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Abstract— In this paper, we present a model of Covid-19 
pandemic spreading simulated by a multi-agent system and using 
fuzzy sets. This paper focuses on two risk factors: age and body 
mass index. By using real data of people from French West Indies,
we model the rate of risky population could be critical cases, if 
neither social distancing nor barrier gestures are respected. The 
results show that hospital capacities are exceeded.
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I.� INTRODUCTION

COVID-19 is an unprecedented pandemic by the speed 
and global scope of its dissemination.  Most countries on the 
planet were not prepared to face this disease and were 
surprised by its spread across their territories, especially for 
low and middle-income countries, like most island countries 
for example [1]. Thus, in addition to the advice given by 
national and international colleges of scientists specializing in 
biology and medicine, simulation and forecasting tools make 
it possible to manage the crisis in the short, medium and long 
term and to curb the infection [2]. The approaches used to 
carry out the simulations are many and varied (see for example 
[57-60]). Many of these tools come from mathematical 
modeling, using for example, the SIR model and its extensions 
(see for instance [3][4][45][46]) or linear regression [5]. Some 
come from the fields of artificial intelligence like neural 
networks for instance: deep learning [6] or fuzzy neural 
networks [7]. And others are mixed approach using both 
mathematical and computer sciences tools [8]. Simulations 
focusing on the effect of lockdown or the effects of its absence 
or its reduction, are based on similar approaches: SIR model 
[9][10], Bayesian approaches [11] or multi-agent system [12]. 
In this paper, we propose to use fuzzy sets, aggregation 
operators and Multi-Agent System (MAS) to simulate the 
effect of non-compliance with barrier gestures after the 
removal of confinement. The interest of this approach is the 
combination of fuzzy sets, aggregation operators and MAS to 
simulate the effect of COVID-19. The simulation is made in 
an island context by taking the example of the archipelago of 
the islands of Guadeloupe, in the Caribbean. The simulation 
focus on the level of severity of disease (mild, severe or 
critical) for infected people. A special feature of this 
simulation is the fact that we have focused on two real risk 
factors which are essential to assess the severity of infected 
people: age and Body Mass Index (BMI). The paper is 
organized as follows. We present our approach in the 
next

section. Then, the data used for the simulation is presented. In 
the next section, we present the experimental results. Finally, 
a short discussion is made before concluding. 

II. SIMULATIONS ON THE EFFECTS OF NO LOCKDOWN 

A. Related works
Simulations on the effects of lockdown mainly estimate

the number of deaths if there had been no lockdown or very 
few barrier measures [9][13]. These approaches generally 
have a global approach and do not take account of risk factors. 
For instance, the bayesian approach in [13] is global and have 
no particular risk factor and the SIR approach in [9] only 
considers age as risk factor. In [12], a MAS is proposed to 
simulate the effects of lockdown, by introducing age and 
comorbidity (cardiovascular diseases, diabetes...) as two risk 
factors; these risk factors are introduced in the form of 
probabilities. Our approach also uses risk factors and MAS, 
but the risk factors are introduced with fuzzy sets in order to 
be closer to reality. 

B. General presentation of the approach
In our approach, we propose to focus on two risk factors

linked to COVID-19 by introducing them as fuzzy subsets in 
a multi-agent system, namely age and BMI. The choice of 
these two risk factors is driven by the medical and statistical 
analysis. Older age is the main risk factor for the severe or 
critical case of infected people [14-17] and obesity (measured 
by BMI) seems to be the second main risk factor [17-20]. The 
main objective of the approach proposed here is to assess the 
grouping of infected people into the three categories (mild, 
severe or critical) if no barrier measure or social distancing 
was observed after the end of the lockdown. We are especially 
interested in the number of critical cases, particularly in a 
context where many countries do not have enough Intensive 
Care Units (ICU) to manage the crisis [1]. Thus, we use a 
MAS to modelise the population of a real archipelago, the 
islands of Guadeloupe, French West Indies, where the number 
of ICU is limited and the proportion  of obesity is growing like 
for a lot of island regions [21][22]. The demographic (age), 
geographic and BMI characteristics of each agent were not 
chosen randomly, but according to statistical data from 
Guadeloupe. In addition, the use of fuzzy subsets to model age 
and BMI has at least two advantages: 
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� It allows to be more realistic at the borders between 
different classes. For example for BMI, if we keep 
classic subsets, an individual with a BMI equal to 
29.9 is in the group of overweight people, while an 
individual with a BMI equal to 30 is in the group of 
obese people whereas the difference between the two 
is only 0.1 (for more details see [23,24]) 

