
Covid-19 Face Mask Detection Using
TensorFlow, Keras and OpenCV

Arjya Das
Department of Information Technology

Jadavpur University
Kolkata, India

arjyadas1999@gmail.com

Mohammad Wasif Ansari
Department of Information Technology

Jadavpur University
Kolkata, India

razamoeezraza@gmail.com

Rohini Basak
Department of Information Technology

Jadavpur University
Kolkata, India

visitrohinihere@gmail.com

Abstract—COVID-19 pandemic has rapidly affected our day-
to-day life disrupting the world trade and movements. Wearing
a protective face mask has become a new normal. In the near
future, many public service providers will ask the customers
to wear masks correctly to avail of their services. Therefore,
face mask detection has become a crucial task to help global
society. This paper presents a simplified approach to achieve
this purpose using some basic Machine Learning packages like
TensorFlow, Keras, OpenCV and Scikit-Learn. The proposed
method detects the face from the image correctly and then
identifies if it has a mask on it or not. As a surveillance
task performer, it can also detect a face along with a mask in
motion. The method attains accuracy up to 95.77% and 94.58%
respectively on two different datasets. We explore optimized
values of parameters using the Sequential Convolutional Neural
Network model to detect the presence of masks correctly without
causing over-fitting.

Keywords—Coronavirus, Covid-19, Machine Learning, Face
Mask Detection, Convolutional Neural Network, TensorFlow

I. INTRODUCTION

According to the World Health Organization (WHO)’s
official Situation Report – 205, coronavirus disease 2019
(COVID-19) has globally infected over 20 million people
causing over 0.7million deaths [1]. Individuals with COVID-
19 have had a wide scope of symptoms reported – going
from mellow manifestations to serious illness. Respiratory
problems like shortness of breath or difficulty in breathing is
one of them. Elder people having lung disease can possess
serious complications from COVID-19 illness as they appear
to be at higher risk [2]. Some common human coronaviruses
that infect public around the world are 229E, HKU1, OC43,
and NL63. Before debilitating individuals, viruses like
2019-nCoV, SARS-CoV, and MERS-CoV infect animals
and evolve to human coronaviruses [3]. Persons having
respiratory problems can expose anyone (who is in close
contact with them) to infective beads. Surroundings of a
tainted individual can cause contact transmission as droplets
carrying virus may withal arrive on his adjacent surfaces [4].

To curb certain respiratory viral ailments, including
COVID-19, wearing a clinical mask is very necessary. The
public should be aware of whether to put on the mask

for source control or aversion of COVID-19. Potential
points of interest of the utilization of masks lie in reducing
vulnerability of risk from a noxious individual during the
“pre-symptomatic” period and stigmatization of discrete
persons putting on masks to restraint the spread of virus.
WHO stresses on prioritizing medical masks and respirators
for health care assistants[4]. Therefore, face mask detection
has become a crucial task in present global society.

Face mask detection involves in detecting the location of
the face and then determining whether it has a mask on it
or not. The issue is proximately cognate to general object
detection to detect the classes of objects. Face identification
categorically deals with distinguishing a specific group of
entities i.e. Face. It has numerous applications, such as
autonomous driving, education, surveillance, and so on [5].
This paper presents a simplified approach to serve the above
purpose using the basic Machine Learning (ML) packages
such as TensorFlow, Keras, OpenCV and Scikit-Learn.

The rest of the paper is organized as follows: Section II
explores related work associated with face mask detection.
Section III discusses the nature of the used dataset. Section
IV presents the details of the packages incorporated to build
the proposed model. Section V gives an overview of our
method. Experimental results and analysis are reported in
section VI. Section VII concludes and draws the line towards
future works.

II. RELATED WORK

In face detection method, a face is detected from an
image that has several attributes in it. According to [21],
research into face detection requires expression recognition,
face tracking, and pose estimation. Given a solitary image,
the challenge is to identify the face from the picture. Face
detection is a difficult errand because the faces change
in size, shape, color, etc and they are not immutable. It
becomes a laborious job for opaque image impeded by some
other thing not confronting camera, and so forth. Authors
in [22] think occlusive face detection comes with two
major challenges: 1) unavailability of sizably voluminous

© IEEE 2021. This article is free to access and download, along with rights for full text and data
mining, re-use and analysis.

