
Automating the Recognition of
Stress and Emotion:

From Lab to Real-World Impact

I t was the 1990s, and I was a new professor at

MIT, trained in electrical engineering and

computer science. I was very much enjoying

my work on mathematical modeling and per-

ceptual intelligence—enabling computers to

perceive the varied visual and auditory streams

that we humans perceive. Over vacation, I read

Richard Cytowic’s The Man Who Tasted Shapes

(MIT Press, 1993). The book described synesthe-

sia, a kind of multimedia experience inside

your brain, where people experience involun-

tary associations between two senses—for

example, they might feel shapes in their hands

while tasting foods. More commonly, people

see color-letter associations that are stable

across a lifetime, where an A might be red, a B

green, and so on. The bizarre sensory associa-

tions should have involved the perceptual areas

of the brain I was modeling computationally, in

the cortex—or so I thought. But they didn’t.

They involved areas deeper in the brain.

These deeper regions had been ignored in

computational perception, because scientists

figured that most intelligence was “up in the

cortex.” The deep-brain regions were involved

in emotion, which generally wasn’t associated

with intelligence. It was easy to see why people

weren’t interested in these regions. However,

although I wasn’t interested in emotion and

had no desire to become associated with it—an

association that I figured would undo all of my

hard work in building a respectable reputa-

tion—I had to admit that there were more path-

ways going from these deep “emotion” regions

of the brain to the regions I was modeling than

vice-versa. So, I decided to (quietly) learn more.

The rest of the story of my personal adven-

tures, which led to a book, Affective Computing

(MIT Press, 1997), is told in the opening article

of what became the first international journal

of the new field, IEEE Transactions on Affective

Computing.1 Here, I want to describe newer

adventures, where our work moved from re-

search best characterized as, “Is this even possi-

ble?” to “Aargh, I am getting too many emails

asking for the technology we created, and the

requests are for great causes; how do I take care

of these and get back to research?”

Measuring the Physiology of Stress
Since the late 1800s, scientists have debated

what emotion is—in particular, whether emo-

tions are cognitive constructs, or whether they

have a unique physiological pattern associated

with them. A common belief was that there was

just “general arousal” in the body that provided

a feeling, and all the things that differentiate

emotion—for example, whether it is positive or

negative—were simply cognitions. Along with

Jennifer Healey, my first PhD student willing to

work on emotion, I set out to find reliable ways

to elicit a set of emotions and see if, by measur-

ing multiple modalities (such as muscle ten-

sion, respiration, skin conductance, and heart-

rate variability), we could identify any patterns

in emotion that could be recognized reliably

within a person.

Understanding the Limits of Lab Data

In our first person-dependent, long-term effort

with lab-based measurements, we successfully

collected 30 days of data and automated the

recognition of eight emotions (including neu-

tral) with 81 percent accuracy (see Figure 1).2

This was a breakthrough, showing that some

kind of automated emotion recognition was

possible. We also showed that it wasn’t just

arousal being recognized.
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I spoke with our experimental subject to ask

about her experiences. She said the anger she

felt in the lab was nothing compared with what

she felt when she left the lab. Although we

could elicit some aspects of emotion in the lab,

we needed to study it in the real world, where

“what matters to a person” happens. My stu-

dent, Steve Mann, had been building wearable

computers and cameras that modified his per-

ceptual experience. Healey and I decided to

build the first “wearable affective computer”

that could measure your affective state in real

life, modify your computer’s response, and

hopefully improve your affective experience.

Studying Real-World Data

Stress is a key component of affective experi-

ence—and a highly relevant emotion at MIT

and in Boston (in particular, in Boston driving).

The physiology of stress is complex. There is no

one gold standard for “truth,” so we set out to

measure it in multiple ways, with video, multi-

ple physiology channels, self-reported feelings,

and observer ratings of Boston drivers and of

the complexity of their driving situations.

Although the driving situation is nicely con-

strained because the drivers are seated behind

the wheel of a car, they still move a lot, making

it a challenge to get clean data. Healey built our

sensor system and structured a task with a series

of resting and driving segments, some relatively

relaxed and some enormously stressful (see

Figure 2). We only had one driver get in an acci-

dent, and everyone was fine. We eventually

obtained the world’s first set of rich real-world

multimodal driver stress data over 24 trips

across Boston and surrounding towns. Impor-

tantly, we also collected contextual data,

including bumpy encounters with deep pot-

holes, and near encounters with pedestrians

who strolled out in front of the car, nowhere

near a crosswalk.