� It makes it possible to combine the values of risk 
factors (age and BMI) by using fuzzy aggregation 
operators which reflect medical reality. For example, 
if an infected person is of advanced age and is obese, 
we know that these two elements are aggravating 
factors and that he will certainly develop a serious or 
even fatal form of COVID-19. For such values of the 
two factors (advanced age and obesity), a fully 
reinforced (or at least positively reinforced) operator 
will represent this aspect of aggravation of the 
disease. 

C. The used model in MAS 
For the MAS, we used and modified a model implemented 

in NetLogo plaform [25] called epiDEM Travel and Control 
[26]. epiDEM Travel and Control is based on epiDEM 
basic[47] (see also [48][49]), an epidemic model developed on 
NetLogo. The choice of the well-known NetLogo platform 
and an open access multi-agent epidemiological model is 
justified by the ease of adapting and redoing the simulation, 
especially for countries with low resources. The epiDEM 
Travel and Control model focuses on the spread of a disease 
on agents who can travel (or not) between different regions 
while observing infected, healed and possibly quarantined 
people. We put the emphasis on infected people by classifying 
them into 3 groups (mild, severe, critical) according to their 
age and their BMI.  In our modified version, each agent 
represents a group of persons in the same age range according 
to the demographic data. We fit the parameters of the original 
model to allow free movement of people whether or not they 
are infected (no social distancing or quarantine). Details are 
given in the section on experimental results. 

D. Fuzzyfication of age and BMI 
Let’s recall that a classical subset A of X is defined by a 

characteristic function which takes the value 0 for the 
elements of X not belonging to A and 1 for those which belong 
to A (see equation 1).  

  χA : X → {0, 1}  ����

A fuzzy subset B of X is defined by a membership function 
which associates to each element x of X a degree u (x) 
between 0 and 1, with which x belongs to B (see equation 2).  

 fB : X → [0, 1]  ����

Let us recall that we search to cluster infected people in 3 
groups (or classes): mild, severe or critical. The characteristics 
of these groups are as follows: 

� the mild group brings together people with mild 
symptoms and asymptomatic cases.  

� the severe group brings together people with more 
serious conditions may possibly require 
hospitalization for observation but without going 
into intensive care.  

� the critical group represents all those whose 
condition requires hospitalization in intensive care 
with possibly a vital prognosis.  

In order to classify the level of the severity of COVID-19 
for infected people in 3 groups, we use a fuzzyfication of the 
two risk factors which are age and obesity. As stated above, 
older age is the main risk factor for the severe or critical case 
and obesity is the second main risk factor. Generally, in 
demographic data, the population is divided into three age 
groups: young people, adults and the elderly. The severity of 
COVID-19 disease roughly corresponds to these three groups 
[14-17]: young people who are infected often have a mild 
form of the disease, adults generally have a more serious form 
and correspond to the group of severe patients, and elderly 
people represent the majority of critical cases. Obviously, this 
classification does not take into account other factors (illness, 
physical form, genetic heritage...). Thus we propose to use a 
fuzzyfication of the 3 groups of level of severity of the disease 
(in function of the age), which corresponds substantially to a 
classic fuzzyfication of the 3 age groups (see [44] for 
instance), as illustrated in Figure 1. Regarding the risk 
associated with obesity, work has mainly observed that this 
obesity has led to a form of criticism of the disease, even for 
people who are not old [17-20]. BMI makes it easy to 
characterize obesity (see Table I).  

