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Abstract—By November 2020, the Coronavirus disease 2019
(COVID-19) has infected more than 50 million people worldwide,
causing more than 1.2 million deaths. This new contagious
disease is not well understood, and the scientific community is
trying to comprehend better the interactions of the causative
agent of the disease, SAR2-CoV-2, and the immune response
to identify its weak points to develop new therapies to impair
its lethal effects. Mathematical and computational tools can
help in this task: the multiscale interactions among the various
components of the human immune system and the pathogen are
very complex. In this work, we present a simple system of five
ordinary differential equations that can be used to model the
immune response to SARS-CoV-2. The model parameters and
initial conditions were adjusted to cohort studies that collected
viremia and antibody data. The results have shown that the model
was able to reproduce both viremia and antibodies dynamics
successfully.

Index Terms—Computational immunology, mathematical mod-
elling, COVID-19, SARS-CoV-2.

I. INTRODUCTION

The human body has two types of immune response against
any external antigens, the innate and the adaptive (or acquired).
The innate response to an external invader begins with the
imposition of physical barriers to block the invasion. The first
line of defense of the HIS against invaders comprises epithe-
lial tissues and mucous membranes that line our digestive,
respiratory, and reproductive tracts. When an invading antigen
breaches these physical barriers, the second line of defense,
composed of phagocytic cells, is ready to react. These cells
play the role of eliminating antigens and dead cells through
phagocytosis (a process in which the cell encompasses and
digests substances in the body)[1]. The main phagocytes of
HIS are macrophages, neutrophils, monocytes, and dendritic
cells.

When the innate system cannot eliminate the infection
caused by the invading antigens, especially by viruses, the
adaptive immune system begins to develop mechanisms to
fight them and thus control the infection [2]. The innate system
is responsible for capturing and presenting the antigens to the
adaptive immune system cells which activate this system. After
the activation of B cells, which is a type of adaptive immune
system cells, the production of antibodies starts. Antibodies

are proteins that bind to the surface of antigens, facilitating
the process of phagocytosis by the body’s defense cells.

There are four main classes of antibodies: the Immunoglob-
ulins M, A, G, and E (IgM, IgA, IgG, and IgE, respectively)
[1]. IgG and IgM antibodies are very good at neutralizing
and opsonizing virus: antibodies can form a bridge between
the invader and the phagocyte, bringing the invader in close,
and preparing it for phagocytosis [1]. IgG is the longest-
lived antibody class, with a half-life of about three weeks
and IgM antibodies have a half-life of only about one day
[1]. Exposure to an antigen induces memory cells’ production
so that subsequent responses to the same antigen are faster
than the first one. Other adaptive immune cells are also
activated, such as T cells, which can kill cells infected by
the pathogens [2], [1].

Although the adaptive immune system, in theory, can adapt
to protect humans against almost any invader, in practice, this
can be a challenging task, such as in the case of the SARS-
CoV-2 virus. This virus belongs to the genus Coronavirus and
causes the Coronavirus Disease 2019 (COVID-19), a severe
acute respiratory syndrome. COVID-19 most likely originated
in China with indications that the onset of the infection
occurred in the city of Wuhan - China, in December 2019
[3], [4], [5]. As it is a new, lethal, and easily contagious/spread
disease, there is an urgent need to develop an efficient vaccine
and palliative care for symptoms. In cases where the disease
progresses to a severe clinical condition, hospitalization of pa-
tients and even the use of ventilator support are necessary. The
symptoms are diverse, such as shortness of breath, diarrhea,
headaches, sore throat, gastrointestinal problems, chest pain or
pressure, and loss of movement [6], [7], [8].

Due to the numerous multiscale interactions between the
various components of the HIS, understanding its dynam-
ics becomes a difficult task. In this context, computational
modeling is a useful tool that can provide essential insights
into this complex system. A computational model (CM),
after verified and validated, can be used to answer several
questions regarding the physical/biological system’s behavior
under different scenarios. Before starting the development of
a CM, it is necessary to define which aspects are relevant
to evaluate. For example, aided by a CM of the immune
response to COVID-19, someone may use it to estimate the
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concentration of the SARS-CoV-2 specific antibody after the
onset of infection or vaccination and check for seroconversion.

