
Multimedia Big Data Computing

W ith the proliferation of the Internet and

user-generated content, and the grow-

ing prevalence of cameras, mobile phones, and

social media, huge amounts of multimedia data

are being produced, forming a unique kind of

big data. Multimedia big data brings tremen-

dous opportunities for multimedia applications

and services—such as multimedia searches,

recommendations, advertisements, healthcare

services, and smart cities. The need to compute

such massive datasets is transforming how we

deal with multimedia computing.

Researchers have studied some of the prob-

lems in big data computing (see the related

sidebar), but multimedia big data has its own

characteristics related to multimodality, real-

time information, quality of experience, and so

on. For example, some multimedia learning

applications, games, or 3D rendering might

require GPU processing. Consequently, meth-

ods for general big data might not directly

apply to multimedia big data.

Compared to approaches of general text-based

big data computing, multimedia big data com-

puting faces additional compression, storage,

transmission, and analysis challenges in terms of

� organizing unstructured and heterogene-

ous data,

� dealing with cognition and understanding

complexity,

� addressing real-time and quality-of-service

requirements, and

� ensuring scalability and computing efficiency.

Here, we consider these technical challenges

and the related scientific problems for multime-

dia big data computing, introducing various

research directions and emerging technologies.

The Multimedia Life Cycle
The emergence of big data computing is having

a profound effect on the entire life cycle of

multimedia content. Figure 1a shows the typi-

cal multimedia life cycle, which comprises

acquisition, storage, processing, dissemination,

and presentation.

In recent decades, the availability of low-

cost commodity digital cameras and camcor-

ders has sparked an explosion of user-generated

media content. Most recently, cyber-physical

systems have started offering a new type of data

acquisition through sensor networks, signifi-

cantly increasing the volume and diversity of

media data.1 Riding the Web 2.0 wave and

social networks, digital media content can now

be easily shared through the Internet, including

via social networks. The huge success of You-

Tube demonstrates the popularity of “Internet”

multimedia; similarly, social multimedia has

had great success thanks to social networks

such as Facebook and Twitter.

In the early stage, media storage, processing,

and dissemination were relatively small in

scale—usually at the level of kilobytes. Now,

the data scale is often at the terabyte or even

petabyte level. The collected datasets are so

large and complex that it becomes difficult to

process using traditional media data processing

technology.

However, multimedia big data provides great

opportunities. Both the scale and richness of

the data—in terms of content, context, users

and crowds, and so on—provide more opportu-

nities to build better computational models to

mine, learn, and analyze enormous amounts of

data. Moreover, multimedia big data algorithms

require “massively parallel software running on

thousands of servers distributively.”2

A typical multimedia big data computing

life cycle consists of moving from data to infor-

mation, from information to knowledge, from

knowledge to intelligence, and from intelli-

gence to decision, as depicted in Figure 1b. First,

we need to process the collected multimedia

raw data into information, creating multimedia

knowledge and insight. When we combine this

output with human or user knowledge, it can

Wenwu Zhu, Peng
Cui, and Zhi Wang

Tsinghua
University, China

Gang Hua
Steven Institute of

Technology

Visions and Views

1070-986X/15/$31.00�c 2015 IEEE Published by the IEEE Computer Society96



be used to make decisions. However, with this

big data scale comes tremendous challenges.

Challenges

Compared to approaches of general text-based

big data computing, multimedia big data com-

puting faces the following fundamental techni-

cal challenges related to processing, storage,

transmission, and analysis.

Unstructured and heterogeneous data. Mul-

timedia big data is unstructured, heterogene-

ous, and multimodal, which makes multimedia

big data representation and modeling difficult.

For example, how do we turn unstructured

multimedia data into structured data? How can

we represent or model multimedia big data

coming from different sources or spaces (cyber,

physical, and social)?

Cognition and understanding complexity.

Computers can’t easily understand multimedia

big data, mainly due to the semantic gap be-

tween low-level features and high-level seman-

tics. Moreover, some multimedia big data is

evolving with time and space.