What did we learn about stress? Boston driver

stress had nothing to do with the (reasonable)

speeds people drove (city or highway) in our

study, and a lot to do with uncertainty within a

situation and the complexity of the context.3

Combining multiple ground truths, we were

able to examine low-, medium-, and high-stress

conditions. Overall, our data showed that a

single modality—skin conductance—measured

from the electrodermal activity (EDA) gave the

highest correlation with our multiple measures

of stress. EDA reflects activity in the sympathetic

nervous system branch of the autonomic nerv-

ous system—a kind of “autonomic stress.”4

Heart rate and heart-rate variability, which also

capture different kinds of autonomic stress, were

also sometimes helpful.

With this knowledge, in 2013 we moved on

to new work, as I started learning more about

the enormous stress and anxiety experienced

by many people with autism.

Building a Wearable EDA Sensor
People with heightened sensitivity to sounds,

fluorescent lights, fragrances in everyday

Figure 1. Jennifer Healey demonstrates the first

affective measurement system at MIT, used to

collect data to automatically identify eight

emotions from a person over 30 days.
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Figure 2. Our first automated system to

automatically measure driver stress.3
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products, eye contact, and other environmental

stimuli, can easily become overloaded and can

“shut down.” Many people with autism suffer

from such overload, which can also lead to

behaviors that are injurious to the self or others.

So, in an effort to better understand those with

autism, I decided to build a wearable EDA sen-

sor that could continuously measure and wire-

lessly communicate their autonomic stress.

Together with Rich Fletcher and a team of

students, I built sensors into sweatbands worn

on wrists and ankles. We were amazed to see

the measured data climb before some melt-

downs and during tasks that increased cogni-

tive or physical exertion. We watched the skin

conductance level fall, like a slide on a play-

ground, with repetitive movements like swing-

ing or rocking. Suddenly, a nonspeaking person

had a way to show what might be stressing her

out, or bringing on calm.

Is This Possible?

Shortly before the winter break, an undergradu-

ate asked me if he could borrow one of our sen-

sors to see what was causing stress for his

autistic little brother, who is nonspeaking. I

said, “Sure, take two,” since back then the wires

would often break. He put one on each wrist of

his little brother and watched the data stream

wirelessly in real time.

Later, as I sat in my office reviewing the boy’s

data, I thought, “This day looks pretty typical,”

and “normal variation here (yawn).” Both wrists

transmitted signals that went up with mild

autonomic stressors, and down with relaxation.

Usually, the two sides of the body responded

with similar signals, and everything looked nor-

mal. Then I clicked to see the next day’s data,

and my jaw dropped. One wrist showed a peak

that was greater than 10 times the typical stress

response. His other wrist showed no response at

all. My first thought was that one of the sensors

was broken. After all, how can you have stress

on just one side of your body? And that large?

I am an electrical engineer, so I began

debugging. Nothing sensor-related explained

what I saw. In fact, the data right before and

after this weird episode showed normal behav-

ior on both sides, with a clear “sleep signature.”

I have probably looked at more electrodermal

data than anybody on the planet, and I could

not think of anything explaining this; I was

perplexed.

The next day I did something I’d never done:

I called a student at home on his vacation.

“Hi, how was your Christmas? How is your

little brother? Hey, any idea what happened to

him at [exact date and time of the stress

response].” The student didn’t know but said

he’d check his diary. (“Diary? An MIT student

keeps a diary?”) I held my hands together in

prayer, thinking the odds were nil he’d have

written down this moment of his multi-week

vacation. He returned, confirmed the time and

date with me, and told me that was 20 minutes

before his little brother had a grand mal seizure.

A giant signal on the wrist before a seizure?

Conducting a Real-World Study

I called the chief of neurosurgery, Joseph Mad-

sen, at Children’s Hospital Boston (CHB). “Hi,

Dr. Madsen. My name is Rosalind Picard… Is it

possible there could be a huge sympathetic

nervous system surge 20 minutes before a seiz-

ure?” I didn’t want to tell him it was just on one

side of the body. After all, we were measuring a

component of emotion. Emotion on only one

side? I didn’t want him to hang up on me.

Madsen was very nice, “Probably not possi-

ble 20 minutes before the seizure starts in the

brain. But it might happen before the outward

clinical signs.” Then he paused. “I have seen

patients have their hair stand on end on only

one arm before a seizure. Or have goosebumps

on only one side.” On one side? I told him about

the asymmetry, and he got very interested.

