, and
process control. The goal of anomaly detection is to identify
patterns in data that do not conform to a well-defined notion of
normal behavior [11]. In [12], they employ Gaussian Processes
to estimate the future trajectory of a patient’s vital signs.
However, the Gaussian process is known to suffer from the
curse of dimensionality, which makes their approach infeasible
when using high dimensional features [13].

Work by [14] uses a single physiological variable state to
perform anomaly detection. In contrast to the sequential state
anomaly detection, single state anomaly detection methods
are known to perform poorly. They perform poorly because
because they do not take into consideration how the patient
variables were changing over time, instead, it uses the current
variable to detect if the patient is in a normal state or not [15].
A review of the literature reveals that data-driven approaches
relying on supervised learning have demonstrated promising
results in various applications [16], [17]. However, the super-
vised learning approach requires data from both normal and
anomaly classes. This is a limitation of supervised methods
because it is almost impossible to obtain every possible type
of anomaly that could happen in the system.

In scenarios where labeled data are scarce or unavail-
able, unsupervised anomaly detection approaches are usually
applied, because only normal data are required to train a
detection model [18]. In this work, we propose a system that
continuously monitors the patient’s condition using physio-
logical variables and predicts when the patient will require
attention from the medical practitioners. The proposed system
merges both the supervised and unsupervised approaches and
uses normal data only.
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II. ANOMALY MONITORING SYSTEM FOR HEALTHCARE
APPROACH

Our methodology comprises of four steps, namely: pre-
processing, anomaly detection, forecasting physiological vari-
ables, and using anomaly detection on the forecasted physio-
logical variables.

A. Pre-processing

When physiological variables are recorded they may be null
values due to sensors malfunctions. To deal with null values,
we replaced them with a mean value of all patients at that
time. However, for a patient with the total number of null
values above 25 we deleted the entire record. To enable model
robustness, zero mean Gaussian noise is added to the training
data.

We then calculate the correlation between the physiological
variables, and drop one of the variables if the correlation is
above 8.5. For instance, heart rate and pulse rate are highly
correlated, that mean their contribution to the learning process
is the same.

B. Anomaly Detection

Fig. 1. Anomaly detection process.

For anomaly detection, we employ an autoencoder. Au-
toencoders learn a representation (encoding) for a set of
data, typically for dimensionality reduction [19]. It consists
of a reduction side (encoder) and a reconstructing side (de-
coder). Both the encoder and decoder are fully-connected feed-
forward neural networks.

First, the input passes through the encoder, which produces
the code and then goes through the decoder, which has a
similar structure. The decoder is responsible for reconstructing
the input using the code. The goal is to get an output identical
to the input as shown in Equation 1

Fθ(ht, rt) ≈ ht, rt (1)

where Fθ(ht, rt) represents the model. Autoencoders are
considered an unsupervised learning technique since they don’t
need explicit labels during training. We use the reconstruction
error (shown in Equation 2) to detect anomalies. A significant
error in reconstruction is a sign of an anomaly. An anomaly
detection threshold is used to separate anomalies from normal
data points.

{ht, rt}︸ ︷︷ ︸
Model Input

− {ht, rt}︸ ︷︷ ︸
Model Output

(2)

Figure 1 shows our anomaly detection process. Firstly,
the system collects the current physiological variables of
the patient, then we use the autoencoder to reconstruct the
variables, if the difference (error) between the actual and
reconstructed variables is greater than or equal to the preset
anomaly detection threshold the variables are considered as
anomalies otherwise normal. When the variables are detected
as an anomaly we further assess if the error is greater
than the preset priority threshold. If that is the case, the
anomaly is considered high priority else it is considered low
priority anomaly. Anomaly detection means that the patient
requires medical attention from the medical practitioners. A
low priority anomaly means the patient condition is slightly
different from normal. A high priority anomaly means the
patient condition is significantly distinct from normal. Then
the variables values and their predictions are stored in the
database for future maintenance.

