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Abstract—Traditional Chinese medicine has been used to treat
and prevent infectious diseases for thousands of years, and has
accumulated a large number of effective prescriptions. Deep
learning methods provide powerful applications in calculating
interactions between drugs and targets. In this study, we try
to use the method of deep learning to reposition molecules of
Chinese medicines (CMs) and the targets of syndrome coron-
avirus 2 (SARS-CoV-2). A deep convolution neural network with
residual module (DCNN-Res) is constructed and trained on KIBA
dataset. The accuracy of predicting the binding affinity of drug-
target pairs is 85.33%. By ranking binding affinity scores of 433
molecules in 35 CMs to 6 targets of SARS-Cov-2, DCNN-Res
recommends 30 possible repositioning molecules. The consistency
between our result and the latest research is 0.827. The molecules
in Gancao and Huangqin have a strong binding affinity to targets
of SARS-CoV-2, which is also consistent with the latest research.

Index Terms—SARS-CoV-2, Chinese medicine, deep convolu-
tional neural network, drug reposition

I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an unprece-
dented global threat caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The sudden out-
break and accelerated spreading of SARS-CoV-2 infection
have caused substantial public concerns [1]. At the time
of writing this manuscript, about 5,867,771 new infections
are reported daily. According to the World Health Orga-
nization (WHO), the COVID-19 outbreak has resulted in
55,928,327 confirmed cases including with 1,344,003 deaths
(https://covid19.who.int).

There is still no vaccine or drug specifically for COVID-19.
So, researchers place hope on drug repositioning to find effec-
tive drugs, such as Remdesivir. On the other side, researchers
also hope to find Chinese medicines (CMs) to fight the
virus. SARS-CoV-2 is closely related to the SARS-CoV virus.
The CoV spike glycoprotein (S Protein) is a key target for
vaccines, therapeutic antibodies, and diagnostics [2]. Envelope
protein (E Protein) of coronaviruses is a structural protein
existing in both monomeric and homo-pentameric form. It has

been related to a multitude of roles including virus infection,
replication, dissemination and immune response stimulation
[3]. And the exonuclease activity of Nsp14 provides possible
proofreading ability to RNA polymerase makes coronaviruses
different from other RNA viruses allowing coronaviruses to
maintain their relatively large genome size [4]. The viral 3-
chymotrypsin-like cysteine protease (3CLPro) enzyme con-
trols coronavirus replication [5] and researchers find that
ACE2 could be the host receptor for the virus [6]. In addition,
the membrane glycoprotein (M Protein) is also the main
structural gene of the virus [7]. Therefore, these six proteins
are selected as targets to reposition molecules of CMS.

Drug-target interaction is ideally used in the repositioning
of existing drugs. It can be divided into two categories: using
classification methods to predict probabilities of drug-target
interaction (DTI) and regression methods to predict drug-target
binding affinity values (DTA). Since it is difficult to determine
the negative samples in the classification methods, as well
as the drug-target binding information, such as dissociation
constant (Kd), can be directly used in the prediction of DTA.
Therefore, the prediction of DTA is more popular at present.

Deep learning methods provide powerful applications in
calculating interactions between drugs and targets. The Deep-
DTA model [8] uses convolutional neural network to represent
features of drug molecules and proteins to predict binding
affinity. It is considered to be the best prediction model
at present [9]. However, the loss of the model fluctuates
greatly when training for many times. The DeepDR [10]
model constructs multiple heterogeneous networks of drugs
and diseases, and learns their feature representations through
autoencoder, so as to reposition drugs for diseases. However,
it does not consider the side effects of drugs and diseases. The
GraphDTA model [11] is improved from the DeepDTA model,
and uses graph convolutional neural network to represent the
feature representations of drug molecules, but its calculation
is too large. If a subtle model is well trained by a large scale
of DT pairs data and obtains stable output, it can be used to
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Fig. 1. Molecular encoding diagram. The SMILES sequence is encoded by labels, so that each character is represented by a unique integer. After that, it is
expanded to a matrix of 100*64, which enters the convolutional layers learning the characteristic representations. The sequences of proteins are encoded in
the same way.

predict the binding affinity values between drugs and specific
targets. On the other hand, the prediction of the relationship
between targets and drugs has been widely calculated by
deep learning methods. However, the relationship between
molecules of CMs and targets has not been studied widely. At
present, most of the research on CMs still lies in the literature
mining of traditional Chinese medicine prescriptions and CMs.
For example, the latest SMGCN model [12] uses multi-graph
convolution network to recommend CMs in syndromes.