Then, after getting approval from MIT and

CHB, we made more wristbands and ran a study

that simultaneously measured EEG, ECG, video,

and also EDA. Ming-Zher Poh, a doctoral stu-

dent at MIT, designed and built better sensors

for logging quality data 24/7, conducting this

risky seizure research for his PhD.

What did we find? The doctors labeled the

patient’s videos and EEGs for seizures while

blinded to our data. We found that 100 percent

of the most severe seizures, called “generalized

tonic clonic (GTC)” or “grand mal,” had signifi-

cant EDA responses. Also, 86 percent of the

“complex partial seizures,” which don’t have

convulsions but cause the patient to lose con-

sciousness, showed EDA surges more than two

standard deviations above the average pre-seiz-

ure period. In most cases, the seizures were gen-

eralized to both sides of the brain, and the

wristband responses were on both sides of the

body. Unfortunately, the EDA responses were

not usually in advance of the seizures when we

had precise timing; they usually started on the

wrist seconds after the seizure started in the
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brain. But there was another very big—even

more important—surprise.

Many of our patients had a period of time

after the seizure ended when all their brain

waves (measured on the scalp via EEG) went

flat. This is called PGES (Post-ictal generalized

EEG suppression). The EEG showed that the seiz-

ure “ended,” but the brain waves, instead of

going back to normal, looked “dead.” Fortu-

nately, nobody died. However, these prolonged

periods of flat brain wave activity after a seizure

have been observed in all monitored cases of sud-

den unexpected death from epilepsy (SUDEP).

SUDEP takes more lives in the US than house

fires or sudden infant death syndrome. It is the

number one cause of death in epilepsy, and

when it happens, it usually occurs many

minutes after the seizure appears to have ended,

when a person might be left alone to sleep.5,6

We found that a signal measured by the wrist-

band was highly correlated with how long the

brain waves were suppressed after the seizure. In

other words, the bigger the signal on the wrist,

the longer the brain waves went flat after the

seizure had supposedly ended.7

Usually you need to wear an EEG to detect

brain wave suppression. Wearing an EEG is

inconvenient, uncomfortable, and not stylish

(except perhaps at MIT parties). We had found a

useful correlate of the EEG suppression in a

comfortable wristband.

Detecting Convulsive Seizures

We also learned some other amazing things

about the human brain. A key part of the brain

involved in emotion is the amygdala: we have

two—one on the right and one on the left.

When either amygdala gets electrically stimu-

lated (this requires invasive procedures), then it

elicits a large skin conductance response on the

palm on the same side of the body.8 When

either amygdala gets stimulated with 15–20

volts in a sustained way, it causes the person to

stop breathing.9 Moreover, the person can

breathe; he or she just doesn’t. But, if you ask a

question, prompting the person to try to talk,

then he or she starts breathing again.

Recent findings showed that 100 percent of

observed SUDEPS began when the patient

stopped breathing.6 One possible explanation

for this is that the seizure spread to amygdala,

activating it in a way that turned off the person’s

breathing. If this happens, then patients might

need somebody to come near and touch or talk

to them to help them start breathing again.

Although we had set out to measure emo-

tional stress on the wrist, the patterns picked up

by our wristband were indicating atypical brain

activity, deep in the brain, even though the

EEG showed no brain activity on the scalp. Poh

was able to use the data to build an accurate

automated detector of convulsive seizures.10

These findings also led to studies of patients in

coma after cardiac arrest, where EDA was shown

to help determine who survives.11

Today, a company that I co-founded, Empa-

tica Inc., has commercialized these capabilities

into a wristband that can measure the clinical

quality of the data we need to do our research,

run on-board machine learning and pattern

analysis, and issue alerts to caregivers (see

Figure 3). I got an email recently from one beta

user, who received an alert and found her

daughter face-down in bed after a short seizure

not breathing. After she turned her daughter

over, she started breathing again. The mom

emailed me enthusiastically with the news,

sending pictures of her little girl now “pink”

and happily playing.

R eflecting on these events, there are many

surprises: Who would have expected that

our efforts to develop machine perception

would lead to a wearable that detects signals

related to deep brain activation, and issues

potentially life-saving alerts? The life of an engi-

neer can be full of adventure when following a

few guidelines: First, get good data. Second,

keep trying to understand the data, especially

when it looks bizarre or wrong. Third, be fear-

less, even if it means picking up the phone to

call the chief of neurosurgery or a student at

home on vacation. MM

Figure 3. The Empatica Embrace wristband

measures multiple physiological signals and can run

apps to detect and communicate autonomic stress

and movement patterns, potentially saving lives.
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