20
20

 IE
EE

 1
7t

h
In

di
a

C
ou

nc
il

In
te

rn
at

io
na

l C
on

fe
re

nc
e

(I
N

D
IC

O
N

) |
 9

78
-1

-7
28

1-
69

16
-3

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
D

IC
O

N
49

87
3.

20
20

.9
34

25
85

datasets containing both masked and unmasked faces,
and 2) exclusion of facial expression in the covered area.
Utilizing the locally linear embedding (LLE) algorithm and
the dictionaries trained on an immensely colossal pool of
masked faces, synthesized mundane faces, several mislaid
expressions can be recuperated and the ascendancy of facial
cues can be mitigated to great extent. According to the work
reported in [11], convolutional neural network (CNNs) in
computer vision comes with a strict constraint regarding the
size of the input image. The prevalent practice reconfigures
the images before fitting them into the network to surmount
the inhibition.

Here the main challenge of the task is to detect the face
from the image correctly and then identify if it has a mask on
it or not. In order to perform surveillance tasks, the proposed
method should also detect a face along with a mask in motion.

III. DATASET

Two datasets have been used for experimenting the current
method. Dataset 1 [16] consists of 1376 images in which
690 images with people wearing face masks and the rest
686 images with people who do not wear face masks. Fig. 1
mostly contains front face pose with single face in the frame
and with same type of mask having white color only.

Fig. 1. Samples from Dataset 1 including faces without masks and with
masks

Dataset 2 from Kaggle [17] consists of 853 images and
its countenances are clarified either with a mask or without
a mask. In fig. 2 some face collections are head turn, tilt and
slant with multiple faces in the frame and different types of
masks having different colors as well.

Fig. 2. Samples from Dataset 2 including faces without masks and with
masks

IV. INCORPORATED PACKAGES

A. TensorFlow
TensorFlow, an interface for expressing machine learning

algorithms, is utilized for implementing ML systems into fab-
rication over a bunch of areas of computer science, including
sentiment analysis, voice recognition, geographic information
extraction, computer vision, text summarization, information
retrieval, computational drug discovery and flaw detection
to pursue research [18]. In the proposed model, the whole
Sequential CNN architecture (consists of several layers) uses
TensorFlow at backend. It is also used to reshape the data
(image) in the data processing.

B. Keras
Keras gives fundamental reflections and building units for

creation and transportation of ML arrangements with high
iteration velocity. It takes full advantage of the scalability
and cross-platform capabilities of TensorFlow. The core data
structures of Keras are layers and models [19]. All the layers
used in the CNN model are implemented using Keras. Along
with the conversion of the class vector to the binary class
matrix in data processing, it helps to compile the overall
model.

C. OpenCV
OpenCV (Open Source Computer Vision Library), an open-

source computer vision and ML software library, is utilized
to differentiate and recognize faces, recognize objects, group
movements in recordings, trace progressive modules, follow
eye gesture, track camera actions, expel red eyes from pictures
taken utilizing flash, find comparative pictures from an image
database, perceive landscape and set up markers to overlay it
with increased reality and so forth [20]. The proposed method
makes use of these features of OpenCV in resizing and color
conversion of data images.

V. THE PROPOSED METHOD

The proposed method consists of a cascade classifier and a
pre-trained CNN which contains two 2D convolution layers
connected to layers of dense neurons. The algorithm for face
mask detection is as follows:

A. Data Processing

Data preprocessing involves conversion of data from
a given format to much more user friendly, desired and
meaningful format. It can be in any form like tables, images,
videos, graphs, etc. These organized information fit in
with an information model or composition and captures
relationship between different entities [6]. The proposed
method deals with image and video data using Numpy and
OpenCV.

a) Data Visualization: Data visualization is the pro-
cess of transforming abstract data to meaningful representa-
tions using knowledge communication and insight discovery
through encodings. It is helpful to study a particular pattern
in the dataset [7].