This work employs a system of ODEs (Ordinary Differential
Equations) to simulate the behavior of the HIS against the
SARS-CoV-2 virus using a deterministic approach. Further-
more, it aims to represent the relationship between viremia
caused by SARS-CoV-2 and the production of antibodies,
specifically the IgG, as this is one of the principal indicators
of long-term protection. The idea is to keep the model as
simple as possible, with a reduced set of parameters, since
many details about the disease are still unknown. This model
represents a first step towards developing a stochastic model
that aims to represent, in the near future, key aspects related to
the development of immune memory to answer questions such
as: What is the expected seroconversion rates of a COVID-19
vaccine? What are the factors that may explain why some
individuals that will receive the vaccine will not seroconvert?
How can the seroconversion rates be increased?

The remainder of the paper is organized as follows. Section
II briefly presents some related work. Section III presents the
mathematical model. The results are presented in Section IV
and finally Section V presents our conclusions and plans for
future work.

II. RELATED WORK

The literature is plenty of examples of the use of CMs
to model HIS using distinct techniques. The technique used
depends on some important factors, such as whether a deter-
ministic or stochastic approach will be used, whether it will
be a continuous or discrete model, in addition to defining
the importance of temporal or spatial evolution. Although a
CM based on ordinary differential equations (ODE) can be
used to describe the behavior of the HIS and the interactions
between its cells and molecules over time [9], [10], [11], [12],
[13], [14], and partial differential equations (PDEs) can be
used to analyze the immune system spatial evolution over
time [15], [16], [17], [18], [19], other approaches can also
be used, such as those based on stochastic methods [20], [21],
cellular automaton and agents [22], [23], [24], [25], [26].

The development of models to describe the dynamics of
SARS-CoV-2 are in its beginning, with very few models
available in the literature [27], [28], [29]. These works are
based on the target cell-limited model [30]: a system of three
ODEs to model target cells, infected cells, and viruses. In this
work, we use a set of five ODEs to model not only the virus
but also the B cells and IgG antibodies, comparing both the
virus and IgG concentration to values found in the literature.

Du and Yan [27] developed a CM to investigate the dynam-
ics of the immune response to influenza and to the SARS-
CoV-2 virus. The adaptive system CD8+ cells, IgM and IgG
antibodies are represented as constants in the model. Their
numerical results suggest that the innate immune system is
the main responsible for clearing the influenza virus, while
the adaptive system is the main responsible for controlling the
SARS-CoV-2 virus. The peak concentration of the adaptive
immune cells for patients with COVID-19 is more likely to
occur before the number of infected cells by SAR-CoV-2

reaches its peak [27]. Unfortunately, the authors do not present
any validation of their numerical results that focus on the viral
load. Afterward, the model has been modified to model the
effects of a hypothetical antiviral drug on the SARS-Cov-2
infection.

The work of Hernandez-Vargas and Velasco-Hernandez [28]
uses a model similar to Du and Yan [27], but including
latent cells. The idea is that newly infected cells spend
time in a latent phase, a concept similar to the “Eclipse
Phase” [31]. Furthermore, instead of a constant [27], T cells
are represented by an equation. Then, the viral load obtained
by the numerical experiments is compared to values found in
the literature [32], with good fitness between numerical and
experimental results. The authors then present the Stability
Analysis of their model [29], which suggests that the SARS-
CoV-2 virus replicates fast enough to overcome T cell response
and cause infection.

In one previous work, we have proposed a stochastic
approach [21], based on Gillespie’s algorithm [33], [34], to
simulate the immune response to the Yellow Fever vaccine.
The deterministic model is a system of five ODEs that
represents the behavior of the following populations: Yellow
Fever vaccine virus, generic antibodies, and three types of
lymphocyte B cells (naive, active, and memory). Then, this
model was solved using Gillespie’s stochastic approach. In
this work, we adapted this model to reproduce the immune
response to COVID-19. We have also adjusted their parameters
and initial conditions to reproduce the experimental data
associated with the COVID-19, more specifically, viremia and
IgG concentrations [35], [36].

