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Abstract—Novel coronavirus (COVID-19) is spreading rapidly
and has taken millions of lives worldwide. A medical study has
shown that COVID-19 affects the lungs of patients and shows the
symptoms of pneumonia. X-ray images with artificial intelligence
(AI) can be useful for a fast and accurate diagnosis of COVID-
19. It can also solve the problem of less testing kits and fewer
doctors. In this paper, we have introduced the Fourier-Bessel
series expansion-based dyadic decomposition (FBD) method for
image decomposition. This FBD is used to decompose an X-ray
image into subband images. Obtained subband images are then
fed to ResNet50 pre-trained convolution neural network (CNN)
individually. Deep features from each CNN are ensembled using
operations, namely; maxima (max), minima (min), average (avg),
and fusion (fus). Ensemble CNN features are then fed to the
softmax classifier. In the study, a total of 750 X-ray images are
collected. Out of 750 X-ray images, 250 images are of pneumonia
patients, 250 of COVID-19 patients, and 250 healthy subjects. The
proposed model has provided an overall accuracy of 98.6 % using
fus ensemble ResNet-50 CNN model.

Keywords— Fourier-Bessel series expansion (FBSE), Im-
age decomposition, Corona virus, Pneumonia, X-ray image.

I. INTRODUCTION

Novel coronavirus (COVID-19) is the result of severe
acute respiratory syndrome coronavirus 2 (SARS-COV-2). The
symptoms of COVID-19 ranges from dry cough, sore throat,
loss of taste, and fever to organ failure, pneumonia, and
acute respiratory distress syndrome [1], [2]. Another challenge
countries are facing along with COVID-19 is the lack of
the testing kits. So there is a requirement of finding new
ways by which the diagnosis of COVID-19 becomes fast
and accurate. The studies found that X-ray and computer
tomography (CT) scan images can be tools that can diagnose
pneumonia caused by COVID-19 [3]. The idea is to use image
processing techniques and artificial intelligence (AI) to get
contact-less testing.

Some research works have been done for diagnosing
COVID-19 with X-ray and CT images using Al [4], [5], [6].
Xu et al. [7] extracted infected region from CT scan image
using a pre-trained 3D-convolution neural network (CNN).
These regions are fed to CNN for three classes (COVID-
19, Influenza-A-viral-pneumonia, and healthy) classification.
The CT scans have been utilized in [8] to detect COVID-
19 cases, where all slices of CT scans are fed to the CNN
model separately. The output from each model is aggregated
by applying a max-pooling process. Wang and Wong [9], use
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a pre-train CNN model which was first trained with ImageNet
dataset [10], which are then fine-tuned with X-ray images to
classify subjects as COVID-19, normal, bacterial infection, and
none-COVID-19 viral. Similar work was done by Sethy and
Behera [11], where several CNN models are trained on X-
ray images, and a support vector machine (SVM) classifier
used to detect COVID-19. Research has found that a CT scan
can be the better tool for COVID-19 diagnosis compared to
X-ray images [3]. But the drawback of using a CT scan is
that it takes more time than X-ray imaging. High-quality CT
scanners are usually not available in rural or underdeveloped
regions, making this time-consuming process [12].

This paper uses a new multi-resolution analysis tech-
nique for image decomposition, called Fourier-Bessel se-
ries expansion (FBSE) based dyadic decomposition (FBD).
The method is inspired by multi-frequency scale 2D-FBSE-
empirical wavelet transform (EWT) (2D-FBSE-EWT) [13],
where multi-frequency scale (dyadic frequency scale) FBSE
spectrum is used for boundaries detection in EWT method.
FBD is used to decompose X-ray images to get subband im-
ages. Each subband is fed to the ResNet-50 CNN individually.
Deep features are then extracted from the last fully connected
layer of each ResNet-50 CNN. These features are then ensem-
bled using the operations, namely maximum (max), minimum
(min), average (avg), and fusion (fus) [14]. Ensemble features
are then fed to a softmax classifier to classify pneumonia
caused by COVID-19 and other pneumonia.

The rest of the paper is organized as follows: Section 2
presents the paper’s database and briefly introduces the FBD.
The method proposed for the automated diagnosis of COVID-
19 and pneumonia is explained briefly in Section 3. Section 4
provides experimental results and discussion. Conclusion has
been provided in Section 5.