Real-time and Quality of Experience (QoE)

requirements. Multimedia big data applica-

tions and services are typically real time, so to

Related Work in Big Data Computing
Various researchers have studied the challenges of big data

computing. Xindong Wu and his colleagues presented a

Heterogeneous, Autonomous, Complex, Evolving (HACE)

theorem that characterizes the features of the big data rev-

olution and proposes a big data processing model from the

data mining perspective.1 Philip Russom and his colleagues

explained the concept, characteristics, and needs of big

data and different offerings available in the market to

explore unstructured large data.2 Han Hu and his col-

leagues presented a literature survey and system tutorial for

big data analytics platforms, aiming to provide an overall

picture for nonexpert readers and instill a do-it-yourself spi-

rit for advanced audiences to customize their own big data

solutions.3 Puneet Singh Duggal and Sanchita Paul sug-

gested various methods for catering to the problems at

hand through a Map Reduce framework over the Hadoop

Distributed File System.4 Stephen Kaisler and his colleagues

have also analyzed the issues and challenges for big data

analysis and design.5 Changqing Ji and his colleagues intro-

duced several big data processing technics from both sys-

tem and application aspects.6
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Figure 1. The emergence of big data computing is affecting the life cycle of multimedia content: (a) the typical multimedia life cycle

and (b) the typical multimedia big data computing life cycle.
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address QoE requirements, we need real-time

streamed/online, parallel/distributed process-

ing for analysis, mining, and learning.

Scalability and efficiency. Multimedia big

data systems need large-scale computation, so

they must optimize computation, storage, and

networking/communication resources. Such sys-

tems also need online/streamed and parallel/dis-

tributed algorithms. In addition, GPU computing

for multimedia big data computing brings fur-

ther challenges.

Scientific Problems

The four fundamental challenges just discussed

lead to four corresponding scientific problems.

Representation and modeling. How can we

establish the representation and modeling for

unstructured, heterogeneous, and multimodal

multimedia big data?

Deep and crowd computing. How do we per-

form data-driven deep computing (including

mining and learning) to effectively analyze data?

How can we exploit crowdsourcing jointly with

data-driven analysis for multimedia cognition?

Streamed or online computing. How do we

perform streamed/online processing for the

entire multimedia big data in a parallel/distrib-

uted way, so as to make multimedia processing,

analysis, mining, and learning real-time while

satisfying QoE requirements?

Computing, storage, and communication

optimization. How do we design a new multi-

media computing architecture to optimize com-

putation, storage, and network/communication

for multimedia big data computing? How can

we efficiently use GPU-powered servers for mul-

timedia big data computing?

Addressing the Issues

Addressing these fundamental challenges and

scientific problems for multimedia big data

computing will require implementing effective

approaches throughout the multimedia life

cycle. Next, we look at each stage of the multi-

media big data computing life cycle to identify

ways of addressing these issues.

Data Acquisition
In addition to acquiring multimedia data from

the Internet and Internet of Things (IoT) (for

example, in the form of user-generated content

and camera data), the emergence of online

social networks makes it possible to collect mul-

timedia data from individuals acting as sensors

of the real world.

Raian Ali and his colleagues have proposed

social sensing, in which users act as monitors

and provide information needed at runtime.3

Even before the conceptualization of social

sensing, Anmol Madan and his colleagues

had already tried using collected information

from users to detect epidemiological behavior

change—for example, to predict a person’s

health status using data collected from his or

her cellphone.4 On the other hand, the rapid

development of wireless networks and mobile

devices makes most collected multimedia data

personal. Videos, images, and other kinds of

multimedia data are increasingly correlated

with individuals rather than with public groups.

Today, personal data can be collected by wear-

able sensors that can feed 24/7 data streams, acting

as an important type of multimedia data source.

This huge amount of multimedia data raises the

following questions regarding data reduction (or

compression)anddatarepresentation.

Data Reduction/Compression

The volume of multimedia big data must be

reduced for efficient storage and communica-

tion. Multimedia data reduction refers to sam-

pling the (massive) dataset so that it can be

computed with limited computing resources.

Multimedia data compression refers to reducing

the raw data size for storage or communication.