III. METHODS

This section presents the CM used to represent the immune
response to COVID-19, the method used to adjust their param-
eters and initial conditions to data available in the literature,
and its computational implementation.

A. Mathematical model

The mathematical model is composed by a set of five ODEs,
that represents the following populations: SARS-CoV-2 virus
(V ), IgG antibodies(IgG), and three types of lymphocyte B
cells (naive, active, and memory, represented by BN , BA and
BM ).

Equation (1) represents the virus (V ) dynamics:

d

dt
V = C1V − C2V IgG. (1)

SARS-CoV-2 uses the cell surface receptor ACE2 to infect
healthy cells [37]. After the virus enters the cell, it uses
cell mechanism to self-replicate. The new produced virions
leave the cell to infect the nearby uninfected cells. This viral
replication is represented by an exponential growth, i.e., the
term C1V in Equation (1), where C1 represents the growth
rate. The term C2V IgG denotes the viral clearance done with
the help of neutralization and opsonization by IgG antibodies,
where C2 represents the clearance rate. We adopt some simpli-
fications in this equation. First, the viral replication includes,
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in a implicit way, the viral clearance done by both innate and
adaptive immune cells. Usually infected cells are induced to
undergo apoptosis by T killer cells, attracting macrophages
and neutrophils to phagocyte them and contributing to the
mitigation of the disease [38]. The second simplification is
that the antibody does not kill the virus, but opsonizes it. After
the antibody binds to the membrane of the virus, phagocytes
are attracted to phagocyte the pathogen.

The naive B cells are represented by Equation (2):

d

dt
BN = C3(BN0 −BN )− C4V BN . (2)

Both innate and adaptive immune cells operate under strict
homeostatic controls, i.e., there are relatively constant pool
sizes of their naive populations that are kept by the body [39].
In the case of BN cells, their production is done in the bone
marrow. To model this homeostatic control of naive B cells,
the term C3(BN0 −BN ) was introduced, where BN0 denotes
the equilibrium population and C3 the homeostasis rate, i.e.,
how fast/slow the homeostasis is achieved. After B cells are
produced and mature in the bone marrow, they migrate to the
secondary lymphoid organs, such as the spleen and lymph
nodes. Naive B cells can activate if their surface binds to the
antigen they recognize. In this work, we do not consider all
aspects required to activate B cells, such as the need for co-
stimulatory signals by T-cells or cytokines [1]. The activation
is very important because active B cells are responsible for
producing antibodies. The activation is represented by the term
C4V BN , where C4 represents the activation rate.

Equation (3) represents the active B cells:

d

dt
BA = C4V BN − C5BA − C6BA. (3)

A portion of the active B cells is retained within a memory
poll and is important to respond faster to a second exposure
to the same cognate antigen [1]. The term C5BA denotes the
portions of active B cells that differentiate into memory cells,
where C5 is the differentiation rate. The term C6BA denotes
the natural decay of the active B cells and C6 is the decay
rate.

Equation (4) models the memory cells:

d

dt
BM = C5BA + C7BM

(
1− BM

BMmax

)
− C8BM . (4)

Memory B cells constantly replicate to guarantee a long-
term immunological memory, and persists for long peri-
ods of time at a relatively stable numbers [40]. The term
C7BM

(
1− BM

BMmax

)
represents the memory B cell repli-

cation, where C7 represents the growth rate, and BMmax

limits the growth. The immunologic memory related to B
cells consists of two different cell types, memory B cells and
long-lived plasma cells. Long-lived plasma cells continuously
secrete antibodies. Memory B cells are those that are waiting
for re-exposure to the same antigen to activate. However,
we adopt a simplification, in which memory B cells plays
both roles. There are also two modifications in this equation
compared to the original work [21], which are the removal

of BA from the memory B cell replication term, and the
inclusion of the term C8BM to represent the natural decay
of the memory cells.

Finally, Equation (5) represents the IgG antibodies:

d

dt
IgG = C9BM − C10IgG. (5)

Antibodies are produced by long-lived plasma B cells, but
due to the simplification just explained, we assume that BM

cells produce antibodies. The term C9BM represent antibodies
production by memory cells. The term C10IgG refers to the
IgG antibodies natural decay at a rate equals to C10.

