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Abstract: 
With the rapid spread of the novel COVID-19 virus, there 

is an increasing demand for screening COVID-19 patients. 

Typical methods for screening coronavirus patients have a 

large false detection rate. An effective and reliable screening 

method for detecting coronavirus is required. For this reason, 

some other reliable methods such as Computed Tomography 

(CT) imaging is employed to detect coronavirus accurately. In 

this paper, we present a 3D-Deep learning based method that 

automatically screens coronavirus patients using 3D volumetric 

CT image data. Our proposed system assists medical 

practitioners to effectively screen out COVID-19 patients. We 

performed extensive experiments on two datasets i.e., CC-19 

and COVID-CT using various state-of-the-art 3D Deep 

learning based methods including 3D ResNets, C3D, 3D 

DenseNets, I3D, and LRCN. The results of the experiments 

show the competitive effectiveness of our proposed approach. 
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1. Introduction

Due to the rapid spread of the novel COVID-19 virus, 

the Artificial Intelligence (AI) research community explored 

many ideas for diagnosing lung infection by analyzing 

Computed Tomography (CT) imaging [1-3]. The initial 

reason behind this attention towards chest CT imaging was 

the lack of nucleic acid-based CoVID-19 detection kits. After 

observing the high false-negative rate of nucleic acid test, 

clinical practitioners started to prefer screening of COVID-

19 patients via chest CT imaging [4]. Specifically, for early-

stage detection, CT imaging offers a glass-like clarity to 

highlight lesions of the lung. However, according to the 

radiologists, clinical screening of COVID-19 is still 

unsatisfactory [5-7]. Therefore, automated screening with 

the help of AI can assist clinical practitioners to improve 

screening accuracy. 

Over the past few months, many deep learning based 

screening approaches have been proposed to detect infected 

lesions from 2D CT imaging [7-9]. Unfortunately, they either 

demand a high percentage of annotated areas of lesions or 

lack of interpretability. Generally, the standard pioneer input 

for the classifiers is either patch-based or lesion-based. 

However, the 3D volume of CT imaging is still not well 

explored. The exploitation of 3D volume is under 

consideration to improve the screening accuracy. Compared 

with classic 2D CT images, the generated 3D volume of CT 

usually contains hundreds of slices which are more difficult 

to analyze even for the clinical practitioners.  

Previously proposed deep learning models, such as 

[5][6][10], cannot be directly applied for 3D imaging. 

Therefore, there exists a need to design an automated model 

to detect lung infection caused by COVID-19 from 3D chest 

CT imaging.  

In this paper, we propose a Hybrid 3D Deep Neural 

Network model (H3DNN) to classify chest CT imaging. The 

model is developed by ensembling the Inflated inception 

(I3D) and 3D ResNet 50 to build a common architecture for 

capturing the Spatio-temporal dimension including the 

inception block. Unlike previous approaches, H3DNN can 

semantically generate deep 3D samples with permutation-

invariance to improve network accuracy. The main 

contributions of our work are given as follows: 

• We propose an automated 3D deep learning model

(H3DNN) to classify 3D chest CT imaging to screen

out infected patients.

• Our approach can easily diagnose the early stage of

COVID-19 patients by considering Spatio-temporal

features and constructing 3D filters.

• We conducted extensive experiments on two available

datasets. The results of the experiments boldly show

the significance of H3DNN.
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2. Proposed Method 

In this section, we elaborate on our proposed 3D deep 

learning network. 3D deep learning based models efficiently 

make use of Spatio-temporal information that utilizes 3D 

convolutions and other relevant blocks. Such networks have 

achieved higher performance in many Artificial Intelligence 

(AI) applications. AI based automation has already proven 

itself in other domains [11-13].  

The proposed network can be considered as a hybrid of 

a single stream I3D [14] and a 3D ResNet 50 [15] network 

model. 3D deep learning models bootstraps 3D convolution 

filters based on 2D convolutions. I3D utilizes a receptive 

field for an artificial neural network (ANN). However, when 

a temporal dimension is included it requires finding an 

optimal receptive field.  

Inflated inception: I3D utilizes the inception block as 

shown in Figure 1. The main motivation of this module is to 

allow the network to grow wider instead of deeper. The I3D 

network model is represented by the block C in Figure 2. The 

I3D network starts with a 3D convolution layer with a stride 

of 2 followed by a MaxPool layer having a stride of (1,2,2). 

Further, two convolution layers are followed by a MaxPool 

layer having a stride of (1,2,2). The resultant of this Maxpool 

layer is then fed to two inception blocks. Further, another 

MaxPool layer is followed by five more inception blocks. 

The resultant is then forwarded to a MaxPool with a stride of 

2 attached to two more inception blocks. Finally, an average 

pooling is carried out and the resultant is passed on to a 

convolution layer followed by a fully connected layer. 

3D ResNet: A unitary ResNet block consists of two 

convolution layers fed to a batch normalization (BN) and 

ReLU [16] layers. A bypass connects the top block to the 

layer before ReLu. The ResNet 3D block extracts more 

valuable features as compared to 2D. The ResNet 

architecture is represented by block A in Figure 2. The first 

convolution layer with a stride of 64 is followed by six 

consecutive convolution layers. Further, eight more 

convolution layers are added with a stride of 128. The 

resultant is forwarded to a block of twelve convolution layers 

with a stride of 256 followed by a block of six convolution 

layers. Finally, average pooling is carried out followed by a 

400d fully connected layer. 

