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Abstract—For public health surveillance systems, privacy is a
major issue in storing and sharing of personal medical data. Of-
ten, patients and organizations are unwilling to divulge personal
medical data for fear of compromising their privacy because
although the data may be encrypted, the encrypted values
typically need to be first decrypted to perform any computation
on the data. Unfortunately, such a barrier in easy sharing of
data can severely hamper the ability to respond in a timely
and effective manner to a crisis scenario, as evident in the case
of the ongoing COVID-19 pandemic. To overcome this critical
obstacle, we propose in this paper a novel privacy-preserving
encryption mechanism for storage and computation of sensitive
healthcare data. Our scheme is based on the use of a secure
fully homomorphic encryption scheme, so that the required
computations can be performed directly on the encrypted data
values without the need for any decryption. The ability to execute
queries or computation directly on encrypted data, without the
need for decryption, is not present in any existing public-health
surveillance system. We propose a novel computational model
and also develop an algorithm for contact tracing with COVID-
19 pandemic as a case study. We have simulated our proposed
approach using the ElGamal encryption algorithm to check the
correctness and effectiveness of our proposed approach. The
results show that our proposed solution is effective in providing
adequate security while supporting the computational needs for
contact-tracing. Besides contact-tracing, our new data-encryption
technique can have a much broader impact in the field of
healthcare. By executing queries or computations directly on
encrypted data, our innovative solution would make the sharing
of data in healthcare-related research and industry significantly
simpler and faster. The use of such a data encryption scheme to
store and transmit sensitive healthcare data over a network can
not only allay the fear of compromising sensitive information but
also ensure HIPAA-compliance.

Index Terms—Fully homomorphic encryption, Contact tracing,
Healthcare, Privacy-preserving encryption.

I. INTRODUCTION

The unprecedented pandemic situation created by the
Covid-19 virus calls for urgent effort to devise effective means
to contain its spread among the populace. As a result, since
the outbreak of COVID-19, a plethora of contact-tracing apps
have been launched [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [19] for timely detection of infection spread
and thereby taking measures to contain it. It may be noted that

such an approach will be useful for public health surveillance
[13] to prevent the spread of infection of not only the COVID-
19 virus, but any other such deadly virus. Development of any
such contact tracing technique certainly depends on collection
of appropriate data about the infected persons and people they
have come in contact with. Public health surveillance systems
can provide such data which can be used for contact tracing as
well as prediction of spread and impact of the virus [1], [2],
[14], [15], [16]. Unfortunately, due to stringent privacy laws
(e.g., HIPAA) in most countries, owners of such databases are
reluctant to share such sensitive data. Another major hurdles
in obtaining data for contact tracing is the unwillingness of
people in sharing their location history and medical records
with either the government or contact-tracing apps for fear
of their privacy being compromised and personal data being
misused.

Contact-tracing solutions can be categorized as being either
centralized or distributed. Centralized models for contact trac-
ing are based on the assumption that a trusted entity will not
misuse the sensitive data. While data from individuals may be
collected in encrypted form, to make any sort of computation
with these data elements for detecting the possibility of
contacts or prediction of spread of the infection, the encrypted
data elements need to be decrypted, and thus the anonymity of
data might be compromised. Therefore, such a model based on
simply trust cannot technologically prevent unethical practices
of misusing sensitive data [17].

On the other hand, ethical issues arising from privacy
leakage are also not altogether eliminated in decentralized
systems [17], [26], [27], [28]. Even in a fully decentralized
model, there exists some risk of identity-unmasking when
someone in a room reports sick and a nearby proximity alert
is generated for another person currently located in the same
room [17].

Centralized solutions for contact tracing usually follow
the PEPP-PT protocol [4], while decentralized solutions typ-
ically are based on the TCN [5] protocol or DP-3T [7],
or Google/Apple’s exposure notification service [8] built on
PACT [9], [10]. All of these protocols are designed specifically
for Bluetooth-based solutions. Regardless of the architecture
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or technology used, perception about trust and privacy has
been the primary issues for low adoption of contact tracing
solutions [19], [17], [20], [21], [22], [23], [24], [25]. For
example, Healthy Together [1] and Care19 [2] have less than
2% of population coverage.