In this study, we implement the deep learning approach to
reposition CMs to six targets of COVID19, in order to find the
effective molecules of CMs for the virus. Specifically, a deep
convolution neural network with residual [13], [14] module
(DCNN-Res) is constructed based on the affinity data of drug
protein binding in KIBA dataset. The accuracy of DCNN-Res
model is 85.33%, slightly lower than that of DeepDTA model
(86.42%). However, the two models are compared with the
high-frequency CMs in 576 prescriptions [15], the coverage
of DeepDTA model is 79.7%, while that of DCNN-Res model
is 86.7%. Gancao and Huangqin rank first and second in the
recommended drugs respectively, which is also consistent with
the frequency of CMs obtained from 576 prescriptions.

II. MATERIALS AND METHODS

A. Data Source

KIBA dataset contains 229 proteins, 2111 drugs and binding
affinities of 50,181 drug-protein pairs [8]. Binding affinities
data of drug-protein pairs in KIBA are applied as training set.
KIBA dataset comprehensively contains three indexes related
to binding affinity: dissociation constant, inhibition constant,
and the half maximal inhibitory concentration. KIBA method

[16] is used to combine the three indexes to prevent the
disturbance caused by data loss.

Ren et al. have obtained 40 kinds of CMs from 576
prescriptions with the key words of “Warm diseases (Wen-
bing)”, “Pestilence (Wenyi or Yibing)” or “Epidemic diseases
(Shiyi)”, and select 35 CMs (including 433 molecules) with
oral bioavailability (OB) > 30% and drug-likeness (DL)
> 0.18 as candidate compounds for further analysis [15].
These traditional Chinese medicine molecules are stored in
SDF format are transformed into CSV format, from which we
get the SMILES sequence of each molecule for calculation.
Meanwhile, target proteins in form of FASTA sequences are
used for binding affinity calculations. The FASTA sequences
of six targets (S Protein, E Protein, M Protein, Nsp14, 3CLPro
and ACE2) are obtained from UniProt database.

B. Molecules Encoding

There are 64 unique characters in SMILES and 25 unique
characters in FASTA sequences [8]. We take the SMILES
sequence encoding of molecules as an example. Firstly, each
character in molecules is mapper into a unique integer by
using label encoding. In this way, a one-dimensional vector is
obtained. In KIBA dataset, the length of SMILES sequences
is concentrated in 0 to 100. So, the maximum length in the
model of the SMILES sequence is set to 100. Then, the one-
dimensional vector is stretched to a binary matrix of 100*64
by using “one-hot” encoding strategy. Each row represents a
symbol in the SMILES sequence. It is encoded with only one
significant bit set to ”1” and the rest of 63 positions are set to
“0”. The encoding process of a molecule in Renshen is shown
in Fig. 1.
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Fig. 2. The structure of DCNN-Res model.

As well, proteins in form of FASTA sequences can be
encoded in a similar way. The difference is that the longest of
protein sequences is 1000, and finally a matrix of 1000 * 25 is
obtained. If the length of SMILES sequence is less than 100
(or FASTA sequence is less than 1000), the row of matrix is
filled with “0”. The encoding strategy is the one widely used
in molecular information processing from [8].

C. DCNN-Res Model

The structure of DCNN-Res model is shown in Fig. 2. It has
two tunnels for processing SMILES and FASTA sequences,
each tunnel consists of residual module I and a max pooling
layer. And residual module I is composed of three convolu-
tional layers and an add layer. The activation function between
convolutional layers is ReLU. While the results from the add
layer are input to the max pooling layer after being activated
by the ELU function. The first convolution kernel is 32, the
second convolution kernel is 32*2, and the third convolution
kernel is 32*3 [8]. And the loss function is measured by Mean
Squared Error (MSE).

