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Abstract—The SEIR model is widely used in simulating the
spread of infectious diseases. COVID-19 virus is a very severe
infectious disease. Some studies leverage the SEIR or SEIRD
model to simulate the spread and estimate the number of infected
and recovered people as time goes on. However, these models
suffer from two key deficiencies: (i) conventional SEIRD does
not update its model parameters w.r.t. time; (ii) it focuses on
predicting the trend, instead of the actual number of infections in
the future. In this paper, we propose a cascade SEIRD model. The
model learns and updates its parameters every day. Moreover,
it is able to predict the number of infection cases, recovered
cases and deaths. Specifically, we leverage a machine learning
like approach to dynamically estimate the parameters of infection
rate, incubation rate, recovery rate and death rate, which can be
updated by gradient descent algorithm. Once the nature of the
parameters w.r.t. time is determined, ARIMA model is adopted
to characterize the dynamics of the parameters and predict their
future changes. To validate the effectiveness of the proposed
cascade SEIRD model, we conduct experiments on five data sets
of different scales of regions (China, Hubei, Wuhan, Shenzhen,
US). Experimental results show that the proposed cascade SEIRD
achieves the most accurate prediction and outperforms state-of-
the-art techniques.

Index Terms—SEIRD, Epidemic Model, Gradient Descent,
ARIMA

I. INTRODUCTION

Recently, the COVID-19 epidemics significantly affects
the people’s life and world economics. To better under-
stand and predict how the epidemics would spread, many
infection models have been utilized, such as Susceptible-
Infectious-Susceptible model (SIS) [1], Susceptible-Exposed-
Infectious-Recovered model (SEIR) [2] and Susceptible-
Exposed-Infectious-Recovered-Dead model (SEIRD) [3].

However, the existing studies suffer from two key short-
comings. (i) The models can only analyze and predict the
trends but cannot predict the number of infections and recovers
accurately. (ii) Most of the studies [4]–[7] all use fixed
parameters, namely the infection rate, incubation rate, recovery
rate, and death rate are the same every day, which leads to the
limited representation capability of the model. For example,
SEIRD model adopts the fixed parameters β, α, γ, θ in Fig. 1.
In fact, the parameters vary greatly from one day to another,
and also some subtle changes can lead to large variations in
prediction.

To address the two deficiencies, we propose cascade
SEIRD model which is inspired by the cascade structures in
cascade recurrent convolution neural network (RCNN) [8] and
cascade generative adverserial networks (GANs) [9]. These

Fig. 1. The architecture of cascade SEIRD Model. (a) is the SEIRD
model, and (b) is the cascade SEIRD model. S,E, I, R,D is the number of
five states: Susceptibles, Exposed, Infectives, Resistances, Dead. The biggest
difference between (a) and (b) is that (b) has different parameters
βt, αt, γt, θt that change over time.

models have achieved state-of-the-art performance in computer
vision tasks, e.g., object detection and image generation.
Different from conventional SEIRD, which keeps its model
parameters fixed, the proposed cascade SEIRD updates and
learns the infection rate, incubation rate, recovery rate, and
death rate every day. Previous studies show that a complex
model incorporates more biological and epidemiological in-
formation about the epidemic and is more biologically realis-
tic, but it requires more model parameters to be estimated
compared to a simpler model [10]. The proposed method
makes an excellent trade-off between the model complexity
and dynamics. First, our method has fewer parameters than
deep learning models. Second, as shown in Fig.1, in our
cascade SEIRD, the parameters infection rate βt, incubation
rate αt, recovery rate γt and death rate θt change from time
to time and our model is more interpretable. By leveraging
such a cascade structure, our method can better capture and
characterize the spread dynamics.

Recently, a time-dependent SEIRD model is proposed by
taking the varying parameters issue into account [11]. How-
ever, the model learns dynamic parameters via Markov chain
Monte Carlo (MCMC), which is computationally expensive
and takes hours to update according several days observations.
Moreover, the MCMC is often hard to converge to the target
posterior distribution in the presence of non-identifiable and
extreme distribution skewness. [10]

In this paper, we develop a cascade SEIRD model. Different
from the time-dependent SEIRD model, our model leverage
a machine learning like method to dynamically estimate the
parameters. Once the nature of the parameters w.r.t. time is
determined, ARIMA model is adopted to characterize the
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dynamics the parameters and predict their future changes by
extrapolation. Due to the optimization is based on gradients,
our model is more efficient.