A. Our Contribution

In this paper, we have proposed for healthcare applications a
novel secure computation scheme using a fully homomorphic
encryption (FHE) algorithm [30], [31], [29] for encrypting
sensitive data. FHE functions can perform computation di-
rectly on encrypted data, without need for decryption. We
propose a computational model and develop an algorithm
based on it for contact tracing. Our proposed algorithm also
takes care of any secondary contacts, as experienced in case
of Covid-19 infection, where a person may get the infection
if he visits the same place within a very short time after the
departure of a patient. Since the encrypted patient data need
not be decrypted for the mathematical operations required
for such contact tracing, the privacy of all patients will be
preserved. As an example, we use the ElGamal algorithm [32]
chosen from the class of FHE algorithms for this purpose. We
simulate our proposed approach on a synthetic spatiotemporal
location dataset (created using the timestamped locations ob-
tained from the Google Timeline data of the authors) to show
the correctness and effectiveness of our technique in detecting
possible contact with some patients by a query-issuer. The
ability to execute queries or computation directly on encrypted
data, without the need for decryption, is not present in any
existing public-health surveillance system. Therefore, our new
data-encryption technique would have a much broader impact
in the field of healthcare beyond just contact-tracing. By
executing queries or computations directly on encrypted data,
our innovative solution would make the sharing of data in
healthcare-related research and industry significantly simpler
and faster.

II. FORMULATION OF THE CONTACT TRACING PROBLEM

Consider the application of FHE for the execution
of query/analytics on a privacy-preserving patient-location-
database for contact tracing with an arbitrary user’s location
data. A block diagram of a system using FHE is shown
in the self-explanatory Fig. 1. In this paper, our goal is to
focus on proving that sensitive personal data encrypted using
our approach based on the ElGamal FHE algorithm would
indeed be able to provide sufficiently strong security for
a contact-tracing application while supporting the necessary
computations needed for effective contact-tracing for a disease
like COVID-19.

Let there be a set R of n records in the patient-location-time
database given by R = {R1, R2, · · · , Rn} where each record
Ri, i = 1, 2, · · · , n contains the location-time information of a
patient Pi in terms of the locations Lij , j = 1, 2, · · · , li visited
by Pi along with his time of arrival T a

ij at the location Lij

and time of departure T d
ij from Lij . Each location Lij value

would actually involve two coordinate values, e.g., (xij , yij) in

Fig. 1. Representative use of FHE

two dimension or three coordinate values, e.g., (xij , yij , zij)
in three dimension (when, for example, location in a multi-
storeyed building is involved). It may be noted that a given
location may be visited by Pi more than once at different time
intervals, i.e., li is the number of distinct 3-tuples of (location,
time of arrival, time of departure). Thus, the record Ri contains
the following fields:

• i) Pi : A unique Id of patient Pi.
• ii) li : Number of distinct 3-tuples (location, time of

arrival, time of departure).
• iii) A set of li 3-tuples (Lij , T

a
ij , T

d
ij), j = 1, 2, · · · , li

where the jth 3-tuple specifies that the patient stayed at
location Lij during the time interval from T a

ij to T d
ij .

Symbolically, we represent Ri as Ri =
{Pi, li, (Li1, T

a
i1, T

d
i1), (Li2, T

a
i2, T

d
i2), · · · , (Li,li , T

a
i,li

, T d
i,li

)}.
We assume that the information about the Id of each

patient and his location-time information, i.e., Pi and each
component of the 3-tuples (Lij , T

a
ij , T

d
ij), j = 1, 2, · · · , li, are

all individually encrypted.
We further assume that there is a person Q who sends a

query to the system regarding his possible contact with some
patient at any location. That is, Q wants to know whether Q
and some patient Pi, i = 1, 2, · · · , n visited the same location
during some common time duration. It may be noted that the
mobility information of Q will also be represented by a similar
record structure as

{Q, lq, (Lq1, T
a
q1, T

d
q1), (Lq2, T

a
q2, T

d
q2), · · · , (Lq,lq , T

a
q,lq , T

d
q,lq )},

where each of the values
Q,Lq1, T

a
q1, T

d
q1, Lq2, T

a
q2, T

d
q2, · · · , Lq,lq , T

a
q,lq

, T d
q,lq

will
be encrypted.