The total number of images in the dataset is visualized in
both categories – ‘with mask’ and ‘without mask’.

The statement categories=os.listdir(data path) categorizes
the list of directories in the specified data path. The variable
categories now looks like: [‘with mask’, ‘without mask’]

Then to find the number of labels, we need to
distinguish those categories using labels=[i for i in
range(len(categories))]. It sets the labels as: [0, 1]

Now, each category is mapped to its respective label using
label dict=dict(zip(categories,labels)) which at first returns
an iterator of tuples in the form of zip object where the
items in each passed iterator is paired together consequently.
The mapped variable label dict looks like: {‘with mask’: 0,
‘without mask’: 1}

b) Conversion of RGB image to Gray image: Modern
descriptor-based image recognition systems regularly work
on grayscale images, without elaborating the method used to
convert from color-to-grayscale. This is because the color-
to-grayscale method is of little consequence when using
robust descriptors. Introducing nonessential information could
increase the size of training data required to achieve good
performance. As grayscale rationalizes the algorithm and
diminishes the computational requisites, it is utilized for
extracting descriptors instead of working on color images
instantaneously [8].

Fig. 3. Conversion of a RGB image to a Gray Scale image of 100x100 size

We use the function cv2.cvtColor(input image, flag) for
changing the color space. Here flag determines the type of
conversion [9]. In this case, the flag cv2.COLOR BGR2GRAY
is used for gray conversion.

Deep CNNs require a fixed-size input image. Therefore
we need a fixed common size for all the images in the
dataset. Using cv2.resize() the gray scale image is resized
into 100 x 100.

c) Image Reshaping: The input during relegation of an
image is a three-dimensional tensor, where each channel has a
prominent unique pixel. All the images must have identically
tantamount size corresponding to 3D feature tensor. How-
ever, neither images are customarily coextensive nor their
corresponding feature tensors [10]. Most CNNs can only
accept fine-tuned images. This engenders several problems
throughout data collection and implementation of model.
However, reconfiguring the input images before augmenting
them into the network can help to surmount this constraint.
[11].

The images are normalized to converge the pixel range
between 0 and 1. Then they are converted to 4 di-
mensional arrays using data=np.reshape(data,(data.shape[0],
img size,img size,1)) where 1 indicates the Grayscale image.
As, the final layer of the neural network has 2 outputs – with
mask and without mask i.e. it has categorical representation,
the data is converted to categorical labels.

B. Training of Model

a) Building the model using CNN architecture: CNN
has become ascendant in miscellaneous computer vision tasks
[12]. The current method makes use of Sequential CNN.

The First Convolution layer is followed by Rectified Linear
Unit (ReLU) and MaxPooling layers. The Convolution layer
learns from 200 filters. Kernel size is set to 3 x 3 which
specifies the height and width of the 2D convolution window.
As the model should be aware of the shape of the input
expected, the first layer in the model needs to be provided
with information about input shape. Following layers can
perform instinctive shape reckoning [13]. In this case, in-
put shape is specified as data.shape[1:] which returns the
dimensions of the data array from index 1. Default padding
is “valid” where the spatial dimensions are sanctioned to
truncate and the input volume is non-zero padded. The
activation parameter to the Conv2D class is set as “relu”.
It represents an approximately linear function that possesses
all the assets of linear models that can easily be optimized
with gradient-descent methods. Considering the performance
and generalization in deep learning, it is better compared to
other activation functions [14]. Max Pooling is used to reduce
the spatial dimensions of the output volume. Pool size is set
to 3 x 3 and the resulting output has a shape (number of rows
or columns) of: shape of output = (input shape - pool size
+ 1) / strides), where strides has default value (1,1) [15].

As shown in fig, 4, the second Convolution layer has 100
filters and Kernel size is set to 3 x 3. It is followed by ReLu
and MaxPooling layers. To insert the data into CNN, the
long vector of input is passed through a Flatten layer which
transforms matrix of features into a vector that can be fed
into a fully connected neural network classifier. To reduce

overfitting a Dropout layer with a 50% chance of setting
inputs to zero is added to the model. Then a Dense layer
of 64 neurons with a ReLu activation function is added. The
final layer (Dense) with two outputs for two categories uses
the Softmax activation function.