Feature-transformation-based data reduc-

tion. The goal is to reduce numerical data using

common signal processing or transform techni-

ques. Compressive sensing5 and Wavelet Trans-

form are two approaches for big data reduction.6

Analysis-aware compression. Multimedia cod-

ing can be performed prior to analysis such that

the compression-aware analysis can exploit the

coding. For example, you might achieve com-

pression using a feature descriptor.7 During

compression, you compress feature descriptions

along with the images or videos. The compres-

sion, storage, and transmission of local feature

descriptors of image and video applications can

then later be used for computing, such as for a

content-based search (or visual search).7

Cloud-based compression. Data compression

conducted on the (sensor) client side canIE
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effectively save storage space by compressing

the data after data generation but before stor-

age. On the cloud side, cloud-based big data

compression can take advantage of data correla-

tion and background similarity.

Data Representation

Multimedia data representation refers to a math-

ematical structure in which you can model the

data for later analysis. Because multimedia data

comes from multiple sources, it tends to have

disparate representations for each source, or

sometimes a common representation is needed

for multimodal analysis. These interpretations

are usually described by both structural and

descriptive metadata. Example data representa-

tion is referred to as feature-based data re-

presentation (such as scale-invariant feature

transform).

Multimedia big data representation consists

of the following approaches.

Feature-based data representation. Because

multimedia big data is often multimodal, some-

times we can find a common feature space to

represent the data—namely, feature-based rep-

resentation. Feature-selection-based data repre-

sentation aims to find the best representational

data among all possible feature combinations.

Learning-based representation. Today’s data

comes from heterogeneous sources, such as

cyber-physical-social spaces, so a common ex-

plicit feature space cannot be easily found. A

new approach is to find implicit “hidden space”

data representation for multimodal and hetero-

geneous data. Such representation is also called

a learning-based (rather than hand-crafted)

representation.

Many machine-learning methods have been

proposed to represent multimedia data. For

example, deep learning represents one break-

through in representation learning. There are a

series of deep learning methods to perform

multimedia data representation, such as Deep

Boltzmann Machines8 and Deep Autoencoder.9

Such methods aim to learn high-level represen-

tations from low-level features using a set of

nonlinear transformations and have achieved

the state-of-the-art for various tasks.

Computation-oriented representation. A key

factor in multimedia data representation is to

reduce computation, which requires understand-

ing the relationship between the representation

and its computational complexity. For example,

in a content-based image search, hashing-based

indexing methods map images represented by

high-dimensional raw features into a Hamming

space, where the images are represented by short

binary hashing codes. By retrieving samples

whose hash codes are within a small Hamming

distance of the hash codes of queries, these

methods can implement an efficient search. In

addition, the compact hash codes can dramati-

cally reduce the required storage space.

Data Processing and Analysis
After acquisition and storage, the next step in

the multimedia life cycle is multimedia big data

processing and analysis.

Multimodal Analysis

Multimedia data analysis has largely focused on

how to fuse the information from the different

media modalities together to form a coherent

decision. However, issues arise when data en-

tries lack data modality.

For example, many images shared on the

Internet now come with geotags. Furthermore,

beyond traditional RGB information, many

images have additional information such as

depth (taken, for example, from advanced sen-

sors such as Kinect). However, there is a large

backlog of images that do not possess addi-

tional sensing information, which present a

problem for algorithms designed to operate

using both the RGB and the geotags and/or

depth information.

This calls for media analysis technologies

that are robust despite missing data modalities,

leading to the notion of cross-modality media

analysis. From a machine-learning viewpoint,

the problem can be formulated as follows: in

the training phase, we have full access to data

samples with different modalities, but in the

testing phase, we might encounter data samples

that are either systematically or randomly miss-

ing certain views of information. Qilin Zhang

and his colleagues recently studied this prob-

lem and proposed a common latent space ap-

proach.10 As shown in Figure 2, the basic idea

of this type of approach is that in the training

phase, a common latent space is identified for

all data modalities, and all data samples from

the different modalities are projected into the

same space for reasoning. Then, in the testing

phase, even if some data modalities are missing,

the remaining ones can still be projected into

the common space for reasoning.
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How to identify such common space is an

open question. It could be conducted, for

example, via canonical correlational analysis

and its variants, or using more complicated

methods, such as a deep neural network. When

it comes to the problem of making decisions

using multimedia big data, a fundamental issue

is fusing the data from the different modalities.

Previous methods largely focused on either pre-

fusion at the feature level or late-fusion at the

decision level.