Different situations of having a contact by Q with a patient
Pi are illustrated by the scenarios 1-4 in Fig. 2. It may be
noted that because of the inherent technological limitation,
the widely used Bluetooth-based solutions all suffer from
one fundamental problem, particularly for COVID-19, due to
their inability of tracing contacts when someone may become
infected by touching surfaces which a patient had touched
recently [12]. We term this as secondary contact, as opposed to
contacts when there is non-null intersection between some 3-
tuples (location, time of arrival, time of departure) of a patient
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Pi and the querying person Q. We illustrate this situation
by scenario 5 in Fig. 2. However, we formulate below the
computational problem for all these scenarios taken together.

The computational problem for contact tracing
involves using only the encrypted values for
Li1, T

a
i1, T

d
i1, Li2, T

a
i2, T

d
i2, · · · , Li,li , T

a
i,li

, T d
i,li

from
the record Ri and the encrypted values for
Lq1, T

a
q1, T

d
q1, Lq2, T

a
q2, T

d
q2, · · · , Lq,lq , T

a
q,lq

, T d
q,lq

to check if,
for some given threshold values of ε, δ and γ, there exist any
i, r and s such that the distance between Lir and Lqs is less
than equal to ε and any one of the following conditions is
satisfied.

1) Overlap between a Pi and Q’s presence at the same
location:

a) Scenario 1: T d
qs ≥ T d

ir ≥ T a
qs ≥ T a

ir, and T d
ir−T a

qs ≥ δ.
b) Scenario 2: T d

ir ≥ T d
qs ≥ T a

ir ≥ T a
qs, and T d

qs−T a
ir ≥ δ.

c) Scenario 3: T d
qs ≥ T d

ir ≥ T a
ir ≥ T a

qs, and T d
ir−T a

ir ≥ δ.
d) Scenario 4: T d

ir ≥ T d
qs ≥ T a

qs ≥ T a
ir, and T d

qs−T a
qs ≥ δ.

2) Scenario 5 (Secondary contact, i.e., no overlap in stay at
the same location and same time, but Q arrived within
time γ of some Pi leaving the location): T d

qs > T a
qs >

T d
ir > T a

ir, with T a
qs − T d

ir ≤ γ and T d
qs − T a

qs ≥ δ.
In the next section, we discuss how these computations

can be performed on the encrypted dataset using a fully
homomorphic encryption algorithm in which the encryption
function is monotonic, i.e., if a and b are two given real
numbers with a < b, and their encrypted values are a′ and
b′, respectively, then a′ < b′.

III. CONTACT TRACING USING ENCRYPTED DATA VALUES

Without loss of generality, we assume that the location
values are represented in two dimension with the location
Lir of a patient Pi being denoted by (xir, yir), and the
location Lqs of a person Q being denoted by (xqs, yqs).
All these coordinate values will be encrypted so that the
encrypted value of Lir will be denoted by (x′

ir, y
′
ir), and the

encrypted value of Lqs will be denoted by (x′
qs, y

′
qs). Since ε

is usually very small, we make an approximation in checking
the proximity between Lqs and Lir within a distance of ε in
original coordinate system by i) considering a square of side
2ε with the location Lir as its center (instead of considering a
circle of radius ε with its center at Lir) and then ii) checking
whether Lqs lies within this square. For small values of ε, the
error in this approximation will be insignificant. We may note
that the four vertices of this square will have the coordinate
values (xir − ε, yir − ε), (xir − ε, yir + ε), (xir + ε, yir + ε)
and (xir + ε, yir − ε), respectively. In the encrypted domain,
this square will be converted to a rectangle defined by the
coordinate values of its four vertices as ((xir − ε)′, (yir −
ε)′), ((xir − ε)′, (yir + ε)′), ((xir + ε)′, (yir + ε)′) and ((xir +
ε)′, (yir−ε)′), respectively where the (′) denotes the encrypted
value of the corresponding coordinate. We then check whether
the encrypted values of the coordinates (x′

qs, y
′
qs) lie within

the above rectangle in the encrypted domain for checking
proximity within ε distance in unencrypted coordinate system.