II. DATABASE AND PROPOSED FBD

A. Database

In this paper, 750 images are collected from two
databases. 250 X-ray images are downloaded from URL:
https://github.com/ieee8023/covid-chestxray-dataset. Images
are of pneumonia caused by COVID-19 [15]. For 250 healthy
and 250 viral pneumonia X-ray images, the kaggle repository
database called "Chest X-Ray Images” [16] is used.
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Fig. 1: Dyadic decomposition in frequency and order axis.

B. FBD method

FBD is a dyadic decomposition method motivated by
the discrete wavelet transform (DWT) [17], [18] and multi-
frequency scale 2D-FBSE-EWT method. FBD uses the FBSE
spectrum instead of the discrete Fourier transform (DFT)
spectrum, so it provides plus one level of decomposition
compared to DWT. FBSE provides N (length of signal)
different FBSE coefficients, whereas DFT provides only N/2
different coefficients. So if DWT can provide maximum level-
a (Where ’a’ represent maximum level of decomposition by
DWT) decomposition, then FBD can provide a maximum
level-a+1 number of decomposition. So it implies that FBD
can provide better multi-resolution analysis compared to DWT.
Fig.1 shows the dyadic operation of DWT (frequency axis) and
FBD (order axis). A; and D, represent level-i approximate and
detailed components of the transforms.

In [19], authors have shown how by filtering operation, the
amplitude and frequency functions of the signal are changed
and also propose FBSE based grouping process to resolve
it. So in FBD, instead of using filters, i.e., low pass filter
(LPF) and high pass filter (HPF) as done in DWT, FBSE
based grouping operation is used. Another advantage of using
FBSE is that FBSE uses Bessel functions as a basis for signal
representation, which are non-stationary. So FBSE can do
better analysis of non-stationary signals as compared to the
transform uses stationary basis function [20], [21]. Due to
these reasons FBSE has been used in many areas [22], [23],
[24].

In this work, both order zero [25], [26] and order one
FBSE [24] are used for analysis based on FBD method. The
mathematical expressions corresponding to order zero FBSE
and order one FBSE of signal z(I) of length L are shown in
equations (1) and (2) respectively [13].
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Where a,, and b,, are order zero and order one FBSE
coefficients respectively, which are mathematically expressed

as [26], [24],
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Jo(.) and Jy(.) are order zero and order one Bessel functions.
&n denotes the m™ positive root of equation Jy(.) = 0. Sim-
ilarly ¢,,, denotes the m™ positive root of equation J;(.) = 0
[26]. By FBSE, signal is transformed from [ (spatial or time)
domain to m (order) domain. Another advantage of using
FBD is that any level of decomposition can be obtained in
a single step. For example, the level-3 approximation signal
can be obtained by grouping the FBSE coefficients from
range m (order)=1 to m=N/8. On the other hand, DWT
requires three down-sampling and three filtering operations
at the decomposition stage and three up-sampling and three
filtering operations at the reconstruction stage.

III. PROPOSED METHODOLOGY FOR COVID-19 AND
PNEUMONIA DIAGNOSIS

The block diagram of the proposed methodology is shown
in Fig. 2. In the pre-processing stage, the X-ray image is
first resized to 512 x 512 and then contrast limited adaptive
histogram equalization (CLAHE) [27] applied for contrast
enhancement, followed by image negative. Image negative of
X-ray image provides a better representation of lesion [28].
Fig. 3 (a) shows the raw X-ray image, Fig. 3 (b) shows the
CLAHE image, and Fig. 3 (c) shows the image negative.
Then FBD is used to decompose pre-processed images into
subband images. Instead of extracting features arbitrarily from
the subband image, each decomposed subband image is fed to
ResNet-50 CNN to extract deep features. Deep features from
each CNN are ensembled and fed to a softmax classifier to
classify pneumonia due to COVID-19 and other pneumonia.