The max pooling layer compresses the learned features.
The feature representations of drugs and proteins are spliced
together, and enter into residual module II composed of
three dense layers, two dropout layers and an add layer. The
dropout layer is between two dense layers, and the third
dense layer is followed by the add layer. Residual module
II is responsible for nonlinear transformation of the extracted
feature representations and extracting the correlation between
features. The first two dense layers are followed by dropout
layer (dropout rate is 0.1), which randomly ”delete” hidden
neurons to prevent over fitting, and finally map to the output

space. The output of the model is a 433 * 6 matrix. Each
element of the matrix represents the binding affinity score of
the molecule and viral target.

III. RESULTS

A. DCNN-Res Model Training

The training set is 50181 pairs of drug and protein relation-
ship pairs in the KIBA dataset. The cross-validation method
is used in order to find the most appropriate parameters for
the model, rather than just a set of parameters. The training
set is divided into five equal subsets, four of which are used
as training set and one as validation set. Each subset is used
in turn as the training and validation set. The 256 small batch
data is used to update the weights of neural networks, as well
Adam optimization algorithm (with learning rate is 0.001) is
applied to optimize the model. And after 100 epochs, the result
of binding affinity scores between molecules and the targets
is generated.

In the training process, consistency index (CI) denoted in (1)
and (2) is used to evaluate the training performance, and MSE
[17] explained in (3) is used as the loss function to measure
the error of each epoch.

CI =
1

Z

∑
(δi>δj)

h(bi − bj) (1)

h(x) =

⎧⎪⎨
⎪⎩

1 x > 0

0.5 x = 0

0 x < 0

(2)
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Fig. 3. Training optimal result graph: (a) Diagram of the loss of training set
and validation set; (b) Diagram of the accuracy of training set and validation
set.

MSE =
1

n

n∑
i=1

(pi − yi)
2 (3)

where δi andδj represents the true binding affinity values of
the i-th and j-th drug-protein relationship pairs respectively;
while bi and bj represents the binding affinity prediction values
of the i-th and j-th drug-protein relationship pairs respectively.
It is denoted by Z the normalization constant, indicating
the number of data pairs with different labels. Function h
(x) is a segmented function, which measures the consistency
between the predicted value and the real value according to
the relationship between the predicted values of two groups
of drug-protein relationships. If bi is greater than bj , then the
value of function h (x) is 1. This indicates that the relationship
between the predicted value is consistent with the actual one.
If bi is less than bj , then h (x) is with value 0. It indicates
that the predicted value is completely opposite to the actual
value. If bi is equal to bj , then h (x) is 0.5, which means the
prediction result is not completely wrong (but not consistent
with the actual one). Meanwhile, n represents the number of
training samples (i.e. 50,181 drug-protein interaction pairs),
pi represents the prediction vector of the i-th drug-protein
relationship pair, yi denotes the real vector of the i-th drug-
protein relationship pair.

The model is trained five times in total. We select the group
of values the parameters with the best accuracy (concordance
index) in the validation set as the optimal parameters of the
model, and the results are shown in Fig. 3.

The accuracy of the model is 0.8533, MSE is 0.197. Deep-
DTA is considered to be the state-of-the-art methods [14, 8].
The accuracy of DeepDTA model is 0.8624, MSE is 0.1965.
The numerical results of the two models are equivalent. We
compare the CI and MSE of DCNN-Res and DeepDTA model
in five training processes with the best, worst and average
performance. The results are shown in Table I. The CI of
DCNN-Res model is slightly lower than DeepDTA method.
Although the best MSE still appears in DeepDTA, the worst
and average performance of MSE in DCNN-Res is better than
DeepDTA, which also shows the advantage of residual module.

B. The Recommended Repositioning Regulatory Molecules to
Targets

The inputs of DCNN-Res are the labels encoding of
molecules of CMs in form of SMILES sequences and the
targets of SARS-CoV-2 in form of FASTA sequences. These
labels enter a residual module to learn feature representations.
For repositioning regulatory molecules to the targets of SARS-
Cov-2, the trained DCNN-Res model is used to calculate the
binding affinity score of each potential drug-target pair. The
binding affinity scores of 433*6 DT pairs are calculated.