For checking the overlapped time of presence of Pi and
Q at the locations Lir and Lqs, respectively, in the encrypted
domain, we have to use the encrypted values T a′

ir , T
d′
ir , T

a′
qs and

T d′
qs of T a

ir, T
d
ir, T

a
qs and T d

qs, respectively. Along with this, we
also need to have the encrypted values (T d

ir − δ)′, (T d
qs − δ)′

and (T a
qs−γ)′ for detecting the overlaps in different scenarios

as will be apparent from the discussions below.
Scenario 1 is identified by the condition T a′

ir ≤ T a′
qs ≤

T d′
ir ≤ T d′

qs and a contact will be reported in this scenario if
(T d

ir − δ)′ ≥ T a′
qs .

Scenario 2 is identified by the condition T a′
qs ≤ T a′

ir ≤
T d′
qs ≤ T d′

ir and a contact will be reported in this scenario if
(T d

qs − δ)′ ≥ T a′
ir .

Scenario 3 is identified by the condition T a′
qs ≤ T a′

ir <

T d′
ir ≤ T d′

qs and a contact will be reported in this scenario if
(T d

ir − δ)′ ≥ T a′
ir .

Scenario 4 is identified by the condition T a′
ir ≤ T a′

qs <

T d′
qs ≤ T d′

ir and a contact will be reported in this scenario if
(T d

qs − δ)′ ≥ T a′
qs .

Scenario 5 is identified by the condition T d′
ir < T a′

qs and a
contact will be reported in this scenario if (T a

qs − γ)′ ≤ T d′
ir

and (T d
qs − δ)′ ≥ T a′

qs .
Thus, instead of a 3-tuple used for location coordinate, time

of arrival and time of departure associated with each distinct
location-time information in unencrypted domain, we need to
have a 9-tuple with four coordinate values and five timing
information in the encrypted domain, as described above.

We now describe below the Algorithm 1 for our proposed
contact tracing approach called PrivacyContactTrace corre-
sponding to the (i, r)th-tuple of a patient Pi and the (q, s)th-
tuple of the querying person Q using the encrypted values.

IV. SIMULATION OF THE PROPOSED APPROACH

To analyze the effectiveness of our proposed privacy-
preserving contact tracing method, we have created a synthetic
spatiotemporal location dataset (R) that consists of all location
related information over 24 hrs with ten COVID-19 positive
patients and one querying person. To create this synthetic
dataset, we used actual GPS-based timestamped location data
obtained from Google Timelines of the authors. The detailed
description of the dataset is given as follows:

1) Region coverage: 20 km × 20 km
2) Duraion: 24 hrs
3) Threshold distance (ε) = 2 m
4) Threshold contact duration (δ) = 15 min
5) Threshold time difference (γ) = 12 hr

A. Selection of FHE algorithm

For the purpose of user data encryption in the simulation
process, we use ElGamal algorithm [32] which belongs to
the class of fully homomorphic encryption algorithms. We
have tested the randomness of its generated keys by using
the National Institute of Standards of Technology (NIST) [33]
test suite. The test parameter was designed with sequence of
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Fig. 2. Graphical representation of the five contact scenarios

Algorithm 1: PrivacyContactTrace
Input: ((xir − ε)′, (yir − ε)′), ((xir − ε)′, (yir +

ε)′), ((xir+ε)′, (yir+ε)′), ((xir+ε)′, (yir−ε)′)
and (x′

qs, y
′
qs), T

a′
ir , T

d′
ir , T

a′
qs , T

d′
qs , (T d

ir − δ)′,
(T d

qs − δ)′ and (T a
qs − γ)′.

