
Visual Media:
History and Perspectives

I n the early days of multimedia research, the

first image dataset collected consisted of only

four still grayscale images captured by a drum

scanner. At the time, digital imaging was only

available in laboratories, and digital videos barely

existed. When more visual data become available,

the problem of automatic image understanding

emerged. In 1966, Marvin Minsky, the father of

artificial intelligence, was assigned “computer

vision” as a summer project.

Half a century later, the amount of visual

data has exploded at an unprecedented rate.

Images and videos are now created, stored, and

used by the majority of the population. Conse-

quently, image analysis has been transformed

into a sophisticated and powerful research field,

providing services to all aspects of people’s lives.

From the early days to now, a major mission

of multimedia research has been providing

humans with visual information about the

world. This includes capturing the scene’s con-

tent into a computing system, enhancing the

image’s appearance, and delivering it to people

in the most compelling way. However, some-

times the underlying metadata is arguably even

more important than the content itself.1 Visual

data understanding research concentrates on

either extracting the semantic meaning of the

scene useful to user or assisting the user in inter-

action with computers.

In this historical overview, we will follow the

great journey that visual media research has

embarked upon by looking at the fundamental

scientific and engineering inventions. Through

this lens, we will see that all three aspects of

media capturing, delivery, and understanding

are developed surrounding the interaction with

humans, making visual data processing a partic-

ular human-centric field of computing.2

Early Days of Visual Media: The Analog Era
The first visual media was captured almost

two centuries ago when analog images were

generated using cameras that recorded light on

papers or plates with light-sensitive chemicals

and stored with negative films, starting the

long history of capturing methods. Figure 1

depicts the milestones during this era.

Together with the initial acquisition devices,

delivery techniques also started to emerge. Ana-

log images were then enhanced by optical proc-

esses and were printed on chemically sensitized

paper. Analog optical instruments were also

used for early image analysis methods such as

frequency domain representation of images.

With sinusoidal function basis, the Fourier

transform offered a new perspective on how to

observe and modify a visual signal. Based on

space-frequency analysis and corresponding

linear filters, algorithms were developed for

applications such as compression, restoration,

and edge detection.

Soon after early imaging was born, pioneers

in the field realized that discretization of the

analog visual signal could preserve most of the

perceptible information while making opera-

tions much more convenient and efficient. This

opened a new era of visual media processing:

the digital era.

When Visual Media Became
Mainstream: The Digital Era
You could say that the rise of digital visual

media began in the 1950s when the first drum

scanners digitized images. These scanners did

not directly capture a photograph but instead

copied preexisting photos by picking up the dif-

ferent intensities in a picture and saving them

as a string of binary bits. Since the drum scan-

ner, other image digitization devices/methods

were created with marked improvements in

quality and efficiency such as charge-coupled

device (CCD) scanners and early TV cameras.

In the 1970s, digital color images attracted

attention. The famous Lena image was scanned

and cropped from the centerfold of the
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November 1972 issue of Playboy magazine. It

has since become widely used as a test object

for evaluating image processing algorithms.

The next step in acquiring images came in

1990 with the introduction of the first con-

sumer digital cameras. With the advances in

image capture, and the ability to compress the

images so they could be stored, it was suddenly

possible for anyone to build photo collections

of several hundred images. This is when con-

sumer imaging devices found their way into

people’s everyday life.

In keeping up with the revolution of visual

content capture, multimedia storage has also

come a long way; from the magnetic tapes in

the early 20th century to Blu-ray discs in the

previous decade to holographic storage. Figure

2 gives a timeline of the evolution of multime-

dia content storage. These advances in multi-

media capture and storage were first steps that

would eventually facilitate large-scale multime-

dia data collection. (See the sidebar for more

details.)

With more data efficiently created and

stored, visual data understanding evolved to

derive contextual information from visual

data. For example, one may want to know if a

particular object is present in an image or the

identity of a suspect in a given mugshot. Most

of these methods required constructing image

models defined via machine learning. These

models were traditionally obtained in a super-

vised manner where the labels of the training

samples were given to a classifier or in an unsu-

pervised manner using clustering algorithms.

Some high-level inference tasks included multi-

media retrieval, search, recommendation, and

others for problems in human-computer in-

teraction systems, such as gesture control,

biometrics-based access control, and facial

expression recognition.

Unfortunately, many of these data models

worked poorly on raw image data resulting in

the need for more sophisticated data represen-

tations. Image features were introduced as ways

of extracting distinctive information from the

image data and forming a compact vector or

descriptor. Oftentimes, the most effective fea-

tures used information gathered at the low-

level such as edges or corners. In particular,

scale-invariant feature transform (SIFT) and his-

togram of oriented gradients (HOG) feature

descriptors helped construct summaries of the

distribution of edges in the images and have led

Multimedia Efficient Storage
Unfortunately, if someone tried to store the multimedia

content naively it would require an extremely large

amount of storage space. For instance, a two-hour stand-

ard definition (SD) video with a 720 � 480 pixel resolu-

tion and 24-bit color depth at 30 frames per second

would take approximately 224 Gbytes in its original

form.3 The good news is that there is a lot of redundancy

in the data, so we can store the same or a similar amount of

information in much less storage space. Several influential

works have proposed highly efficient compression techni-

ques that make it feasible to process large numbers of images

and videos computationally. Some examples include the dis-

crete cosine transform (DCT), discrete wavelet transform

(DWT), and motion compensation, which are used to com-

press JPEG files, JPEG-2000 images, and MPEG videos,

respectively.
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to state-of-art performance in object detection

and recognition. Slowly but surely, researchers

began to learn which information is relevant in

image data.