TABLE I.  NUTRITIONAL STATUS ACCORDING TO BMI  
 (SOURCE: WHO - WORLD HEALTH ORGANIZATION) 

Nutritional status Value of BMI (kg/m2) 
Underweight < 18.5 
Normal weight 18.5 – 24.9 
Overweight (Pre-obesity) 25.0 – 29.9 
Obesity ≥  30.0 

  

However, it is more difficult to characterize mild and severe 
cases compared to the BMI corresponding to overweight 
people. Indeed, in some studies [27],  overweight (also called 
pre-obesity) is considered to be a form of obesity and poses a 
risk of a critical case, while in other studies [28], the emphasis 
is placed on strict obesity as a critical form factor of disease. 
This imprecision further justifies the use of fuzzy subsets. 
Anyway, in the fuzzification of the BMI that we used, the 
values of the BMI corresponding to the overweight are placed 
in the group of severe forms. The fuzzification that we offer is 
based on the work of a medical team [23, 24] who proposed a 
first fuzzification of BMI (see figure 2). Our fuzzification of 
the 3 groups of level of severity of the disease according to 
BMI is presented in the figure 3. 

 
Fig. 1. Membership functions of the 3 classes in function of age (in years). 
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E. Aggregation operators for the evaluation of level of 
severity 
The combination of risk factor values is a crucial step in 

assessing the severity of the disease. In [12], a MAS is 
proposed to simulate the diffusion of COVID-19, and two risk 
factors are introduced in the form of “death probability”. In 
this approach, the authors systematically choose the maximum 
between the two death probabilities to characterize an agent. 
In this article, we use fuzzy aggregation operators [30][31]  to 
combine the degrees of membership for each of the groups 
(mild, severe and critical). We propose an adaptive approach 
with several fuzzy fusion operators according to the values of 
the membership functions of the 3 classes (mild, severe, and 
critical). 

 
Fig. 2. Membership functions of BMI (UW=Underweight, T=Thin, 
OW=Overweight, OI=Obesity of grade I, OII = Obesity of grade II, 
OIII=Obesity of grade III also called morbid Obesity), for details, see 
[23][24].  

 
Fig. 3. Membership function of the 3 classes in function of BMI 

 

When an agent is infected, the main task of this approach 
is to determine the degree of severity of the disease by 
computing the membership degree to each of the 3 classes and 
placing the agent in the class with the highest membership 
degree. The process is as follows.  

For the two classes mild and severe, the degrees of 
belonging are combined with an arithmetic mean (see 
equation 3): 

 ( fage(x)���fBMI(x) ) / 2��� �	��

where fage is the membership degree in relation to the age and 
where fBMI is the membership degree in relation to the BMI for 
the considered class.  

The critical class is treated in a special way because of the risk 
factors and co-morbidities that strongly influence this class. 
With regard to the critical class, several cases are 
differentiated according to the value of the degrees of 
membership, taking 0.5 as the pivotal value. Indeed, whatever 
the class, if the value of the degree of membership is strictly 
less than 0.5, then the insertion of the agent in this class is 
unlikely to take place. If the value of the degree of 
membership is greater than 0.5 then integration into this class 
will be very likely to take place. 

Thus, for the critical class, the considered cases are as follows: 

� if the two values of the membership degrees for the 
critical class are strictly less than 0.5, then the data 
fusion is done using the arithmetic mean (see 
equation 3), similarly to the mild and severe classes 

� if only one of the two values of membership degree 
for the critical class, is greater than or equal to 0.5, 
then the combination of the data is done using a mean 
type aggregation operators called OWA, Ordered 
Weighted Averaging [42] (see equation 4):  