B. Experimental Data

In order to evaluate our CM model, a set of data collected
from two distinct papers that present cohort studies with
people infected with SARS-CoV-2 was used.

The first paper presents temporal profile of serial viral load
from a set of 23 patients admitted at two hospitals in Hong
Kong, all of them with laboratory-confirmed COVID-19 [35].
Most viral load data reported in the paper were collected
from posterior oropharyngeal saliva samples, except for three
intubated patients, in whom viral load data were obtained
from endotracheal aspirates. The work reports the mean values
for samples collected daily during a period of 29 days. The
number of patients who provided a sample on each day varies
from one to ten. In this work, we have used only the values
collected from posterior oropharyngeal saliva samples. Data
were extracted from the paper using the WebPlotDigitalizer
tool [41]. WebPlotDigitizer is a on-line toll that can extract
data in a semi-automatic way from graphs that are uploaded
to the website. Since data are extracted from an image, some
small errors can be introduced in this process.

The second paper presents antibody responses to SARS-
CoV-2 [36]. A cohort composed by 285 Chinese patients, all of
them confirmed to be infected with SARS-CoV-2 by RT–PCR
assays, were enrolled in this study from three hospitals. To
measure the level of IgG and IgM against SARS-CoV-2,
serum samples were collected at four different time intervals
after symptom onset were reported [36]. Antibody levels were
measured using magnetic chemiluminescence, which provides
values divided by the cutoff (S/CO) [36], and were calculated
as log2(S/CO + 1). The number of patients who provided a
sample on each time interval varies from seven to one hundred
and thirty. The dataset is available for download, eliminating
the occurrence of errors due to the data extraction process.

In both cases, data are collected after patients has been
admitted at the hospital. This imposes an additional challenge
because the exact day patients has been infected is not clear.
Epidemiological studies carried with 425 laboratory-confirmed
COVID-19 cases in Wuhan, China, have estimated that the
mean incubation period is 5.2 days [5]. Based on this results,
we consider that the infection occurred five days before patient
admission, adjusting the cohort data accordingly to reflect this
incubation period.



1314

4

C. Model calibration

In order to adjust the model presented in the Section III-A
to fit data from the cohort studies described in Section III-B,
it is necessary to adjust the rates (C1, C2, ..., C10). The
initial conditions of some populations must also be adjusted,
specially the initial concentration of SARS-CoV-2 virus.

To adjust the model parameters and initial conditions, the
differential evolution (DE) optimization method [42] was used.
Differential Evolution, as the name may suggest, is a type
of evolutionary algorithm that uses mechanisms inspired by
the theory of evolution, where the fittest individuals of a
population, i.e. the ones that have the characteristics that
allow them to survive longer, are the ones that produce more
offspring, which in turn inherit the good traits of their parents
[42], [43]. This makes the new generation more likely to
survive in the future as well, and so the characteristics that
allowed the population to survive in the past improves over
time, generation after generation. DE makes use of different
mechanisms present in nature, such as mutation, recombina-
tion and selection, to evolve a solution to a problem. In the case
of this paper, the solution that will be evolved is to minimize
the difference between the model curves (IgG and viremia) to
the given data (relative error), as Equation (6) shows:

min
p

(
ω1RE(V, V̂ ) + ω2RE(IgG, ˆIgG)

)
, (6)

where p is the set of parameters to be estimated, ωn is a
weight, V̂ (t) is the viremia, ˆIgG(t) is the IgG concentration.
For this work, we used ω1 = ω2 = 1.0, which means that DE
tries to find values for the set p that minimize errors in both
variables equally, i.e., no variable is more important than the
other. RE represents the relative error between the cohort data
and the numerical result, and is computed as follows:

RE(λ, λ̂) =
‖λ(t, p)− λ̂(t)‖1

‖λ̂(t)‖1
. (7)

In order to speedup the convergence to a feasible solution,
constraints are passed as parameters to the solver, establishing
upper and lower limits to each parameter, following the
approach proposed by Lampinen [44]. The intervals defined
to each parameter are presented in Table I.

Other populations, such as the initial concentration of naive
B cells and the upper limit of the memory B cells population,
were obtained from data in the literature [45].