Both fusion methods have their pros and

cons. Feature-level fusion lets the decision algo-

rithm potentially benefit from the correlational

information across the two different feature

modalities. However, finding a way to appropri-

ately normalize the features from the different

modalities is an open issue. Decision-level

fusion often learns a weighted linear combina-

tion of the decision scores from each feature

modality. It does not need to deal with the fea-

ture normalization issue. However, decision-

level fusion might not be able to effectively lev-

erage the correlational information across the

different modalities.

We advocate a mid-level fusion scheme at

the representation level, where we learn a com-

pact intermediate-level representation to effec-

tively capture the correlational information

across the different modalities. Intuitively, such

intermediate-level representation can effec-

tively capture the correlational information

across the different media modalities while

suppressing the heterogeneity. For example,

Zhenxing Niu and his colleagues proposed

a visual topic network, which effectively

learns an intermediate-level image representa-

tion from both visual features and sparse text

tags, as illustrated in Figure 3.11 This approach

has shown consistent performance gain in

terms of recognition accuracy, when compared

with pre-fusion and late-fusion.

User-Centric Analysis

Although the rapid advances of multimedia

computing technology have greatly facilitated

users’ information needs regarding multimedia

data, it is still difficult for all multimedia appli-

cations (such as multimedia search and recom-

mendation applications) to provide satisfactory

results for users with different intentions. This

is because there’s a lack of understanding of

users, which is more serious in multimedia

applications than in nonmultimedia applica-

tions for two reasons.

First, multimedia applications often become

more exploratory, and users are often interested

in images or videos with a particular style,

which is difficult to express and represent. Sec-

ond, multimedia data is often used for enter-

tainment when exploring a visual space, with

no clear end goal.1 How to discover users’ latent

intent from limited observed data is of para-

mount importance in improving multimedia

search and recommendation performance. It

resonates well with the idea that underpins

user-centric multimedia analysis, where the user

profiles, behaviors, and social networks are

sensed, harnessed, and shared to adapt the

results of general multimedia search and rec-

ommendation engines to be more consistent

with user intent.

User intention modeling. User modeling is

crucial to addressing the intention gap problem

in multimedia search and recommendation.

Feng Qiu and Junghoo Cho represented user

interest by topics, and they proposed a method

to learn user preferences from past query-click

history in Google.12 Eugene Agichtein and his

colleagues proposed a method to learn the user

interaction model to better predict the user’s

preference in terms of search results.13 Jaime

Teevan and her colleagues explored rich models

for interest modeling by combining multiple

resources, such as search-related information,

user-relevant documents, and emails.14 More

recently, researchers have investigated user-

Training
example 1 

Training
example n

View 1 View 2

View 2
projection

Latent
space

Classifier trainingView 1
projection

Figure 2. The common space model for cross-modal media analysis.
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information interaction behavior patterns in

social network environments.15,16

The interest-modeling problem is more chal-

lenging in the image domain due to the high-

dimensional space and the semantic-gap prob-

lem. Marek Lipczak, Michele Trevisiol, and Ale-

jandro Jaimes analyzed users’ favorite behavior

patterns in Flickr.17 Xing Xie and his colleagues

proposed detecting user interests from user-

image interaction behaviors recorded by image

browsing logs.18 Yun Yang and her colleagues

investigated the emotion prediction problem for

individual users when watching social images.19

Tags of images are mined to construct the topics

and ontology to represent user preferences.15

Similar to the problem that user intentions can-

not be well represented by query words in an

image search,20 user interests in images cannot

be well represented by tags. Visual factors, such

as visual style and quality, eventually play

important roles in user interest formation.

Social-sensed multimedia search. Personal-

ized search has been studied for many years in

the text domain. The main target has been to

construct accurate and complete user profiles

for re-ranking the search results by measuring

the distance between the search results and user

profiles.21 More specifically, the user profiles

were represented by an ontology22 and topics,12

which are mined from the metadata, search

logs, and social media. Recently, some of these

techniques have been transferred into a person-

alized image or video search, especially for

image searches in Flickr.

Considering the special characteristics of

social images, Dongyuan Lu and Qiudan Li pro-

posed a co-clustering method to discover the

latent interests of users and map the Flickr

search results into the latent space to measure

their matching degree. Kristina Lerman, Anon

Plangprasopchok, and Chio Wong exploited

user-generated metadata in the form of

contacts and image annotations in Flickr to

describe user interest, using them to re-rank the

image search results in Flickr.23

Merging search engine and social media has

clearly become a common trend in industry.