Hybrid model (H3DNN): I3D and 3D ResNet 50 are 

capable of extracting prominent features from Spatio-

temporal data. We feed both the network models with a 

sequence of CT scan images. In our case, we feed a series of 

60 and 35 CT scan images. The reason for choosing these 

numbers is that some of the patients' CT scan images in the 

datasets contain a minimal of 60 and 35 CT scan 

slices/images. The input CT scan sequence was first resized 

224 × 224 × 3 to match the input profile of the targeted 3D 

feature extraction network. The slices are fed to I3D and 3D 

ResNet block separately. Each feature extraction extracts 

Spatio-temporal features. Further, each 3D block i.e. Block 

A and Block C in Figure 2 are used to train fully connected 

layers [17]. The probability output of the fully connected 

layers is then added and the resultant fed to a Softmax layer 

[18], which, finally classifies the suspect as positive or 

negative. 
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Fig. 1 Inception block of I3D network. The parameters 

from the previous layer are the input to this block where the 

next layer represents the output of the inception block. 

3. Experiments and results 

We performed extensive experiments on two publically 

available CC-19 [8] and COVID-CT [19] datasets. First, we 

provide some details about the CC-19 and COVID-CT 

datasets. We used these datasets as they contain the required 

series of CT scan images for 3D analysis. 

3.1. Datasets 

CC-19 dataset: contains about 34,000 CT scan images 

for 89 subjects. Out of 89, 68 subjects are confirmed 

COVID-19 patients. CC-19 dataset contains a huge amount 

of data. The data was recorded on a day to day basis for every 

subject. CC-19 dataset was collected from various hospitals 

in Sichuan, China.  

COVID-CT: This dataset contains CT scan images for 

349 scans from 216 patients and 463 CT scans from non- 

covid subjects. Both of these datasets were confirmed by 

professional radiologists. 

3.2. Experiment setup 

All the experiments were performed on an Intel Xeon 

40 core processor equipped with Ubuntu 20.04.1 LTS 

operating system, 128 GB RAM, hard drive 6 Gbps data 

bandwidth, and 08 Tesla K80 graphic processing units 
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(GPU). All the experiments were carried out using Keras 

with a TensorFlow backend. 
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Fig. 2 Our proposed hybrid network model. 

We trained I3D and 3D ResNet 50 from scratch. Further, 

the individual weights of the best-trained models were saved. 

3D networks are hard to train as they require more 

computational resources, the batch size for training was kept 

2. These models were trained using Adams’ optimizer with a 

learning rate of 10-5 and a decay rate of 10-6. We use these 

smaller values as we trained the network from scratch. 

Moreover, we used an early stopping machoism with 

patience of 5 with 1000 epochs at maximum. For 3D ResNet 

50, the regularization factor was set to 2.5 × 10-2. 

3.3. Results 

We performed comprehensive experiments to validate 

the proposed model. The results of the experiments are 

shown in Table 1. The accuracy is computed as 𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) . Where, TP, TN, FP, 

and FN are the true positive, true negative, false positive, and 

false negative respectively. 

 
Fig.3 3D visualization with various ways of our proposed 

model. The top left image shows the XZ plane of the 3D 

volume. 

From Table 1, it can be seen that our proposed model 

H3DNN showed superior performance. Figure 3 shows some 

3D visualization of the 3D CT scans from these datasets. We 

believe, the reason behind the superiority of our model is that 

it combines the goodness of both I3D and 3D Resnet 50 deep 

learning models. 

Table 1. Comparison of our proposed technique with state-

of-the-art methods. Moreover, S and Acc. Represents the 

number of CT slices and accuracy respectively. C-CT 

represents the COVID-CT dataset. 

Method Size 
CC-19 C-CT 

S Acc. S Acc 

C3D [20] 150×150 60 0.76 35 0.81 

LRCN [21] 150×150 60 0.73 35 0.76 

3D Conv [20]    100×100 60 0.76 35 0.75 

DenseResNet3D [15] 112x112 60 0.76 35 0.74 

DenseNet 3D [15] 112×112 60 0.76 35 0.75 

I3D [14] 224×224  60 0.80 35 0.81 

R2Plus1D [22] 171×128 60 0.76 35 0.75 

3D ResNet 18 [23] 224×224  60 0.76 35 0.77 

3D ResNet 34 [23] 224×224  60 0.76 35 0.79 

3D ResNet 50 [23] 224×224  60 0.83 35 0.82 

3D ResNet 101 [23] 224×224  60 0.78 35 0.77 

3D ResNet 151 [23] 224×224  60 0.80 35 0.80 

H3DNN 224×224  60  0.85 35  0.84  

4. Conclusion 

In this paper, we proposed a hybrid 3D deep learning model 

(H3DNN). H3DNN makes use of I3D and 3D Resnet 50 to 

screen out COVID-19 patients. The proposed model 

automatically and effectively detects the COVID-19 patients 

at a low cost in terms of annotations of CT images. We 

conducted comprehensive experiments using two available 

datasets. The results of the experiments reveal the superiority 

of our proposed method. In the future, we plan to design a 

full multimedia system for doctors that can effectively 

segment and point out the infections caused by the COVID-

19 virus. 
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