 ( 0.3 * fi(x)��
���* fj(x) ) (4)�

where i, j = {age, BMI} and   fj(x)  ≥ 0.5 > fi(x). 
The value 0.7 is the weight for the membership 
degree greater than or equal to 0.5, and the value 
0.3 is the weight for the membership degree for the 
membership degree is strictly less than 0.5. The 
choice of these weights is leaded by medical 
observations. Actually, for older persons, the 
proportion, or frequency of occurrence, or the risk 
of being a critical case is at least 2 times higher 
than for other age groups [28][50][51]. Likewise 
for obese people, the proportion or frequency of 
occurrence or the risk of being a critical case is at 
least twice as high as for non-obese people 
[52][53]. The value 0.7 being more than twice as 
great as 0.3, these weights represent the risks 
caused by old age or obesity. Thereby, the most 
important weight (0.7) assigned to the degree of 
belonging greater than or equal to 0.5 implies, for 
example, that biologically, a comorbidity or 
immunosuppression linked to age or BMI can 
worsen the patient's condition.�

� if the degrees of membership are both greater than 
or equal to 0.5, then the aggregation is done using a 
fully reinforced operator [32], reflecting the fact 
that the two risk factors (age and BMI) greatly 
worsen the patient's condition. An operator L is 
fully reinforced if it is positively reinforced and 
negatively reinforced. An aggregation operator L 
whose arguments are in the interval [0, 1], has the 
property of positive reinforcement if when all its 
attributes are affirmative (i.e. greater than or equal 
to 0.5) it verifies:�

 L(f1,...,fn) ≥ max (L(fi))  (5)�
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where fi, i=1,...,n is a membership degree. 
Similarly, an aggregation operator L whose 
arguments are in the interval [0, 1], has the 
property of negative reinforcement if when all of 
its attributes are non-affirmative (i.e. less than or 
equal to 0.5), it verifies:�

 L(f1,...,fn) ≤ min (L(fi))  (6)�

We propose to use the triple π operator presented in 
[32] which is a full reinforced operator (see 
equation 7): �

 π fi(x)  / ( π fi(x) + π (1 – fi(x)) )  (7)�

where π is the multiplication operator. The use of 
the triple π operator for the fusion of the two 
membership degree gives the following equation: �

(fage(x)* fBMI(x)) / ( (fage(x)* fBMI(x)) +(1 – fage(x))* 
(1 – fBMI(x)) )   (8)�

Such a reinforced operator translates the excess 
morbidity caused by obesity and aging. 

This adaptive approach to data fusion for belonging to the 
critical class enables to target in detail the patients with this 
level of severity of the disease. Once the aggregations have 
been computed, the class with the highest global membership 
degree is assigned to the infected patient. If several classes 
have the same global membership degree then the order of 
priority of classification is as follown: 1) class of critical cases, 
2) classes of severe cases, 3) class of mild cases. This choice 
can be seen as a very pessimistic approach. However, some 
studies [54, 55] show that the estimates of the total number of 
cases and of the number of deaths (therefore from critical 
cases) are underestimated (especially because of the limited 
number of tests). Thus the approach that we propose can take 
into account cases not counted. 

III. APPLICATION OF THE PROPOSED APPROACH 

A. Fitting of the existing MAS epiDEM model 
Before we present the results, the adaptation of the 

NetLogo epiDEM Travel and Control model [26] is presented 
for the simulation.  It should be remembered that the 
simulation represents a situation of end of lockdown, without 
respect for social distancing or barrier gestures. As a result, 
agents can circulate freely, and infected people transmit the 
disease to everyone with whom it comes into contact. In the 
epiDEM Travel and Control model, several parameters are 
used to manage the isolation, hospitalization and vaccination 
of infected people: parameters average-isolation-tendency, 
average-hospital-going-tendency, initial-ambulance, 
inoculation-chance are all set to 0. The parameters relating to 
the mobility of agents are all set to 1 so as not to restrict the 
movements of these agents: travel-tendency, intra-mobility 
are set to 0 and the parameter travel (considered as boolean) is 
set to 1. There is also an option to create a network of random 
links between agents but this parameter has not been activated 
(for more details see [26]). Regarding the characteristics of 
COVID-19, the parameters are adapted to be directly linked to 
the disease. Average-recovery-time representing the average 
duration of the disease, was put around 40 days (37 days more 
exactly) according to medical data [14]. Infection-chance 
(probability of disease transmission from one individual to 

another) has been set to 1, since the virus is very contagious. 
Finally, recovery-chance (probability of an individual's 
recovery under certain conditions) was set to 0.8 (see [15]). 