A. 2D-FBD method

The block diagram of FBD for level-1 image decomposition
is shown in Fig. 4. LPG represents the low pass grouping
of the first N/2 2D-FBSE coefficients, HPG represents the
high pass grouping of the last N/2 2D-FBSE coefficients.
2D-FBSE coefficients can be obtained by applying FBSE
row-wise, followed by FBSE column-wise [29]. LPG row
and HPG row represent LPG and HPG row-wise. Similarly,
the LPG column and HPG column represent LPG and HPG
column-wise, respectively. LL, LH, HL, and HH subbands
images can be obtained by applying 2D- inverse Fourier-Bessel
series expansion (2D-IFBSE) to the four grouped 2D-FBSE
coefficients (at each decomposition level). Eqs. (1) and (2) are
the expressions of order zero and order one 1D-IFBSE. 2D-
IFBSE can be obtained by applying 1D-FBSE column wise,
followed by 1D-FBSE row wise.
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Fig. 2: Proposed framework for automated diagnosis of COVID-19 and pneumonia.
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Fig. 3: Preprocessing of X-ray images, where (i) Raw X-ray
image, (ii) CLAHE image, and (iii) Image negative.
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Fig. 4: Block diagram of level-1 image decomposition using
FBD.
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Fig. 5: Order-space plot of X-ray image which is shown in
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Fig. 6: X-ray image (pseudo colour image) and its decomposed
components: LL3, HL3, LH3, and HH3 of (i) COVID-19, (ii)
Pneumonia, and (iii) Normal subject obtained using FBD.
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Fig. 7: Block diagram of ensemble ResNet-50 CNN model for
level-1 decomposed subband images.

Fig. 5 is a order zero 2D-FBSE order-space plane (log
of 2D-FBSE coefficients) of preprocessed image. Blocks in
the order-space plane represent a group of coefficients to get
a different level of decomposition. Number with LL, LH,
HL, and HH represents the level of decomposition. In Fig.
6, the first row shows an X-ray image of the COVID-19
subject, followed with its four (LL3, LH3, HL3, and HH3)
decomposed images, similarly second and third rows are of
pneumonia and normal subjects respectively, followed by their
four decomposed components.
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Fig. 8: Confusion matrix of (i) Max, (ii) Min, (iii) Avg, and
(iv) Fus ensemble Resnet-50 CNN model for FBD level-1
decomposed images.

B. Ensemble ResNet-50 CNN model

The ResNet-50 is a CNN which is 50 layers deep [30]. This
network is trained on ImageNet [10] database, having millions
of images and 1000 object categories. The advantage of using
a pre-train network is that it is trained with a massive database,
so the deep features will be of higher quality. Based on the
transfer learning approach, one can transfer this knowledge of
pre-train networks to perform other tasks. Using the transfer
learning technique, the initial 49 layers of ResNet-50 are
frozen, and the softmax layer of 1000 nodes is replaced by
a softmax layer of 3 nodes (since we are using three-class).
Now this network is trained with our database.

From a trained network, deep features are extracted from
the last fully connected layer of ResNet-50. Deep features
from each channel is ensembled using maxima (max), minima
(min), average (avg), and fusion (fus) operations. This ensem-
ble feature is then used to train the three node softmax layer.
Fig. 7 shows the block diagram of the ensemble ResNet-50
CNN model for level-1 decomposition.

I'V. RESULTS AND DISCUSSIONS

In this paper, order zero and order one FBD are used for
the diagnosis of pneumonia due to COVID-19 and pneumonia.
For this total of 750 X-ray images are used, with 250 images
of each class (COVID-19, pneumonia, and healthy). Input
images are pre-processed and then decomposed using the FBD
method. The obtained subbands are then fed to pre-trained
ResNet-50 CNN individually. For training CNN, stochastic
gradient descent with momentum algorithm is used. The initial
learning rate and the number of epochs are fixed to 3 x 10~*
and 6 respectively. 85% of data is used for training, 5%
data for validation, and 10% of data is used for testing
purposes. Deep features are then extracted from the last fully
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Fig. 9: ROC plot of max, min, avg and fus ensemble ResNet-
50 CNN model for (i) COVID-19 and (ii) Pneumonia class of
FBD level-1 decomposed images.

connected layer of each ResNet-50. These deep features are
then ensembled using max, min, avg, and fus operations and
finally fed to the softmax classifier for classification. This
process is performed with order zero FBD, order one FBD, and
2D-DWT subband images, and the results of all the methods
are then compared. For the 2D-DWT method, one issue is
selecting the best mother wavelet for a particular application.
So, for 2D-DWT decomposition, we have arbitrarily consid-
ered three different mother wavelets: Haar, Symlets 4 (sym),
and Daubechies 4 (db) wavelets. Then an analysis of all the
decomposition methods is done for level-1, level-2, and level-
3.