By ranking binding affinity scores of all the potential DT
pairs, we recommend six Chinese medicine molecules for each
target protein, in addition to seven molecules recommended for
the 3CLPro. After removing the repeated molecules, a total
of 31 molecules are recommended, which are distributed in
18 CMs. The results are shown in Table II. Here we only
give Compound CID of the molecules and the pinyin name
and Latin name of Chinese medicine to which it belongs.
The SMILES sequences of molecules can be obtained in Pub-
Chem database (https://pubchem.ncbi.nlm.nih.gov/) according
to these given Compound CID.

Among the 18 CMs, there are 10 CMs which also appear
in the top 20 list of CMs ranked by Ren [12]. And then, we
calculate the frequency of each Chinese medicine in Table
II. And CMs with the same frequency is classified into the
same category (see Table III). In the ranking recommended
by DCNN-Res model, Gancao and Huangqin are in the first
and second place respectively, which is consistent with the
results of Ren.

DeepDTA method is also used to recommend 35 Chinese
medicine molecules and 18 CMs. The molecules are shown in
Table IV, while the categories of CMs are shown in Table V.

In order to compare our results with those of Ren precisely.,
we use normalized discounted cumulative gain (nDCG) [18]
method to calculate the similarity of recommendation list. We
find the top 20 CMs in Ren’s result, among which Shigao
ranked 11 and Shexiang ranked 16 are excluded from our repo-
sitioning CMs set because they cannot be taken in large doses
for a long time. Therefore, the two CMs are also removed in
the calculation of similarity. According to our regulations, the
relevance grade (rel) [18] of CMs corresponding to ranking
which are recommended by DCNN-Res model and the top 20
Chinese medicine recommended by Ren is set to “4”. The rel
of CMs which exist in the top 20 CMs recommended by Ren,
but the wrong ranking traditional Chinese medicine are set to
“2”. The rel of CMs which are invisible in the top 20 of Ren’s
result are set to “0”. Here, the rels of 18 CMs recommended
by DCNN-Res model are given, which are 4, 4, 0, 0, 2, 2, 0,
0, 2, 0, 0, 2, 0, 2, 0, 2, 2, 4.

Equation (4) is used to calculate the discounted cumulative
gain (DCG). It aims to make the top results more influential.
After that, 18 rels are arranged in descending order, and (5) is
used to calculate the ideal discounted cumulative gain (IDCG).
It is the maximum DCG value under ideal condition. Finally,
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TABLE I
COMPARISON BETWEEN DCNN-RES AND DEEPDTA

Model CI MSE nDCG
Worst Average Best Worst Average Best

DeepDTA 0.8568 0.8589 0.8624 0.2327 0.2109 0.1965 0.797
DCNN-Res 0.8435 0.8476 0.8533 0.2113 0.2072 0.1970 0.827
Bold is the better one.

DCG is normalized to nDCG by (6).

DCG =

m∑
i=1

reli

log2(i+ 1)
(4)

IDCG =

|REL|∑
i=1

RELi

log2(i+ 1)
(5)

nDCG =
DCG

IDCG
(6)

where reli is the i-th rel value and m is the total number of
rels. REL represents the set obtained by descending rels, while

|REL| indicates the number of non-zero elements in the REL
set. RELi represents the i-th rel value after descending.

The nDCG of DCNN-Res model is 0.827, while that of
DeepDTA method is 0.797. Therefore, the result of DCNN-
Res model is more similar to those of Ren. The result also
shows that the deep learning network with residual module
has better effect in practical problems. It is shown in Table I.

The biggest difference between the deep learning model and
Ren’s method is the ranking of Renshen. Ren ranked Renshen
at 21. But in our results, its performance is similar to that
of Huangqin. We consider that every molecule of CMs are
chosen as the experimental object, rather than the complex
compound.