B. Modeling and introducing the real data from 
Guadeloupe in the simulation 
The real data used in spread simulation are coming from 

statistics concerning the population of Guadeloupe (FWI). For 
demographic information regarding age, data from the 
Guadeloupe archipelago in the Caribbean were recovered 
from data from the National Institute of Statistics and 
Economic Studies of France [33] and the National 
Observatory of Fragility [34] (data from 2015 and 2017). All 
of this age data is public and available on the web. For 
demographic information concerning BMI, the data come 
from a medical thesis dealing with obesity in Guadeloupe. The 
age and BMI data [35] were not distributed over the same age 
intervals, we gathered the data and organized it to harmonize 
according to the age groups presented in the table. The 
393,000 inhabitants of the Guadeloupe archipelago were 
modeled by 3,924 agents. Each agent represents a group of 
around 100 people. These agents were distributed in 4 zones 
representing the different islands of the archipelago: 3 
rectangular zones for the smallest islands (Les Saintes, Marie-
Galante, Désirade) and the rest for Guadeloupe (composed of 
two very close islands). The distribution was made respecting 
the demography of each island, according to age. More 
specifically, an agent represents a group of 100 people of the 
same age range. 

The age ranges used for the population distribution that we 
used to harmonize the age and BMI data are as follows: [0 - 
24 years], [25 -54 years], [55 - 64 years], [65 years and over] 
(see example of demographic data  in table II). 

TABLE II.  EXAMPLES OF DEMOGRAPHIC DISTRIBUTION (NUMBER OF 
INHABITANTS) BY AGE RANGE FOR TWO ISLANDS IN THE ARCHIPELAGO. 

Age range in years Island of 
Désirade 

Island of 
Marie-
Galante 

[0 – 24] 374 2 876 
[25 – 54] 562 3694 
[55 – 64] 220 1605 
[65 and over] 289 2576 

  

For all the islands of the archipelago, the distribution of the 
BMI by age group is given in table III. 

TABLE III.  PERCENTAGE DISTRIBUTION OF DIFFERENT NUTRITIONAL 
STATUS (FROM BMI) ACCORDING TO AGE RANGES. 

Age 
range in 

years 
Underweight Normal 

weight Overweight Obesity 

[0 – 24] not available 
[25 – 54] 2,43 48,56 36,73 12,26 
[55 – 64] 3,6 33,9 46,4 16,1 
[65 and 
over] 

4,2 44,4 31,9 19,5 

  

The distribution of nutritional status of the agents of each 
island is computed according to percentage of the table III. 
Note that data for the 0-24 year interval was not available.  To 
simulate the conditions for the end of confinement on the 
Guadeloupe archipelago, we have introduced the number of 
suspected cases rather than confirmed cases on these islands. 
Indeed, the number of tests available on this territory being 
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very limited, the 155 confirmed cases did not seem to 
correspond to reality. The feedback from the town doctors 
[37][38] and the mathematical models [39][40] allow us to 
estimate the number of suspected real cases around 2000. We 
therefore introduced 20 infected agents into the simulation and 
we evaluated the number of sick agents after 30 days. 