Fig. 4. Convolutional Neural Network architecture

The learning process needs to be configured first with
the compile method [13]. Here “adam” optimizer is used.
categorical crossentropy which is also known as multiclass
log loss is used as a loss function (the objective that the
model tries to minimize). As the problem is a classification
problem, metrics is set to “accuracy”.

b) Splitting the data and training the CNN model:
After setting the blueprint to analyze the data, the model
needs to be trained using a specific dataset and then to
be tested against a different dataset. A proper model and
optimized train test split help to produce accurate results
while making a prediction. The test size is set to 0.1 i.e.
90% data of the dataset undergoes training and the rest 10%
goes for testing purposes. The validation loss is monitored
using ModelCheckpoint. Next, the images in the training set
and the test set are fitted to the Sequential model. Here, 20%
of the training data is used as validation data. The model is
trained for 20 epochs (iterations) which maintains a trade-off
between accuracy and chances of overfitting. Fig. 5 depicts
visual representation of the proposed model.

Fig. 5. Overview of the Model

VI. RESULT AND ANALYSIS

The model is trained, validated and tested upon two
datasets. Corresponding to dataset 1, the method attains
accuracy up to 95.77% (shown in fig. 7). Fig. 6 depicts how
this optimized accuracy mitigates the cost of error. Dataset
2 is more versatile than dataset 1 as it has multiple faces
in the frame and different types of masks having different
colors as well. Therefore, the model attains an accuracy of
94.58% on dataset 2 as shown in Fig. 9. Fig. 8 depicts the
contrast between training and validation loss corresponding
to dataset 2. One of the main reasons behind achieving
this accuracy lies in MaxPooling. It provides rudimentary
translation invariance to the internal representation along
with the reduction in the number of parameters the model
has to learn. This sample-based discretization process
down-samples the input representation consisting of image,
by reducing its dimensionality. Number of neurons has the
optimized value of 64 which is not too high. A much higher
number of neurons and filters can lead to worse performance.
The optimized filter values and pool size help to filter out
the main portion (face) of the image to detect the existence
of mask correctly without causing over-fitting.

Fig. 6. # epochs vs loss corresponding to dataset 1

Fig. 7. # epochs vs accuracy corresponding to dataset 1

The system can efficiently detect partially occluded faces
either with a mask or hair or hand. It considers the occlusion
degree of four regions – nose, mouth, chin and eye to
differentiate between annotated mask or face covered by
hand. Therefore, a mask covering the face fully including
nose and chin will only be treated as “with mask” by the
model.

Fig. 8. # epochs vs loss corresponding to dataset 2

Fig. 9. # epochs vs accuracy corresponding to dataset 2

The main challenges faced by the method mainly comprise
of varying angles and lack of clarity. Indistinct moving faces
in the video stream make it more difficult. However, following
the trajectories of several frames of the video helps to create
a better decision – “with mask” or “without mask”.

VII. CONCLUSIONS

In this paper, we briefly explained the motivation of the
work at first. Then, we illustrated the learning and perfor-
mance task of the model. Using basic ML tools and simplified
techniques the method has achieved reasonably high accuracy.
It can be used for a variety of applications.Wearing a mask
may be obligatory in the near future, considering the Covid-19
crisis. Many public service providers will ask the customers to
wear masks correctly to avail of their services. The deployed
model will contribute immensely to the public health care
system. In future it can be extended to detect if a person is
wearing the mask properly or not. The model can be further
improved to detect if the mask is virus prone or not i.e. the
type of the mask is surgical, N95 or not.

REFERENCES

[1] W.H.O., “Coronavirus disease 2019 (covid-19): situation report, 205”.
2020

[2] “Coronavirus Disease 2019 (COVID-19) – Symptoms”,
Centers for Disease Control and Prevention, 2020. [Online].
Available: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-
testing/symptoms.html. 2020.

[3] “Coronavirus — Human Coronavirus Types — CDC”, Cdc.gov, 2020.
[Online]. Available: https://www.cdc.gov/coronavirus/types.html. 2020.