TABLE II
RECOMMENDED REPOSITIONING REGULATORY MOLECULES TO TARGETS OF SARS-COV-2 USING DCNN-RES MODEL.

Target Compound CID Chinese name Latin namea

S Protein

64982 Banxia Pinelliae Rhizoma
33934 Renshen Ginseng Radix Et Rhizoma
10207 Dahuang Rhei Radix Et Rhizome
10168 Dahuang Rhei Radix Et Rhizome

78407230 Dihuang Rehmanniae Radix
70698143 Baishao Paeoniae Radix Alba

E Protein

21599928 Renshen Ginseng Radix Et Rhizoma
64982 Huangqin Scutellariae Radi
182232 Huangqin Scutellariae Radi
441913 Shengma Cimicifugae Rhizoma

3286789 Mahuang Ephedra Herba
443023 Huoxiang Pogostemonis Herba

M Protein

285342 Renshen Ginseng Radix Et Rhizoma
44257530 Gancao Glycyrrhizae Radix Et Rhizoma
5280343 Huanglian Coptidis Rhizoma
5281781 Huoxiang Pogostemonis Herba
44575944 Zhimu Anemarrhenae Rhizoma
392442 Gancao Glycyrrhizae Radix Et Rhizoma

Nsp14

101866715 Fangfeng Saposhnikoviae Radix
442534 Shengma Cimicifugae Rhizoma

5281617 Mahuang Ephedra Herba2
5280343 Zhizi Gardeniae Fructus
5281703 Danggui Angelicae Sinensis Radix
14135325 Huangqin Scutellariae Radi

3CLPro

73402 Fuling Poria
15380912 Gancao Glycyrrhizae Radix Et Rhizoma
10336244 Gancao Glycyrrhizae Radix Et Rhizoma
5282184 Fangfeng Saposhnikoviae Radix
73299 Fuling Poria

5280863 Baishao Paeoniae Radix Alba
5280863 Zhizi Gardeniae Fructus

ACE2

5280343 Huanglian Coptidis Rhizoma
5317652 Gancao Glycyrrhizae Radix Et Rhizoma
5280343 Huoxiang Pogostemonis Herba
443758 Jiegeng Platycodonis Radix

5280343 Gancao Glycyrrhizae Radix Et Rhizoma
10212 Baizhi Angelicae Dahuricae Radix

a The Latin names by Chinese Pharmacopoeia (2015 Edition).



2311

TABLE III
CLASSIFICATION TABLE OF CMS RECOMMENDED BY DCNN-RES MODEL.

Category Chinese name of CMs Frequency
1 Gancao 5
2 Huangqin 3
2 Renshen 3
2 Huoxiang 3
3 Dahuang 2
3 Baishao 2
3 Shengma 2
3 Mahuang 2
3 Huanglian 2
3 Zhizi 2
3 Fuling 2
3 Fangfeng 2
4 Banxia 1
4 Dihuang 1
4 Zhimu 1
4 Danggui 1
4 Jiegeng 1
4 Baizhi 1

Bold indicates that the ranking is consistent with Ren’s results.
Italics indicates presence in the top 20 of Ren.

IV. DISCUSSION

In the public health emergencies like COVID-19, the public
place high hopes for traditional Chinese medicine. The com-
bination of CMs and deep learning is a new attempt of our
team.

In this study, a deep learning model DCNN-Res is con-
structed and trained by approved binding affinities from KIBA
dataset. The well-trained AI model are then used to predict the
binding affinity of 433 Chinese medicine molecules with 6
targets of SARS-CoV-2. The recommended result of DCNN-
Res models is compared with those of Ren using complex
network screening. We find that Gancao and Huangqin both
performed well in these models. Meanwhile, our results also
show that CMs play a therapeutic role in multiple targets.
In the following work, we will implement molecular docking
of the recommended molecules and conduct biological experi-
ments on the selection of effective molecules. Besides, merged
LSTM neural networks [19] is expected to encode drugs and
proteins. Membrane computing [20]–[22] and DNA encoding
[23]–[25] can be considered in future research to explore the
mystery of drug molecules acting on the human body as well.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Grant Nos. 61873280, 61873281,
61672033, 61672248, 61972416), Taishan Scholarship
(tsqn201812029), Natural Science Foundation of Shandong
Province (No. 2019GGX101067, ZR2019MF012),
Fundamental Research Funds for the Central Universities
(18CX02152A, 19CX05003A-6), Foundation of Science and
Technology Development of Jinan(201907116).