In summary, this work has the following contributions:

• We propose a cascade SEIRD model to dynamically
update the parameters in SEIRD. The proposed model
can be trained in an end-to-end pipeline.

• The cascade SEIRD model can learn the time-dependent
parameters infection rate, incubation rate, recovery rate
and death rate efficiently.

• According to the parameters dynamics w.r.t. time, we
build a ARIMA method to predict the future parameters,
which are utilized to make more accurate recovery and
death number predictions.

II. THE PROPOSED APPROACH

A. Preliminary

The SEIRD model is widely used in the infectious disease
transmission. The key idea of the model is dividing the
disease spread into four phases, namely incubation, infection,
cure, and death.. Correspondingly, by considering the transi-
tion between the phases, five states are designed, including
Susceptible(S), Exposed(E), Infectious(I), Recovered(R) and
Dead(D). The states may transit from one to another with
a certain probability. For example, S transits to E with the
probability of infection rate β, and E turns into I with the
probability of disease incidence α. The designs of the two state
because susceptible people may be infected as latent patients
when they are exposed with patients. Patients will be cured
with recovery rate γ, or they will die with the death rate θ.
According to the probabilities of state transitions, we obtain
the following equations to characterize the spread process:

N = St + Et + It +Rt +Dt

dSt

dt
= −β ∗ It ∗ St

N
dEt

dt
= β ∗ It ∗ St

N
− α ∗ Et

dIt
dt

= α ∗ Et − γ ∗ It − θ ∗ It
dRt

dt
= γ ∗ It

dDt

dt
= θ ∗ It

(1)

Here N is a constant denoting the total population, which is
equal to the sum of all states at any time. Though the equations
nicely capture the transitions between different states. How-
ever, the transition probabilities between states are kept fixed
as time goes on, which restrains the representation capacity
of the model. Indeed, the transition probabilities change from

time to time. By considering the state changes, we obtain the
following equations for the states:

St+1 = St +
dSt

dt

Et+1 = Et +
dEt

dt

It+1 = It +
dIt
dt

Rt+1 = Rt +
dRt

dt

Dt+1 = Dt +
dDt

dt

(2)

The states at time t + 1 are update from the states at time t
by the difference in equation (1).

Fig. 2. Parameters changing process. The blue,red,green,orange lines refer
to the parameters β, α, γ, θ changing over time.

B. The Cascade SEIRD Model

In reality, the infection rate β, incubation rate α, recovery
rate γ and death rate θ change every day. Fig.2 shows the
fitted results of the parameters w.r.t time and an obvious
dynamics can be found. Hence, we extend the SEIRD model
into a temporal cascade one. Specifically, we assume that
the dynamic parameters are denoted as βt, αt, γt, and θt,
respectively. With the consideration of time dependence, the
difference equation of cascade SEIRD is as follow:

dSt

dt
= −βt ∗ It ∗ St

N
dEt

dt
= βt ∗ It ∗ St

N
− αt ∗ Et

dIt
dt

= αt ∗ Et − γt ∗ It − θt ∗ It
dRt

dt
= γt ∗ It

dDt

dt
= θt ∗ It

(3)

where N is the same as in equation (1).
Let us revisit the Fig.1. We can see that in our approach, the

SEIRD-cell is a base module which utilizes St, Et, It, Rt, Dt

to predict St+1, Et+1, It+1, Rt+1, Dt+1 following the equa-
tion (3). We build the cascade SEIRD model with SEIRD-cells
and train the parameters in cells with the loss by gradient
descent method. By cascading the SEIRD cells iteratively
w.r.t time, we are able to better model the infectious disease



2270

Fig. 3. The pipeline of extending cascade SEIRD. At time t, cascade SEIRD learn the historical parameters in (a), and predict the future parameters by
ARIMA. In (b), use the predicted parameters to extending cascade SEIRD.

transitions. For example, cascade SEIRD model can capture
mutations caused by emergencies, because the dynamic param-
eters changing over time can nicely characterize the current
infection situation. Generally speaking, in the early stage of
virus transmission, the virus has not spread widely; but in the
middle stage, when the number of infected people tends to be
saturated, the number of infected people will decrease. This
process can be well expressed by our model, while the SEIRD
model cannot capture the relationship between infection rate
and time.