Output: contact found.
contact found = FALSE;
if (x′

qs, y
′
qs) is contained within the rectangle defined

by ((xir − ε)′, (yir − ε)′), ((xir − ε)′, (yir +
ε)′), ((xir + ε)′, (yir + ε)′), ((xir + ε)′, (yir − ε)′) then

if T a′
ir ≤ T a′

qs ≤ T d′
ir ≤ T d′

qs then
/* Scenario 1*/
if (T d

ir − δ)′ ≥ T a′
qs then

contact found = TRUE;

if T a′
qs ≤ T a′

ir ≤ T d′
qs ≤ T d′

ir then
/* Scenario 2*/
if (T d

qs − δ)′ ≥ T a′
ir then

contact found = TRUE;

if T a′
qs ≤ T a′

ir < T d′
ir ≤ T d′

qs then
/*Scenario 3 */
if (T d

ir − δ)′ ≥ T a′
ir then

contact found = TRUE;

if T a′
ir ≤ T a′

qs < T d′
qs ≤ T d′

ir then
/*Scenario 4*/
if (T d

qs − δ)′ ≥ T a′
qs then

contact found = TRUE;

if T d′
ir < T a′

qs then
/* Scenario 5*/
if ((T a

qs − γ)′ ≤ T d′
ir ) && ((T d

qs − δ)′ ≥ T a′
qs )

then
contact found = TRUE;

length = 106 bits and with number of sub-sequences as 10.
The proportion of sequences passing a test depends entirely
on the value of the significance level (α) used by NIST. For the
default value of α = 0.01 used for our analysis, the expected
value of this proportion is 0.99 with a lower bound on the
proportions as 0.96015. From test results shown in Table I,
ElGamal algorithm passes all 15 statistical tests.

TABLE I
RANDOMNESS COMPARISON BETWEEN FHE AND NON-FHE SCHEMES

Test ElGamal
Frequency 0.970

Block Frequency 0.977
Cumulative Sums 0.983

Runs 0.975
Longest Run 0.976

Rank 0.964
FFT 0.981

Non Overlapping Template 0.984
Overlapping Template 0.979

Universal 0.988
Approximate Entropy 0.971
Random Excursions 0.967

Random Excursions Variant 0.983
Serial 0.983

Linear Complexity 0.984

B. Simulation Results
Table II shows a summary of the simulation results on our

datasets. The first column describes individual identities. The
table heading L refers to the original (unencrypted) location
of a person in two dimension, headings A, B, C and D refer
to the coordinate values of the four vertices, respectively, of
the rectangle in the encrypted domain around the position
of a patient, headings T a and T d refer to the unencrypted
arrival and departure times, respectively, of a person, while
headings T a′

and T d′
refer to their corresponding values,

respectively, in encrypted domain. The proximity between the
querying person and a patient with respect to ε distance in the
unencrypted domain is validated in the encrypted domain, as
used by Algorithm 1. Different contact scenarios are shown
with respect to timing information which are also verified in
encrypted domain.
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TABLE II
SIMULATION RESULTS

Original Dataset Encrypted Dataset
Human L Ta Td A B C D (x′

q, y
′
q) Ta′

Td′ (Td
ir (Td

qs (Ta
qs Results

Identity −δ)′ −δ)′ −γ)′

P1 (28,21) 12:31 12:48 (221,208) (221,214) (228, 214) (228, 214) 20:03 20:44 20:32 - - Contact found
Q (27,21) 12:32 12:51 (223,211) 20:11 20:51 (Scenario 1)
P2 (105,46) 08:16 08:54 (715,319) (715,389) (765,389) (765,319) 13:01 13:30 - 13:08 - Contact found
Q (106,45) 08:10 08:39 (738,363) 12:49 13:28 (Scenario 2)
P3 (5,76) 06:30 07:10 (79,548) (79,589) (86,589) (86,548) 11:23 11:41 11:26 - - Contact found
Q (5,74) 06:19 07:25 (81,550) 11:06 11:47 (Scenario 3)
P4 (40,32) 13:54 14:40 (298,256) (298,260) (303,260) (303,256) 22:16 22:52 - 22:29 - Contact found
Q (42,32) 13:58 14:15 (300,259) 22:24 22:41 (Scenario 4)
P5 (110,45) 9:33 9:48 (752,311) (752,317) (758,317) (758,311) 13:48 14:12 - 23:28 13:46 Contact found
Q (112,45) 14:51 15:30 (755,315) 23:02 23:39 (Scenario 5)