Parameters used for checking the classifier performance
is accuracy, sensitivity, and specificity, and area under the
curve (AUC) of receiver operating characteristic (ROC) curve
[33]. Mathematical expressions of accuracy, sensitivity, and
specificity are shown below [34].

TP+TN

ACCURACY = o TN+FPAEN ®)
. TP
Sensitivity = TPIEN % (6)
Specificity = 7
pecificity = -5 % (7

True positive, true negative, false positive, and false negative
have been denoted by TP, TN, FP, and FN respectively. ROC
is a curve ploted between the TP rate and the FP rate. AUC
of ROC tells how much model is capable of distinguishing
between classes. Sensitivity, specificity, and AUC of ROC
obtained by our method for each ensemble classifier model
are shown in Table I. Table I represents the performance com-
parison of 2D-DWT (Haar, db, and sym), order zero FBD, and
order one FBD for level-1, level-2, and level-3 decompositions.
Term Specov, Sencov, and AUCcov are sensitivity, specificity,
and ROC AUC of COVID-19. Similarly, Spepne, Senpne,
and AUCpne are sensitivity, specificity, and ROC AUC of
pneumonia. By comparing the table, it can be seen that level-1
decomposition has provided better performance as compared
to level-2 and level-3 decompositions. Along with that, on the



TABLE I: Performance of all models for level-1, level-2, and level-3 decompositions.

Classifier model Sencov19 (%) Senpne (%) Specov (%) Spepne (%) Accuracy (%) AUCcov AUCpne
level-1
For DWT (Haar)
Max 96 96 94 100 93 0.97 0.99
Min 84 96 94 100 89.33 0.96 1
Avg 76 96 94 100 86.66 0.93 0.96
Fus 92 100 94 100 93.33 0.96 1
For DWT (db)
Max 88 96 92 100 89.33 0.93 0.99
Min 80 96 92 100 88 0.93 1
Avg 84 92 90 100 86.6 0.92 0.95
Fus 92 100 92 100 92 0.94 1
For DWT (sym)
Max 84 100 90 100 88 0.91 1
Min 76 96 92 100 85.33 0.90 0.99
Avg 84 92 88 96 82.66 0.94 0.98
Fus 88 100 90 100 89.33 0.94 1
For order zero FBD
Max 88 100 90 100 89.33 0.92 1
Min 96 100 94 98 93.33 0.94 1
Avg 88 96 86 100 86.66 0.89 1
Fus 96 100 94 100 98.61 0.94 1
For order one FBD
Max 88 96 98 98 93.3 0.91 0.99
Min 80 100 98 94 92 0.90 0.99
Avg 72 92 94 94 85 0.92 0.93
Fus 88 100 98 98 94 0.93 0.99
level-2
For DWT (Haar)
Max 88 96 92 98 89.33 0.93 0.99
Min 92 92 92 98 89.33 0.94 0.99
Avg 72 56 72 90 62.66 0.75 0.71
Fus 84 96 90 98 86.66 0.93 0.99
For DWT (db)
Max 84 100 94 98 90.66 0.92 1
Min 92 100 92 98 90.66 0.94 1
Avg 76 88 86 98 82.6 0.77 0.91
Fus 84 100 92 98 89.33 0.91 1
For DWT (sym)
Max 80 92 86 100 81.33 0.90 1
Min 84 88 86 100 81.33 0.88 0.95
Avg 84 76 82 96 78.66 0.82 0.88
Fus 84 96 84 100 84 0.87 0.99
For order zero FBD
Max 96 100 94 100 94 0.96 1
Min 96 96 88 100 89.33 0.93 0.99
Avg 80 84 82 98 78.66 0.80 0.88
Fus 92 96 88 100 89.33 0.95 1
For order one FBD
Max 84 92 94 98 90.7 0.96 0.99
Min 92 84 88 100 89.33 0.95 0.98
Avg 76 88 86 98 82.66 0.63 0.68
Fus 92 92 94 100 93.33 0.96 0.99
level-3
For DWT (Haar)
Max 88 100 90 96 89.33 0.91 1
Min 92 100 90 100 90.66 0.94 1
Avg 60 92 90 76 74.66 0.80 0.86
Fus 92 96 90 98 90.66 0.95 0.99
For DWT (db)
Max 88 92 86 98 8533 0.91 0.99
Min 76 88 86 96 78.66 0.88 0.96
Avg 68 76 70 90 66.6 0.7 0.8
Fus 88 92 88 96 84 0.92 0.98
For DWT (sym)
Max 80 92 86 100 81.33 0.90 1
Min 84 88 86 100 81.33 0.88 0.95
Avg 84 76 82 96 78.66 0.82 0.88
Fus 84 96 84 100 84 0.87 0.99
For order zero FBD
Max 84 100 90 100 88 0.93 1
Min 88 100 92 100 90.66 0.94 1
Avg 72 76 76 96 70.66 0.73 0.86
Fus 88 100 90 100 89.33 0.91 1
For order one FBD
Max 92 92 94 100 92 0.97 0.99
Min 84 92 92 98 89.33 0.98 0.99
Avg 72 76 76 96 70.6 0.51 0.86
Fus 84 96 92 98 89.3 0.97 0.99