For the groundbreakers of digital visual

understanding, model overfitting was a major

problem. This issue came from the fact that the

more sophisticated and expressive a statistical

model became, the more training data it

needed to reliably compute the model parame-

ters. Luckily, in the late 2000s, the revolution in

multimedia technology increased the ease of

access for visual data, leading to an estimated

2.5 billion people around the globe owning dig-

ital cameras.4 This number is predicted to soon

surpass the world population. These seemingly

unlimited sources of naturally captured and

annotated data from everyday Internet users

offers a potential remedy for data-lacking issues

and leads the way to the Internet era of visual

media research.

Ubiquitous Visual Media:
The Internet Era
The Internet has made the process of collecting

images convenient. Previously, the most expan-

sive of photo sets (such as the US Library of

Congress) were physically limited to thousands

of images from hundreds of photographers. In

contrast, a single social networking site such as

Facebook can collect images from a billion

active users, resulting in hundreds of billions of

images in total. In 2012, Facebook had more

than 300 million images uploaded daily, which

is equivalent to 821 people taking 1,000 images

daily for an entire year. Users upload images to

these sites to share them with their friends and

family. This builds upon the image capturing

advances from decades before, making images

easier to deliver. Thus, images are no longer arti-

facts you keep in your house or carry in your

wallet. They are instantly sent and aggregated.

Media Understanding: Closing

the Semantic Gap

Another benefit of social networking sites is

that users often label their data. It is common

for users to tag photos of their friends, describe

the subject of videos, and curate their photos

into albums of related events. This additional

semantic information is another major differ-

ence between datasets used by research labs in

previous decades and the resources available to

media understanding researchers today.

Armed with this massive amount of media

data and semantic labels, researchers can try

new approaches to media understanding. But

how? The secret is more parameters. Before,

researchers had to limit the number of parame-

ters in their statistical models due to overfitting.

They favored dimensionality-reduction and lin-

ear models. But as datasets increased in size,

overfitting became less of an issue, and bias

became the limiting factor.

Now researchers are using increasingly more

parameters in their media understanding algo-

rithms, which can leverage larger datasets.

A common way to increase the number of

parameters is to extract features, learn an over-

complete mid-level representation, and then

apply a linear classifier. This includes methods

that discover object parts templates or that

learn sparse dictionaries. These methods

improved results in object recognition and

object detection. Deep neural networks con-

tinue this trend with many layers of parameters

that can model image statistics at multiple

scales. Having more parameters to learn makes
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these models flexible, allowing them to fit data-

sets with millions of images and generalize bet-

ter to images in the wild.

One specific case of this is the 2012 Image-

Net Large Scale Vision Recognition Challenge,5

which resulted in the ImageNet dataset (see Fig-

ure 3 for examples from several categories). The

dataset contains more than one million images

in 1,000 object categories, with highly variated

images in each category. Figure 4 shows the

best recognition results on this dataset over

recent years. With models consisting of mil-

lions of parameters and massive computational

infrastructure, deep neural network models

were able to get a 10 percent performance

increase over dictionary learning methods.6

Future of Visual Media: What’s Next?
Despite the rapid evolution of visual media

research, it is hard to predict the future. In the

following, we highlight some of the emerging

trends and applications.

Wearable Gadgets and Moving to the Cloud

The word on the street is that wearable tech is

the new chic. Wearable cameras will be the

future trend. Some examples include, GoPro,

camera watches, and Google Glass. GoPro has

already positioned itself, especially in adven-

ture sports, for example, where users attach a

camera to their headgear and helmets. Camera

watches, with data connection either through

a cell phone or data network, will find applica-

tions in video telephony. Google Glass will

enhance the user experience by bringing about

new possibilities in communication and navi-

gation. Such devices will once again change
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Figure 3. Examples of the variations among the images of each category in the ImageNet Large-Scale

Vision Recognition Challenge dataset.
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how visual data is captured, delivered, and

eventually understood. These devices will fur-

ther swell the generation of multimedia con-

tent because users will begin recording their

activities and surrounding environments, spon-

taneously or possibly even unintentionally.

In terms of storage, with the evolution of

communications networks, another future

trend in visual media seems to be moving to

the cloud (cloud storage). In many cases, users

record a movie or take a picture that may be

then temporarily stored in the capturing device

and then transferred to remotely located stor-

age locations using data networks. The users are

seemingly unaware of the underlying processes

or the locations of their data storage—hence

the name “cloud.” Some of the big names in

cloud storage include Amazon Cloud Drive,

iCloud, and Dropbox.