For example, Google acquired YouTube and

launched Google Plus; Yahoo acquired Flickr;

and Facebook put forth efforts to develop

search services with a Facebook-external scope.

Much could be leveraged by integrating social

media platforms with multimedia search sys-

tems, as shown in Figure 4. How to discover

and represent user search intention from social

media and seamlessly bridge these user inten-

tions with multimedia search systems is a

research issue in need of serious attention.

Social multimedia recommendation. Con-

tent-based filtering and collaborative filtering

(CF) have been widely used to help users dis-

cover the most valuable information to them.

Content-based filtering introduces the basic

idea of studying an item’s content to address

the ranking problem. With the emergence

of topic modeling techniques such as Latent

Dirichlet allocation (LDA), recent content-based

approaches24 rank candidate items by how well

they match the topical interest of the user. These

methods represent users and items in fine

granularity.

CF methods, consisting of memory- and

model-based methods, are widely used. The

memory-based approaches calculate the simi-

larity between all users based on their ratings of

items.25 They represent users (or items) by the

item sets (or user sets), which are often unstable

and can only obtain good performance for

A  collection of
images and tags Bag of

Words

Visual document 
network

Topic model
(sRTM/ssRTM)

Tags

Tags

Tags

Tags

Tags

User tags

Figure 3. The visual topic network for representation-level fusion, where the sparse text tags link the

different visual documents and contribute to the learning of the final representation of the images.

(Source: Zhenxing Niu and his colleagues; used with permission.11)
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active users or popular items. The model-based

methods learn a model based on patterns recog-

nized in the user ratings.

Several matrix factorization methods have

recently been proposed.26 The matrix approxi-

mation models all focus on representing the

user-item rating matrix with low-dimensional

latent vectors. Recognizing that influence is a

subtle force that governs the dynamics of social

networks, influence-based recommendation27

involves interpersonal influence in social rec-

ommendation cases. Trust-based approaches28

exploit the trust network among users and

make recommendations based on the ratings of

users who are directly or indirectly trusted.

Jiang and his colleagues proposed a probabil-

istic factor analysis framework, which fuses

users’ preference and social influence together.14

Furthermore, they have also investigated the

social recommendation problem in a multiple

domain setting. Most of these works are based

on traditional content-based filtering or CF-

based methods, and their common goal is to

embed social information into traditional meth-

ods to improve the recommendation accuracy.

However, few authors have targeted the problem

of how to learn a new common representation

for users and items in social networks, which is

indeed feasible and important for boosting

social recommendation performance.

Human-in-the-Loop Analysis

Multimedia big data analysis is difficult, and

many algorithms and systems, if running in a

purely automated fashion, would not be able to

achieve the level of performance required for

practical use. This has motivated researchers to

explore a hybrid human-computer method for

content analysis tasks. The Visipedia project29

is one pioneering project in this area, where

interactive human inputs and advanced com-

putational algorithms are tightly integrated to

solve the content analysis problem.

This type of hybrid human-computer system

is further catalyzed by crowdsourcing, where

cheap online human labors can be exploited

with a small fee on a per-input basis. Figure 5

provides an illustration of such hybrid human-

computer systems. There are several issues that

need to be carefully modeled when considering

crowdsourcing-based human inputs. First of all,

human input from crowdsourcing could be

very noisy, so it should be carefully modeled.

Often, inputs from several online workers are

solicited to enable consensus-based analysis or

to model the quality of the workers.

The second question is how and when

human input should be engaged. It cannot be

too frequent, because the cost would be high

and the response time long. In this regard,

uncertainty- and confidence-based reasoning

would be critical, because it naturally serves as

the measure for soliciting human input as

needed.

The third issue to be addressed is to close the

loop, where the human inputs should feed back

to the computational methods to improve

them. From a learning viewpoint, online learn-

ing and, more broadly, the notion of a life-long

learning system applies here. Some studies have

researched these three issues in the context of

collaborative active learning in crowdsourcing

for visual content analysis.30,31

Distribution and Systems
With big data, multimedia distribution and

delivery can exploit the “intelligence” of con-

tent and users, so new systems technologies are

appearing for multimedia systems.