C. Forecasting Physiological Variables

For forecasting physiological variables, we employ XG-
Boost supervised learning approach. XGBoost is a decision-
tree-based ensemble machine learning algorithm that uses a
gradient boosting framework [20]. Artificial neural networks
are considered best when using unstructured data (i.e., images
or text). However when it comes to structured data, decision
tree based algorithms are known to be best performers. Hence,
we selected the XGBoost algorithm. The model take in physi-
ological variables at time ti as input and output physiological
variables at time ti+1 as shown in Equation 3.

Fθ{(ht, rt), . . . , (hn, rn} ≈ {hn+1, rn+1} (3)

D. Using Anomaly Detection on the Forecasted physiological
Variables

In Figure 2 we show how anomaly detection is used on the
forecasted physiological variables. The process is similar to
the anomaly detection process except that in this process, an
autoencoder is applied on the forecasted variables instead of
the actual values.

III. EXPERIMENTS AND RESULTS

To assess the performance of our proposed system, we
utilize physiological parameter data from the Multiple
Intelligent Monitoring in Intensive Care (MIMIC) database
[21]. It contains thousands of recordings of multiple
physiologic signals (”waveforms”) and time series of



Fig. 2. Forecasting physiological variables and anomaly detection process.

physiological variables (”numerics”) collected from bedside
patient monitors in adult and neonatal intensive care units.
This data is not labeled.

In this work, we focus on the numerical data for two physio-
logical variables: namely, heart rate (HR) and Respiration rate
(RESP). Our experiments are divided into three parts, namely:
anomaly detection, forecasting physiological variables, and the
combination of forecasting and anomaly detection.

A. Anomaly Detection

We start by exploring the training data, Table I shows the
number of data points per batch; we observe that in HR, most
data points lie between 41 and 180. While in RESP, most
data points lie between 0 and 80. We also note that there are
fewer data points above 120 in RESP. The total number of
data points we used for training were 58960 while for testing
we used 14740 data points.

Batch HR RESP

0-20 0 27017
21-40 20 23043
41-60 3491 6224
61-80 16021 2103
81-100 16652 492

101-120 8464 75
121-140 4764 6
141-160 5706 0
161-180 2958 0
181-200 727 0
≥201 157 0

TABLE I
TRAINING DATA IN BATCHES.

In this subsection, we evaluate the effectiveness of anomaly
detection. In Figure 3 we show the autoencoder mean square
error (MSE) during learning, we observe how the model
improves with an increase in the number of epochs. The model
converges after 40 epochs.
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Fig. 3. Autoencoder learning MSE.

To select an anomaly detection threshold, we used the
training data of 58960 samples to evaluate how their error
values are distributed. In Figure 4 we show the results; we
observe that most error values are between 0 and 0.5. From this
experiment, we selected 1 as an anomaly detection threshold,
which means when the reconstruction error of the model is
greater or equal to 1, the data point is detected as an anomaly;
otherwise, they are detected as normal.
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Fig. 4. Training data error distribution after the model was fully trained.

We then evaluated how the model performs with an
anomaly detection threshold of 1 using the testing data. We
show a comparison of the model reconstruction (detected)
values with the ground truth values. For visualization
simplicity, we chose to visualize 100 samples detected
as anomalies from the testing data. Figure 5 shows the
heart rate reconstructed (detected) compared to the ground
truth values. In Figure 6, we show similar results for
the respiration rate. We observe that in most cases, the
model reconstructed values do not match the ground truth
values. Hence the model detected the data points as anomalies.
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Fig. 5. Comparing the ground truth and the anomaly detected HR values.
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Fig. 6. Comparing the ground truth and the anomaly detected RESP values.

Figure 7 shows the error of the above data points; we
observe that the error of all the data points is high or equal to
the anomaly detection threshold (red horizontal line).
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Fig. 7. Anomaly detected values error.

We repeated the experiments, but this time we used the
data points detected as normal. We observe that the model
was able to reconstruct the values similar to the ground truth
as shown in Figures 8 and 9. Furthermore, we observe that
the ground truth points are not visible as most of them are
under the reconstructed (detected) values.

We then show the reconstruction error of the data points
detected as normal in Figure 10. We observe that the error of
all the data points is below the anomaly detection threshold.