C. Implementation 
The program was written and executed on the Netlogo 

platform. The number of runs for a simulation often varies, 
depending on the discipline and experience. For example, in 
two simulations [12][41] based on MAS, the number of 
simulations is completely different: in [41] , Carbo et al. 
performed a simulation using NetLogo (which is not linked to 
COVID-19) and did 30 runs of simulation; in [12]  Bouchnita 
and Jebrane [12] proposed a simulation modeling the COVID-
19 and did 3 runs of simulation. We have tested 1000 runs of 
the simulation of 30 days (without parallelism) on a computer 
cluster with 35 nodes (32 Intel dual-processor “compute” 
nodes, 12 or 16 cores per node, 64 GB or 128 GB of RAM per 
node, and 3 “graphics” nodes of the same type as the compute 
nodes but with an NVidia graphics). The purpose of this large 
number of simulation runs is to avoid falling into a local 
minimum. The CPU time for the 1000 numerical simulations 
of the disease transmission in 30 days is around 4.5 hours on 
the computer cluster. 

D. Experimental results 
 We present here the numerical results for the 1000 runs of 
the simulation of transmission of COVID-19 in 30 days, in the 
Guadeloupe islands, after then end of the lockdown, without 
social distancing, nor barrier gesture, with an initial number of 
20 infected agents for a total population of 3,924 agents. The 
first results we present are the average values (from 1000 
experiments) of the number of people infected and the 
different levels of severity of COVID-19. In Table IV, we can 
see that without barrier measures and social distancing, the 
number of people infected would be around 15,900 people 
(159 agents), or around 4% of the total population of 
Guadeloupe. But it is especially the number of critical cases 
which is alarming since 4000 people would be in a critical 
state requiring care in the intensive care unit while 
Guadeloupe currently has only about sixty resuscitation units. 

TABLE IV.  MEAN NUMBER OF INFECTED PEOPLE ON THE 1000 RUNS 
OF SIMULATION. 

Levels of severity  Mean number of infected agents 
Mild 40.457 

Severe 57.323 
Critical 61.869 
Total 159.649 

 

We also compute the mean and the standard deviation of each 
level of severity for the two risk factors, age and BMI. The 
results are given in table V and provide interesting results. 

TABLE V.  MEAN AND STANDARD DEVIATION OF EACH LEVEL OF 
SEVERITY FOR THE TWO FACTOR RISKS, AGE AND BMI. 

Levels of severity  
Age (in years) BMI 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mild 17.73 15.3 15.03 7.87 
Severe 47.27 19.97 24.28 3.66 
Critical 66.39 24.20 30.17 7.58 

 

For instance, the mean age for the critical cases is 66.39 years, 
with a standard deviation of 24.20 that means a person of 40 
years old can be in critical case because of he is obese. 

We also estimated the link between the number of critical 
cases and the total number of patients, using a simple linear 
regression. In the figure 4, we see that the model is linear and 
that it is robust since it does not depend on the number of 
experiments. 

 
Fig. 4. Linear regression (in red) of critical cases on total cases (for the 1000 

runs). The abscissa axis represents the total number of cases and the 
ordinate axis represents the number of critical cases. 

The value of the slope coefficient of the straight line (0.2422) 
indicates that in the simulation the number of critical cases 
represents about a quarter of the total number of infected 
people. This proportion is close to certain real data [14]. In 
addition, if we look at the proportion of age groups at the level 
of the critical cases presented in the table VI, we see that the 
vast majority of these critical cases are elderly (which is 
coherent with the results of table V). However, it should be 
noted that more than 30% of these critical cases are people in 
the adult age group (25-55 years). Again, although this 
proportion of adults among critical cases seems high, it is very 
similar to some medical data [28] observed in reality. 

TABLE VI.  MEAN NUMBER AND PERCENTAGE OF CRITICAL CASES BY 
AGE GROUP (FOR 1000 RUNS OF THE SIMULATION) 

 Critical cases 

Age group Mean number of 
infected agents Percentage

youth 0,228 0,57 
adults 14,869 36,75 

the elderly 25,36 62,68 
 

We also carried out another series of 1000 runs of the 
simulation by changing the initial number of infected people 
with a more pessimistic view since for these 1000 other runs, 
the initial number of patients was 50,000, that is to say 500 
infected agents in the system. Again we performed a linear 
regression (see Figure 5) and the value of the slope coefficient 
of the line was 0.3487, which is quite close to the value found 
for the slope coefficient with 20 infected agents. Thus, the 
proportion of the number of critical cases in relation to the 
total number of infected cases does not seem to depend on the 
initial number of patients: the method seems to be stable and 
gives no chaotic values.