C. The Loss Function

In real applications, the numbers of confirmed, recovered
and death cases, denoting the quantitative evaluations, are
more important than the qualitative trends. As the numbers
change every data. We design the following loss function:

L = LC + LI + wRLR + wDLD (4)

where LC , LI , LR, LD denotes the numbers of confirmed
cases, infected cases, recovered cases and death cases. In the
data, there are only the number of confirmed cases, the number
of recovered people and the number of deaths, and the number
of confirmed cases is the sum of the number of infected,
recovered and death cases. As the four numbers may have
different magnitudes, we introduce the parameters wR and wD

to balance the four losses: LC , LI , LR, LD. In our experiment,

we set the two parameters as:

wR =

t∑

i=0

Ii

t∑

j=0

Rj

(5)

wD =

t∑

i=0

Ii

t∑

j=0

Dj

(6)

With the training data I1...t, R1...t, D1...t from day 1 to day t,
we can learn the parameters β0...t−2, α0...t−1, γ0...t−1, θ0...t−1

with gradient descent method.

D. Forecasting Parameters Method

Once the dynamic parameters are estimated from day 1 to
day t, we able to know how the parameters change in the
past. However, our objective is to predict the parameters in
the future, so as to simulate the spread of disease according
to the cascade SEIRD model. Hence, we need a forecasting
model to predict the parameters in the future. Autoregressive
Integrated Moving Average(ARIMA) is widely used in time
series tasks. As shown in Fig.3, after model fitting the dynamic
parameters(β, α, γ, θ), we use ARIMA to forecast the furture
parameters and feed the parameters into the cascade SEIRD-
cell to forecast the future cases.

After differences operation, the parameters are stationary,
because they have basic values and physical meanings. [12]
For example, β is the infection rate. It is the virus itself that
determines its basic infection risk. In addition, some factors
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that people contact with each other may lead to high infections,
or decision makers may block and isolate infected people and
cause the virus infection rate to be lower. Hence, it is nature
to apply the ARIMA model to predict the future parameters.
Once the ARIMA prediction models fβ(·), fα(·), fγ(·), fθ(·)
are estimated, we are able to forecast the future parameters
as:

βt−1, βt, ..., βt+τ = fβ(β0, β1, ..., βt−2)

αt, αt, ..., αt+τ = fα(α0, α1, ..., αt−1)

γt, γt, ..., γt+τ = fγ(γ0, γ1, ..., γt−1)

θt, θt, ..., θt+τ = fθ(θ0, θ1, ..., θt−1)

(7)

By feeding the predicted parameters into the SEIRD cascade
models, we are able to estimate the number of confirmed,
recovered and death cases in the future.

E. Implementation Details

The overall pipeline of our approach can be illustrated
in Fig. 3, which includes three important stages: train-
ing model, forecasting parameters, extending model. Af-
ter training the cascade SEIRD model, we obtain the his-
torical parameters. Moreover, the calculation is very effi-
cient. In general, it takes only several minutes to fit one
month data.Once the parameters are estimated, we can feed
them into the cascade SEIRD model to predict the spread.
The core part is training the model with historical data.
Here we summarize the training algorithm in Algorithm 1.

Algorithm 1: Training cascade SEIRD Model
Input: I0, I1, ..., It

R0, R1, ..., Rt

D0, D1, ..., Dt

Initialization:
Î0 ← I0, R̂0 ← R0, D̂0 ← D0

E0 = ωE ∗ I0
S0 = N − E0 − I0 −R0 −D0

Ê0 ← E0, Ŝ0 ← S0

L = ∞
while L > ε do

for i ← 0 to t− 1 do
Ŝi+1 = Ŝi - βi ∗ Ii ∗ Ŝi/N
Êi+1 = Êi + βi ∗ I ∗ Ŝi/N − αi ∗ Êi

Îi+1 = Îi + αi ∗ Êi − (γi + θi) ∗ Îi
R̂i+1 = R̂i + γi ∗ Îi
D̂i+1 = D̂i + θi ∗ Îi

Compute loss:

L = LC + LI + wRLR + wDLD

Compute the gradients of parameters (β, α, γ, θ)
with optimizer

Update β, α, γ, θ

III. EXPERIMENTS

A. Datasets and Metrics

To test the performance of the proposed cascade SEIRD
model, we choose 5 regions (China, Hubei, Wuhan, Shenzhen
and the United States of America) with large differences in
population. The information about COVID-19 of time series
confirmed cases, reported deaths and reported recoveries in
China is collected from the website of China Center for
Disease Control and Prevention. The US data comes from
a variety public sources and is collated in the first instance
via Johns Hopkins University on GitHub [13]. For repro-
ducing the results, we release our codes and data sets on
https://github.com/rssqzqyp/cascade SEIRD Model.