D. Computational model

The model was implemented in the Python programming
language. Numerical solution of the system of ODEs were
performed by the odeint function, a member of the integrate
package in the scipy library[46], which includes libraries
for solving ODEs. This function uses the characteristics of
the ODE system to select the best numerical method to solve
it. The function can solve the ODEs system using either
the Backward Differentiation Formula (BDF) or the Adams
method [47]. The function uses BDF for stiff equations and
the implicit Adams method is used otherwise. The DE code

TABLE I
BASELINE VALUES USED FOR THE CALIBRATION OF THE MODEL´S

PARAMETERS AND INITIAL CONDITIONS.

Parameter/Initial Condition Interval

C1 (1.0× 10−4, 1.0)
C2 (1.0× 10−4, 1.0)
C3 (1.0× 10−4, 1.0)
C4 (1.0× 10−4, 1.0)
C5 (1.0× 10−4, 1.0)
C6 (1.0× 10−4, 1.0)
C7 (1.0× 10−4, 1.0)
C8 (1.0× 10−4, 1.0)
C9 (1.0× 10−4, 1.0)
C10 (1.0× 10−4, 1.0)
V (1.0× 10−2, 1.0)

was implemented in Python, using for this purpose the Numpy
library (≥ 1.7.0 version).

The experiments were performed using Python version
3.7.6 64-bit using the Spyder 4.0.1 integrated development
environment (IDE). The execution environment was composed
of an Intel Core i5-3317U 1.7 GHz processor, with 6 GB of
RAM. The system runs Windows 10 Home version 1903.

IV. RESULTS

This section presents the results obtained for the calibration
of the model using DE, as well as the numerical results ob-
tained after the parameters and initial conditions of the model
have been adjusted. Finally, a brief discussion is presented.

A. Model Calibration

After fitting model’s parameters and the initial value of
viremia to experimental data, using the baseline values pre-
sented in Table I, we observed relative errors of approximately
40% for the virus and 21% for the antibodies curves, according
to equations presented in subsection III-C.

B. Numerical Results

In order to qualitatively validate our model, the CM was
used to simulate the scenario where an individual was infected
by the SARS-CoV-2 virus for the first time. The numerical
results obtained by the mathematical model were then com-
pared to the viremia and IgG concentrations found in the
literature [35], [36]. All the initial values used for the variables
as well as the model parameters are presented in the Appendix.

Figure 1 shows the comparison between the viremia curve
obtained numerically, after calibration, and experimentally.
Gray dots represent average levels of viremia obtained from
patients who developed COVID-19 [35], while the dark curve
represents the numerical results. Experimental results are
available up to 29 days after hospital admission, i.e., 34 days
after the infection. SARS-CoV-2 RNA could not be detected
after 20 days or longer for a third of patients who survived,
but in one patient the SARS-CoV-2 RNA was detected after
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25 days. For this reason, we decided to simulate the equivalent
of 50 days after the start of the infection.

Fig. 1. Viremia curve obtained by the simulation of deterministic model
presented in Section III-A, simulated using the initial conditions presented in
Tables II and III. Dark curve represent the numerical results and the gray
dots experimental data [35].

Figure 2 presents the comparison between the IgG curve
obtained numerically, after calibration, and experimentally.
Gray dots represent average IgG antibody titers obtained from
patients [36], while the dark curve represents the numerical
results. Although experimental results are available up to 27
days after hospital admission, i.e., 31 days after the infection,
we decided to simulate the equivalent of 200 days after
infection to better observe the behavior of the curve, specially
if a plateau or slow decay could be found.

Fig. 2. IgG curve obtained by the simulation of deterministic model presented
in Section III-A, simulated using the initial conditions presented in Tables II
and III. Dark curve represent the numerical results and the gray dots
experimental data [36]

Unfortunately we do not have experimental data for other
populations of the model (B cells) and, for this reason, we
do not present their results in this section. Furthermore, the
comparison would be complex because of the simplifications

adopted in this work; for example, B memory cells acts as
both long-lived plasma cells and B memory cells.