[4] W.H.O., “Advice on the use of masks in the context of COVID-19:
interim guidance”, 2020.

[5] M. Jiang, X. Fan and H. Yan, “RetinaMask: A Face Mask detector”,
arXiv.org, 2020. [Online]. Available: https://arxiv.org/abs/2005.03950.
2020.

[6] B. Suvarnamukhi and M. Seshashayee, “Big Data Concepts and
Techniques in Data Processing”, International Journal of Computer
Sciences and Engineering, vol. 6, no. 10, pp. 712-714, 2018. Available:
10.26438/ijcse/v6i10.712714.

[7] F. Hohman, M. Kahng, R. Pienta and D. H. Chau, “Visual Analytics
in Deep Learning: An Interrogative Survey for the Next Frontiers,” in
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 8, pp. 2674-2693, 1 Aug. 2019, doi: 10.1109/TVCG.2018.2843369.

[8] C. Kanan and G. Cottrell, “Color-to-Grayscale: Does the Method
Matter in Image Recognition?”, PLoS ONE, vol. 7, no. 1, p. e29740,
2012. Available: 10.1371/journal.pone.0029740.

[9] Opencv-python-tutroals.readthedocs.io. 2020. Changing Colorspaces
— Opencv-Python Tutorials 1 Documentation. [online] Available
at:https://opencv-python-tutroals.readthedocs.io/en/latest/py tutorials/
py imgproc/py colorspaces/py colorspaces.html. 2020.

[10] M. Hashemi, “Enlarging smaller images before inputting into convolu-
tional neural network: zero-padding vs. interpolation”, Journal of Big
Data, vol. 6, no. 1, 2019. Available: 10.1186/s40537-019-0263-7 . 2020.

[11] S. Ghosh, N. Das and M. Nasipuri, “Reshaping inputs for con-
volutional neural network: Some common and uncommon meth-
ods”, Pattern Recognition, vol. 93, pp. 79-94, 2019. Available:
10.1016/j.patcog.2019.04.009.

[12] R. Yamashita, M. Nishio, R. Do and K. Togashi, “Convolutional neural
networks: an overview and application in radiology”, Insights into
Imaging, vol. 9, no. 4, pp. 611-629, 2018. Available: 10.1007/s13244-
018-0639-9.

[13] “Guide to the Sequential model - Keras Documentation”, Faroit.com,
2020. [Online]. Available: https://faroit.com/keras-docs/1.0.1/getting-
started/sequential-model-guide/. 2020.

[14] Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S., 2020.
Activation Functions: Comparison Of Trends In Practice And
Research For Deep Learning. [online] arXiv.org. Available at:
https://arxiv.org/abs/1811.03378. 2020.

[15] K. Team, “Keras documentation: MaxPooling2D layer”, Keras.io,
2020. [Online]. Available: https://keras.io/api/layers/pooling layers/
max pooling2d/. 2020.

[16] “prajnasb/observations”, GitHub, 2020. [Online]. Available:
https://github.com/prajnasb/observations/tree/master/experiements/data.
2020.

[17] “Face Mask Detection”, Kaggle.com, 2020. [Online]. Available:
https://www.kaggle.com/andrewmvd/face-mask-detection. 2020.

[18] “TensorFlow White Papers”, TensorFlow, 2020. [Online]. Available:
https://www.tensorflow.org/about/bib. 2020.

[19] K. Team, “Keras documentation: About Keras”, Keras.io, 2020. [On-
line]. Available: https://keras.io/about. 2020.

[20] “OpenCV”, Opencv.org, 2020. [Online]. Available: https://opencv.org/.
2020.

[21] D. Meena and R. Sharan, “An approach to face detection and
recognition,” 2016 International Conference on Recent Advances and
Innovations in Engineering (ICRAIE), Jaipur, 2016, pp. 1-6, doi:
10.1109/ICRAIE.2016.7939462.

[22] S. Ge, J. Li, Q. Ye and Z. Luo, “Detecting Masked Faces in the Wild
with LLE-CNNs,” 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 426-434, doi:
10.1109/CVPR.2017.53.