TABLE II: Performance comparison of proposed method with different works which are used for identification of COVID-19.

Reference Images Number of classes  Sensitivity (%) Specificity (%) Accuracy (%) AUC
[31] 1531 2 90 87 96 0.95

[4] 100 2 100 100 98 -

[32] 50 2 - - 90 -

[5] 1427 3 98.66 96.46 96.78 -

[11] 50 2 97 93 95.38 -
Proposed method 750 3 96 94 98.66 0.94
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basis of overall accuracy, order zero FBD has provided better
performance, followed by order one FBD, DWT with Haar,
DWT with db, and finally, DWT with sym. At level-3 best
overall accuracy is 92%, and it is obtained by order one FBD
decomposition with max ensemble ResNet-50 CNN model.
At level-2 best overall accuracy is 94%, and it is obtained by
order zero FBD decomposition with max ensemble ResNet-50
CNN model. At level-1 best overall accuracy is 98.6%, and it is
obtained by order zero FBD decomposition with fus ensemble
ResNet-50 CNN model. Figs. 8 and 9 show confusion and
ROC plot of FBD (level-1) decomposition with max, min,
avg, and fus ensemble ResNet-50 CNN model. Sensitivity,
specificity, and AUC of ROC of COVID-19 class using the
proposed method (level-1 FBD with fus ensemble ResNet-
50) is 96%, 94%, and 0.94. Similarly, sensitivity, specificity,
and AUC of ROC of pneumonia class is 100% and 100%,
and 1 and the overall accuracy of the proposed model is
98.66%. Table II shows the performance comparison of the
proposed method with some of the methodologies present
in the literature. Our proposed method has provided higher
classification accuracy among them.

V. CONCLUSION

COVID-19 pandemic has shocked the world and still threat-
ening many lives of the people. Due to the leak of testing
machines, there is a requirement of new techniques by which
COVID-19 diagnosis can become fast and accurate. In this
work, we have introduced a new order zero FBD and order one
FBD method for image decomposition, which is FBSE based
dyadic decomposition (without using a filter). We illustrated
how by using the FBSE spectrum, we get one extra level of
decomposition compared to the DFT spectrum, i.e., get better
multi-resolution representation. We also show how by using
FBD, one can get any level of decomposed subband images
or signal in a single step.

In this work, order zero and order one 2D-FBD are used
to decompose the X-ray image into subband images. Each
subband is used to train ResNet-50 CNN individually. Deep
features from each CNN are ensembled using max, min, avg,
and fus operations and finally fed to a softmax classifier. The
same process has also been done with 2D-DWT subband im-
ages obtained by using Haar, db, and sym as mother wavelets
and results from all the methods are compared. From the
comparison, it can be concluded that order zero FBD (level-1)
with fus ensemble ResNet-50 CNN model has provided better
performance, with overall accuracy equal to 98.66%.
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