V. INTEGRATION WITH VIRUS CONTACT MAP - A PUBLIC
HEALTH SURVEILLANCE PLATFORM

The Virus Contact Map (VCM) platform is a privacy-
preserving public-health surveillance system that is currently
being developed at the Southern Illinois University, Carbon-
dale, USA [34]. VCM currently integrated several different
types of visualizations, and mobile-app based interfaces to
upload data from patients and individuals interested in de-
termining if they have been exposed to an infected person
(henceforth called contact-testers). One of the visualizations
generated by VCM is a map of a contact-tester’s recent
contacts with COVID-19 patients for the purpose of contact
tracing by individuals interested in self-assessment, and health
officials.

For the purpose of contact-tracing, VCM needs only two
pieces of information about infected users: i) anonymized
recent GPS location history (e.g., Google Maps), and ii) date
of testing positive. All patient data in VCM is stored in a cen-
tralized database called patient-data-store. We have currently
integrated our proposed FHE-based encryption scheme with
VCM to create a secure and privacy-preserving patient-data-
store. This privacy-preserving patient-data-store is compatible
with our proposed PrivacyContactTrace algorithm to ensure
that all contact-tracing computations can be done directly on
the encrypted patient-data. VCM’s spatio-temporal contact-
tracing engine can detect not only contacts happening between
people present at the same location at the same time, but
also trace contacts who may become infected by touching a
surface that an infected person had touched earlier (secondary
contacts). To fully preserve the privacy of patients by avoid-
ing the need for decrypting sensitive patient data, we have
also integrated our proposed FHE-based PrivacyContactTrace
algorithm with the spatio-temporal contact-tracing engine.

VCM employs a crowdsourced model of contact-tracing
where contact-testers are in control of their data for contact
tracing and exposure notification. For a contact-tester inter-
ested in self-assessment, only recent location history needs
to be uploaded to the VCM platform, which is thereafter
deleted immediately after generating the contact-tracing re-
sults. Fig. 3 shows a sample visualization of contact tracing
results generated by VCM using our proposed FHE-based

privacy-preserving contact-tracing approach. Each detected
contact instance is color-coded based on a risk of infection
calculated by VCM’s risk-assessment module. By clicking a
displayed contact, a contact-tester can see more details such
as time and duration of contact, distance between them, and
infection-risk of that contact.

VI. CONCLUSION

We have proposed a privacy-preserving approach for storage
and computation of sensitive medical data using a fully homo-
morphic encryption (FHE) algorithm, so that all computations
can be performed only on the encrypted data values, without
the need for any decryption. We have developed a computation
model along with an algorithm for tracing the contacts with
any patient by executing the computations directly on en-
crypted spatiotemporal data values. The model also considers
the scenario of contact tracing for secondary contacts, as
observed with the COVID-19 infection. The proposed ap-
proach has been simulated with the ElGamal algorithm, which
belongs to the class of FHE algorithms. The simulation results
show that our proposed solution is effective in providing
adequate security while supporting the computational needs
for contact-tracing. To create a complete large-scale contact-
tracing solution using such a FHE system, our future work
will be to design a multi-party computation protocol [35],
[36] where the number of users is not known initially and
changes over time (i.e., users arrive asynchronously and hence
cannot participate in standard threshold cryptography). Since
the ability to execute queries or computation directly on
encrypted data is not present in any existing public-health
surveillance system, our proposed solution would have a much
broader impact in the field of healthcare by making the sharing
of data in healthcare-related research and industry significantly
simpler and faster without violating HIPAA laws.
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