C. Discussion

As one can observe in Figure 1, the CM obtained good
results from a qualitative perspective. It should be mentioned
that the experimental data presents a huge variation (observe
that the scale adopted is log10), impairing the adjust reported in
Section IV-A. Perhaps this could be explained by the severity
of the disease: the literature reports that the viremia peak
depends on it, with severe/critical patients tending to peak in
the second week of illness, with values ranging from 5.57–9.66
log10 copies/mL, while in mild/moderate patients the viral
load peak is observed in the first week of illness, with values
ranging from 3.25–6.40 log10 copies/mL [48]. So one possible
explanation for the huge variation observed in the viremia is
that the dataset mixes patients with distinct degrees of disease
severity. In such a case, the numerical results represent an
average value for distinct severity degrees. There are some
evidences of the prevalence of severe/critical patients in the
dataset, not only due to the need of hospital admission, but
also to the fact that the viremia peak observed in the numerical
result occurs about the fifteenth day, with a value about 6
log10 copies/mL, values compatible with the one reported for
severe/critical patients [48].

As one can observe in Figure 2, antibody titers follow
the classic pattern observed in antibody curves, with a rapid
increase within the first three weeks after symptoms [49].
Furthermore, the model was able to reproduce experimental
data, achieving almost the same peak value and date of peak.
The IgG curve suggests that the antibodies remain detectable
up to six months after infection. This behavior is the same
described in the literature [49].

COVID-19 is a new disease and, for this reason, some stud-
ies and datasets seems to contradict each other. Furthermore,
the experimental data used in this paper to adjust the model
are composed by few patients. For some days, data of a single
patient was used in the adjusts. Distinct studies in the literature
adopts distinct methods and metrics, so it is not easy to gather
their data together in a single dataset with a large number of
patients. In this sense, the results presented in this work have
limitations due to the restrictions imposed by data availability.

V. CONCLUSION

This paper evaluated a simple mathematical model, com-
posed by a set of five ordinary differential equations, to model
the immune response to SARS-CoV-2. The model parame-
ters and initial conditions were successfully adjusted using
Differential Evolution to fit viremia and IgG curves obtained
in two distinct cohort studies. The dynamics of the disease
were reproduced qualitatively: the values related with viremia
and IgG peaks (not only the value, but also the approximate
day in which it occurred) were close to the values obtained
numerically. In the numerical simulations, the peak of viremia
occurred approximately fifteen days after the infection and
the level of antibodies increases rapidly during the first three
weeks after infection, remaining present up to six months.
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The results presented in this work have limitations due to
the restrictions imposed by data availability, specially due
to the small number of individuals used in some adjusts.
We expect that, in future works, more data are available to
improve our results. We also plan to include other populations,
like citokynes, since the literature describes that the severe
deterioration of some patients has been closely related to the
occurrence of a citokyne storm.

The search to find a vaccine for the SARS-CoV-2 is well
underway, with many distinct groups announcing the Phase
3 COVID-19 vaccine candidate studies. As future works, we
plan to use a stochastic version of this model to simulate the
immune response the vaccine, in order to answer questions
such as: What is the expected seroconversion rates of a
COVID-19 vaccine? What are the factors that may explain
why some individuals that will receive the vaccine will not
seroconvert? How can the seroconversion rates be increased?
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APPENDIX A
INITIAL CONDITION AND PARAMETERS USED IN THE

SIMULATIONS

TABLE II
VARIABLES AND THEIR INITIAL VALUES.

Variable Description Initial value

V SARS-CoV-2 2.3log10(copies/ml)
B Naive B cells 2.5× 105(cells/ml)
BA Active B cells 0 (cells/ml)
BM Memory B cells 0 (cells/ml)
IgG IgG antibodies 0 (S/CO)

TABLE III
PARAMETERS AND THEIR VALUES.

Parameter Value

C1 7.9× 10−1(day−1)
C2 8.5× 10−2(day−1(S/CO)−1)
C3 3.6× 10−3(day−1)
C4 2.1× 10−6(day−1(copies/ml)−1)
C5 8.6× 10−2(day−1)
C6 9.0× 10−3(day−1)
C7 1.1× 10−2(day−1)
C8 3.1× 10−4(day−1)
C9 1.2× 10−4(day−1)
C10 4.5× 10−1(day−1)
BMmax 3.5× 104(cells/ml)
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