y = 0.2422x + 1.7906
R² = 0.7578

0

20

40

60

80

100

0 100 200 300 400

Linear regression of critical cases on total 
cases
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Fig. 5. Linear regression (in red) of critical cases on total cases (for the new 

1000 runs) for 500 infected agents initially. The abscissa axis 
represents the total number of cases and the ordinate axis represents the 
number of critical cases. 

 

IV. DISCUSSION 

We have presented the first results for a simulation of 
COVID-19 spread in island context and without social 
distancing, nor barrier gesture. The results show that 15,900 
people (159 agents), or around 4% of the total population of 
Guadeloupe can be infected, and especially the number of 
critical cases can be alarming since 4000 people would be in 
a critical state requiring care in the intensive care units. One 
could say that this approach is exaggerated, very pessimistic 
and unrealistic. However the statistics of the pandemic on this 
archipelago during the last weeks, show that this simulation is 
more and more close to reality. Indeed, the experimental 
results of our approach were carried out in July; and since the 
end of August, the number of infected people has exceeded 
1,000 cases per week, as shown in Figure 6. As of this writing, 
the number of cases is over 5,000. Restrictive measures have 
been taken by local and national authorities but if these are not 
respected, the average of the total number of cases in our 
simulation (15,900) could be reached within a few weeks. The 
approach proposed in this paper therefore seems to be 
relevant. 

 
Fig. 6. Cumulative number of COVID-19 cases in the archipelago of 

Guadeloupe from week 35, at the end of August 2020,  to week 40 at 
the end of September 2020 (data source: see [56]). 

 

We focus on two risk factors, age and BMI, but other 
parameters could have been taken into account. For example, 
in France there is a fragility factor which takes into account 

the health and socio-economic aspects of individuals. This 
factor was not taken into account in this simulation and it 
could have refined the simulation. Furthermore, to merge the 
information, we used a simple arithmetic mean as well as an 
OWA, and a fully reinforced operator, the triple Pi. Other 
operators could have been used, such as the mean triple Pi [43] 
instead of the arithmetic mean. All these elements can vary the 
results of the simulation but the main objective of this 
simulation was to show the consequences of the end of 
confinement without respecting barrier gestures. For an 
archipelago like Guadeloupe, the consequences could have 
been dramatic, with a number of critical cases requiring a UCI 
far greater than the number of beds and which would have 
caused the local hospital system to explode. The simulation 
therefore confirms that it is necessary to respect social 
distancing and barrier gestures. The second waves or worrying 
clusters in certain regions of the world come to co-support 
these results.  

V. CONCLUSION 

In this paper, we have presented an approach allowing to 
model and simulate the diffusion of COVID-19 in an insular 
context, considering a non-respect of social distancing and 
barrier gestures. The interest of this approach is the 
combination of fuzzy sets, aggregation operators and MAS to 
simulate the effect of COVID-19. The simulation focus on the 
level of severity of disease (mild, severe or critical) for 
infected people and two real risk factors (Age and Body Mass 
Index) which are essential to assess the severity of infected 
people. Another originality of this simulation is of using real 
data. Data from the Guadeloupe archipelago have been used 
and the results show that non-compliance with barrier gestures 
and social distancing could lead to a very large number of 
patients, in particular people in critical condition, beyond of 
the  capacities in intensive care beds for island regions. The 
interesting result is the prediction of this modelling. Without 
confinement one quart of risky population could have been in 
medical reanimation. Of course, this model focuses only on 
two parameters to characterize risky population, but for the 
moment they are the most representative for epidemiologists 
in the case of Covid-19.  Among the perspectives envisaged, 
the use of other risk factors, based on social conditions and 
autoimmune diseases represented on the form of fuzzy sets are 
considered to be introduced in the model.  
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