REFERENCES

[1] B. Shen, X. Yi, Y. Sun, X. Bi, J. Du, C. Zhang et al., “Proteomic and
metabolomic characterization of COVID-19 patient sera,” Cell, vol. 182,
pp. 59-72, July 2020.

[2] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh,
O. Abiona et al., “Cryo-EM structure of the 2019-nCoV spike in the
prefusion conformation,” Sci, vol. 367, pp. 1260-1263, March 2020.

[3] B. Tiloccaa, A. Soggiubc, M. Sanguinettide, G. Babinif, F. D. Maiode, D.
Brittia et al., “Immunoinformatic analysis of the SARS-CoV-2 envelope
protein as a strategy to assess cross-protection against COVID-19,”
Microbes Infect, vol. 22, pp. 182-187, May 2020.

[4] J. Jain, S. Gaur, Y. Chaudhary, and R. Kaul, “The molecular biology of
intracellular events during Coronavirus infection cycle,” Disease, May
2020.

[5] M. T. Qamar, S. M. Alqahtani, M. A. Alamri, and L. Chen, “Structural
basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from
medicinal plants,” J Pharm Anal, 2020.

[6] Y. Cao, L. Li, Z. Feng, S. Wan, P. Huang, X. Sun et al., “Comparative
genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2)
receptor ACE2 in different populations,” Cell Discov, vol. 6, February
2020.

[7] T. P. Velavan, and C. G. Meyer, “The COVID-19 epidemic,” TROP MED
INT HEALTH, vol. 25, pp. 278-280, February 2020.
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M Protein

5319252 Chaihu Bupleuri Radix
5312521 Gancao Glycyrrhizae Radix Et Rhizoma
19009 Huanglian Coptidis Rhizoma
91462 Xuanshen Scrophulariae Radix
98608 Baizhi Angelicae Dahuricae Radix
439533 Mahuang Ephedra Herba

Nsp14

5321865 Huangqin Scutellariae Radi
10715163 Chantui Cicadae Periostracum
6437642 Chantui Cicadae Periostracum
5318962 Fangfeng Saposhnikoviae Radix
156992 Huangqin Scutellariae Radi

5318980 Zhimu Anemarrhenae Rhizoma

3CLPro

107876 Dahuang Rhei Radix Et Rhizome
389888 Banxia Pinelliae Rhizoma
17897 Baizhi Angelicae Dahuricae Radix

21599928 Renshen Ginseng Radix Et Rhizoma
268208 Gancao Glycyrrhizae Radix Et Rhizoma

5486699 Chaihu Bupleuri Radix

ACE2

5318679 Gancao Glycyrrhizae Radix Et Rhizoma
10715163 Banxia Pinelliae Rhizoma

71629 Mahuang Ephedra Herba
10212 Zhizi Gardeniae Fructus

101577840 Shengma Cimicifugae Rhizoma
33934 Renshen Ginseng Radix Et Rhizoma

a The Latin names by Chinese Pharmacopoeia (2015 Edition).

TABLE V
CLASSIFICATION TABLE OF CMS RECOMMENDED BY DEEPDTA METHOD.

Category Chinese name of CMs Frequency
1 Gancao 5
2 Renshen 4
3 Huangqin 3
3 Baizhi 3
3 Mahuang 3
4 Chaihu 2
4 Zhizi 2
4 Banxia 2
4 Huanglian 2
4 Chantui 2
5 Dahuang 1
5 Fuling 1
5 Zhimu 1
5 Lianqiao 1
5 Tianhuafen 1
5 Xuanshen 1
5 Fangfeng 1
5 Shengma 1

Bold indicates that the ranking is consistent with Ren’s results.
Italics indicates presence in the top 20 of Ren.