Data-Driven Edge-Network Multimedia

Distribution

Recent studies have found that edge-cloud

resources can improve the performance of

social media delivery compared to traditional

content delivery.32 Meanwhile, as multimedia

content is generated by social network users

and personal devices, data is also stored and

processed at the edge of the network. Distribu-

tion over the edge network can naturally meet

the demand of processing the data at different

geo-distributed edge datacenters.

In recent years, online social network has

greatly changed content delivery—that is, the

Social-sensed
search results

User interest
modeling

from social
media

Social-sensed
re-ranking
over search

results

Search results
from search

engines

User ID
Search engineSocial media

Figure 4. An illustration of the social-sensed image search.
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distribution of social contents has shifted

from a “central-edge” manner to an “edge-

edge” manner. Eytan Bakshy and his colleagues

studied the social influence of people in the

online social network, observing that some

users can be very influential in social propaga-

tion.33 Haitao Li, Haiyang Wang, and Jiang-

chuan Liu studied the content sharing in an

online social network and observed the skewed

popularity distribution of content and the

power-law activity of users.34 Giovanni Comar-

ela and his colleagues investigated response

time of social contents using collected traces

and observed factors that affect the response

time in social propagation.

As online social networks are affecting dis-

semination for all types of online contents, con-

ventional content delivery paradigms need

improvement using social information. Josep

Pujol and his colleagues designed a social parti-

tion and replication middleware where users’

friends’ data can be co-located in datacenter

servers.35 Salvatore Scellato and his colleagues

investigated using social cascading information

for content delivery over the edge networks.36

The possibility of inferring social propagation

according to users’ social profiles and behaviors

has also been investigated,32 allocating network

resources at edge-cloud servers based on propa-

gation predictions (see Figure 6).

Using a data-driven approach, a new trend is

to exploit machine-learning techniques to

learn user and content intelligence37—for ex-

ample, in the form of mining the user’s quality

of experience, which in turn can make multi-

media distribution more efficient.

Streamed and In-Memory Multimedia

Processing

Parallel data processing has been the main-

stream of designing efficient data-processing

platforms so that data could be processed in a

distributed and parallel manner, improving the

throughput of data processing. MapReduce

(http://mapreduce.sandia.gov) is the most rep-

resentative paradigm. Today’s multimedia data

is streamed in nature—that is, the data is gener-

ated and updated over time. An effective multi-

media data-processing system must process the

data in a streamed manner. Storm (https://

storm.apache.org) is one such system. It creates

Server

Server Server

Social
propagation

Edge-cloud and peer-
assisted replication

Mapping social
network to

delivery network

Geographic
regions

User

Figure 6. Edge-network social multimedia content

distribution.

Angry bird

Collaborative
active learning

Red bird

Supervisors Multimedia agents

What is this?

....

Angry bird?
Red bird?

Figure 5. Illustration of a human in the loop multimedia big data analysis system exploiting crowds.
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a topology to form several “pipes” for data to

pass through for processing along the way.

Another trend in multimedia big data is “in-

memory” processing—that is, the data is proc-

essed in the memory instead of on hard disks,

significantly reducing the processing latency.

In general data processing, several in-memory

paradigms have been invented, such as Berke-

ley’s Spark (https://spark.apache.org). These

types of systems often implement a “cache”

strategy, which can move data from hard disks

to memory for repeated actions, to reduce the

cost of accessing hard drivers. In the context of

multimedia data processing, in-memory image

and video processing is in demand.

T he approaches for multimedia big data

computing have a broad range of applica-

tion scenarios, such as healthcare and medical

applications, social media, satellite imaging, IoT,

and smart cities. Future research will focus on the

scale and complexity problems encountered in

multimedia big data computing. For analytics,

we need effective and efficient algorithms that

address issues of scale and complexity. Taking a

data-driven approach, such as with deep learn-

ing, will still be effective for multimedia big data

analytics. However, with new developments in

artificial intelligence and human-computer inter-

action, we see potential in systematically inte-

grating knowledge- and data-driven approaches.

For example, jointly considering deep learning

and wisdom of the crowd (crowdsourcing) will be

a promising future direction. In terms of systems,

determining how to jointly optimize computing,

storage, and communication/networking will

require further research. MM
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