In Table II we show the number of data points detected as
anomalies or normal when using different threshold on the
testing data. We observe that when the threshold is at 1, the
model detects 1143 data points as anomalies and 13597 as
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Fig. 8. Comparing the ground truth and the normal detected HR values
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Fig. 9. Comparing the ground truth and the normal detected RESP values.
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Fig. 10. Normal detected values error.

normal data points. While when we choose threshold of 1.5,
the model detect 897 as anomalies and 13843. The lower the
threshold, the more points will be detected as anomalies.

Anomaly detection threshold Anomalies Normal

1 1143 13597
1.5 897 13843

TABLE II
NUMBER OF DATA POINTS DETECTED AS AN ANOMALY OR NORMAL

USING DIFFERENT ANOMALY DETECTION THRESHOLD.

Figure 11 and 12 show data points detected as anomalies
and others as normal using anomaly detection thresholds of
1 and 1.5 on testing data, respectively. From the two figures,
we observe that there is a clear separation between anomalies
and normal data points. The model flags data points that are



not similar to the data points it has seen during training as
anomalies. Furthermore, we observe that most normal data
points are in regions where most training data resides as
shown in Table I.
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Fig. 11. Values detected as normal or anomalies using 1 threshold.
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Fig. 12. Values detected as normal or anomalies using 1.5 threshold.

In Figure 13 we visualise high and low priority anomalies.
Data points with error between 1 (red horizontal line) and 4
(green horizontal line) are considered low priority anomalies,
while those with error above 4 are considered high priority
anomalies. This approach will help medical practitioners to
understand the level of seriousness of the patient’s con-
dition. Furthermore, this approach can help with detecting
malfunctions of data gathering sensors. Intuitively, we expect
malfunctioning sensors to produce bizarre data points.

B. Forecasting Physiological Variables

In this subsection, we evaluate the model’s performance
concerning forecasting physiological variables (HR and
RESP). The models takes in n previous physiological
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Fig. 13. High and low priority anomalies.

variables at different time ti as input and output physiological
variables at time ti+1 as shown in Equation 3. We use the
root mean squared error (RMSE) to assess this attribute. We
compare random forent (RF) [22], k-nearest neighbor (KNN)
[23], XGBOOST [20] and feed-forward long short-term
memory (LSTM) [24]. To enable a fair comparison amongst
the models, we used the same number of training (17688)
and testing (4421) data points.

In Table III we show RMSE for each model when
using different input (sample) size we observe that RF and
XGBoost perform better than KNN and LSTM. KNN and
LSTM perform badly with an increase in sample size, while
on the other hand, XGBOOST and RF are shown to be less
affected by an increase in the sample size.

Sample size (n) KNN RF XGBOOST LSTM

1 3.4 3.8 4.5 3.0
5 3.5 3.1 2.9 2.9

10 3.8 3.1 2.9 2.9
30 4.6 3.1 2.9 3.0
50 5.2 3.1 2.9 3.5

TABLE III
FORECASTING PHYSIOLOGICAL VARIABLES RMSE USING DIFFERENT

SAMPLE SIZE.

C. Forecasting and anomaly detection

In this subsection we evaluate the integration of the
forecasting and anomaly detection models. We have selected
XGBoost with the sample size of 5 for forecasting as it has
been demonstrated to perform best with the lowest RMSE
of 2.9 (as shown in Table III). To evaluate this attribute, we
used 4421 testing data points.

Figure 14 and 15 show the forecasted values detected as nor-
mal, low anomaly, and high anomaly. The figures demonstrate
a clear separation amongst normal, low anomaly, and high



anomaly data points. High anomaly are further away from
normal. The separation is similar to the separation we have
shown in Figure 11 and 12.
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Fig. 14. Forecasted values detected as normal or low/high anomalies using
1 threshold.
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Fig. 15. Forecasted values detected as normal or low/high anomalies using
1.5 threshold.

IV. CONCLUSION

This paper has shown how an autoencoder and XGBoost
can be combined to forecast physiological variable of a patient
and detect anomalies with their level of divergence. Further-
more, we have shown how anomalies can be detected from
unlabelled data. Merging anomaly detection and forecasting
approaches can be vital in reducing the mortality rate and
mitigating the tedious constant monitoring of the patients in
hospitals done by our medical practitioners.
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