The data sets include the statistical information about the
COVID-19, e.g., the numbers of confirmed cases, reported
deaths and reported recoveries. We split the data sets into
training and test data sets. The training sets of China, Hubei
and Wuhan is from February 9 to March 2 and Shenzhen is
from February 13 to March 2. The US training set is from
February 29 to April 6. The test sets of China, Hubei, Wuhan
and Shenzhen are from March 3 to March 9 and the US is
from April 7 to April 13.

To evaluate the performance, we adopt the relative error rate,
which is evaluated from the number of confirmed and cured.
The relative error rate of C,R is EC , ER, which is defined as
follows:

EC =
|Ĉ − C|

C
,ER =

|R̂−R|
R

(8)

where Ĉ is the confirmed predictions of the model, R̂ is the
recovered predictions of the model and C and R is the ground
truth observations. We calculate the mean of last week relative
error at last.

B. Experimental Settings

Generally speaking,the future predictions are mainly related
to the past few days. Hence, the cascade structure does not
need be too complicated. In general, the cascade SEIRD
model uses 20∼30 SEIRD-cells to achieve best performance.
Therefore, our training data set also uses about 20 days to
predict the number of confirmed and cured people in the next
seven days. All computations are performed on a laptop with
Intel(R) Core(TM) i5-8265U CPU@1.60GHz, 1800 Mhz, 16
GB RAM.

We adopt the Adam optimizer with a learning rate 0.001 to
train and the initial N is the population of the whole region.
The initial β is 0.2586, γ is 0.018, θ is 0.001, α is 0.2.
According to our experience, the final results are insensitive
to the initial parameters.

In real applications, we can save the trained parameters and
adopt a lazy update scheme. Once the parameters are trained
by cascade SEIRD model, we save and keep them fixed. When
the data evolves to a new day, we only needs to train and
update the parameters in the new day. By doing so, the cascade
SEIRD model can be efficiently learned and updated.
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Fig. 4. Comparison of fitting effect and prediction result. The red line is ground truth, and the blue line is the fitting effect and prediction of cascade
SEIRD model, and the green line is the fitting effect and prediction of SEIRD model. (a),(b),(d) are datasets China,Hubei,Wuhan from February 9 to March
2 and c is datasets Shenzhen from February 13 to March 2 for training. The last seven day from March 3 to March 9 is for testing.

TABLE I
PERFORMANCE OF CASCADE SEIRD

Method China Hubei Shenzhen Wuhan US
EC(%) ER(%) EC(%) ER(%) EC(%) ER(%) EC(%) ER(%) EC(%) ER(%)

SEIRD Model 3.50 27.80 11.18 13.61 2.43 10.71 6.42 6.51 4.88 33.4
Cascade SEIRD Model 0.24 1.98 0.128 3.03 1.66 1.83 0.136 0.41 2.02 17.8

C. Experimental Results

In Fig.4, we depict the the ground truth, the fitting results
of our cascade SEIRD model and the estimation of the
conventional SEIRD model. We can see that the cascade
SEIRD model is nicely in line with the ground-truth, which
suggest that the model fits the data excellently. To compare the
two models on test sets, we summarize the results in Table
I. We can see that the cascade SEIRD model significantly
outperforms the SEIRD model on the five data sets. The reason
is that a statistical parameter setting on SEIRD cannot nicely
model the daily dynamics of COVID-19 spread. Hence, our
cascade SEIRD, which learns the parameters sequences with
the historical data. With the learned sequences, we can better
characterize their dynamics and predict the future. As a result,
the cascade SEIRD can simulate the spread with more accurate
parameters in each day, which thus yields better performance.

IV. CONCLUSION

In this paper, we propose a novel architecture named cas-
cade SEIRD to estimate the infections, recoveries, and deaths
from the disease. Different from conventional SEIRD method,
the cascade SEIRD learns the dynamic parameters based on
the training data, instead of utilizing a fixed parameter setting.
An ARIMA model is built upon the learned parameter se-
quences to predict the parameters in the future. The parameters
are then fed into the cascade SEIRD to simulate the spread of
COVID-19. Experimental results on five data sets demonstrate
the effectiveness and the superiority of the proposed method.
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