Media Understanding: Closing

the Intention Gap

With cheaper and better sensors, the exponen-

tial generation of visual media, and cloud stor-

age come new challenges and directions in

media understanding. These may include

human-computer interaction (HCI), aesthetics,

and search. The HCI field tries to find new ways

for a computer to map humans natural move-

ments to their actual intent. Figure 5 illustrates

the general framework for most of the HCI tech-

niques being used today. They may take input

from various sensors, such as hand gestures, eye

tracking, and voice commands. Some examples

of such systems are the Microsoft Kinect with

gesture control, eye tracking for the disabled,7

and Apple’s SIRI (www.apple.com/ios/siri/).

These systems may work well for a range of

commands, but as the intended actions become

complex, limited sensory inputs lead to ambig-

uous models and mappings. This ambiguity is

commonly referred to as the “intention gap.”

HCI systems of today also fall short of the

expectations of being socially aware. Some HCI

systems may adapt to the user’s affective state

by analyzing their facial expressions, although

this is generally in research scenarios. However,

whether these systems are good enough for

practical use in different situations is open for

debate. In the future, we may see a tangible

reduction in the intention gap. Some future

research directions may be the fusion of various

sensory inputs, building user profiles, and

learning from the history of commands passed

to an HCI system. HCI systems may also

become more socially aware by assessing the

cognitive states of the users and may well

serve as automated agents such as avatars in

computer-aided learning, gaming, or sales.

Another interesting area of potential future

impact is automatic analysis of aesthetics in vis-

ual media. With readily available cameras, users

now generate tremendous amounts of visual

media. Gone are the days when you would

have to think twice before taking another shot.

A birthday party, a trip to Miami, or a gradua-

tion party may each generate hundreds of

images. It is time consuming to sift through

them all at once, however. Research in this area

can potentially yield to software that would be

able to select the most aesthetically pleasing

shots.8 Will they be the best? The answer to this

question would lie in further understanding

the semantic content.

There has been much work in attempting to

understand the semantic content of the images,

but we are nowhere close to human perform-

ance. How far in the future will there be any

huge strides in this direction is still an open

question. Visual media search and retrieval may

see breakthroughs in the upcoming years. This

could be aided by the availability of massive

image datasets and the associated metadata in

the form of user annotations. As outlined ear-

lier, large datasets, even if unlabelled, help in

learning complex statistical models that may

perform and adapt well for various applications.

Another promising future direction for vis-

ual media search involves the social aspect.

This draws its intuition from human-in-the-

loop architectures. The underlying assumption

in such an architecture is that explicitly incor-

porating human information during learning

can lead to algorithms with high quality results.
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Figure 5. Overview of human-computer interaction systems.
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One of the most common settings for human-

in-the-loop techniques is image retrieval, where

a user queries a certain topic and the computer

returns a list of images it considers relevant.

Then a feedback mechanism allows humans, or

“workers,” to iteratively refine the algorithm’s

results by choosing which of the retrieved

images were correctly associated with a given

concept.

With the evolution social media such as Face-

book, we can now model social connections

among various users. This development has led

to the introduction of a social network compo-

nent to both the construction and application

of multimedia systems, as Figure 6 shows.

Upcoming Applications

Visual media will have its tangible impact on

various areas such as healthcare, HCI, and secur-

ity in the upcoming years. In healthcare, we

may see its applications in psychology and see

screening tools being developed for autism,

depression, or attention deficit disorders using

multimodal automated affective analysis. We

may also see the application of visual media for

taking vital signs. One such recent success has

been CardioCam, which finds a user’s heart rate

with a webcam by monitoring minute changes

in skin color that correlate with blood circula-

tion.9 We may also see applications of visual

media understanding in automated nursing. For

example, if we are able to build a system that

can accurately track body movements, then we

could monitor if the exercises prescribed by a

physiotherapist are being followed correctly.

In security, we may find intelligent systems

being developed for anomaly detection and to

track entities across surveillance cameras. The

number of surveillance cameras installed in the

public is ever increasing. For instance, the Brit-

ish Security Authority estimates that there are

up to 5.9 million security cameras in the UK

alone.10 It is impossible to monitor every cam-

era at every instant, but is it possible to find

anomalies automatically? Humans are very

good at finding abnormal events in a particular

situation. However, event detection depends

strongly on context. For instance, running may

be normal on a beach but abnormal inside a

bank. Automating anomaly detection is an

open research problem and is related to seman-

tic understanding. Apart from this, another

interesting problem is tracking entities across

multiple cameras so that law enforcement

agencies can follow suspects or vehicles. We

hope that the research community will con-

tinue to make strides in these directions while

addressing future challenges.

Conclusions
Visual data has evolved tremendously since the

first set of pictures were digitized. This evolution

has occurred in all aspects of storage, delivery,

and understanding. Recent years in particular

have witnessed unprecedented growth, and we

expect exciting new breakthroughs in the near

future. Moreover, these aspects are quickly con-

verging via the ubiquity of devices and algo-

rithms leading to stronger interactions with

humans. In the near future, the human factor

will continue to be at the center of the field’s

development and will be the source of inspira-

tion for the major working fields for media

researchers and engineers in the next era. MM
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