
Transfer Learning Based Method for COVID-19
Detection From Chest X-ray Images

Nayeeb Rashid1, Md Adnan Faisal Hossain1, Mohammad Ali1,
Mumtahina Islam Sukanya1, Tanvir Mahmud1, and Shaikh Anowarul Fattah1

Email: {nayeebrashid, afhossain97, marcoreus.kazmi, islam.sukanya}@gmail.com, {tanvirmahmud, fattah}@eee.buet.ac.bd
Department of Electrical and Electronic Engineering,

Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh

Abstract—Radiology examination of chest radiography or chest
X-ray (CXR), is currently performed manually by radiologists.
With the onset of the COVID-19 pandemic, there is now a need to
automate this process which is currently one of the key methods
of primary detection of the SARS-Cov-2 virus. This will lead
to shorter diagnosis time and less human error. In this study,
we try to perform three-class image classification on a dataset
of chest X-rays of confirmed COVID-19 patients(408 images),
confirmed pneumonia patients(4273 images), and chest X-rays of
healthy people(1590 images). In total the dataset consists of 6271
people. We aim to use a Convolutional Neural Network(CNN)
and transfer learning to perform this image classification task.
Our model is based on a pre-trained InceptionV3 network with
weights trained on the ImageNet dataset. We fine-tune the layers
of the Inception network to train it to our specific task. We try
fine-tuning the network to different extents by freezing a different
number of layers and then comparing accuracy for each variation
of the network. To evaluate the performance of our network
we use several metrics which include Classification accuracy,
Precision, Sensitivity, and Specificity. Our proposed method
achieves an accuracy of 96.33% on a 3-class classification task
(Normal, COVID-19, Pneumonia) and an accuracy of 99.39% on
a 2-class (COVID and Non-COVID) classification task.

Index Terms—COVID-19, Medical Image Analysis, Chest X-
ray, Deep Learning

I. INTRODUCTION

The novel Coronavirus disease 2019 also known as COVID-
19 first appeared in Wuhan, Hubei, China in December 2019
[1] and from then on it turned into a global pandemic affecting
millions of lives worldwide. At the time of writing this paper
more than 10 million people have been infected with this
disease and more than half a million people have died from
it. As of now, no vaccine or antiviral treatment is available
for COVID-19 [2]. As a result, early detection and isolation is
currently the best way of mitigating the spread of the disease
and saving lives.

An infected COVID-19 patient may start showing symptoms
such as fever, cough, fatigue, sputum production, headache,
hemoptysis, diarrhea, dyspnoea, and lymphopenia [3] after 5.2
days [4]. As early detection of the disease is a crucial step
in fighting the pandemic, the current methods of testing the
presence of a virus in a human body include real-time reverse
transcription poly- merase chain reaction (rRT-PCR) [5] and
antibody testing [6]. But these tests are both costly and difficult
to carry out at the rate the virus is spreading in the densely
populated areas. In developing countries, the lack of testing
kit available has already become an obstacle in fighting the
pandemic. So a testing method with ease of availability and
cost-effectiveness has become a necessity in these countries.

COVID-19 is a novel severe acute respiratory syndrome
coronavirus which mostly affects the lungs in the human
body [7]. Researchers have found ground-glass opacities,
consolidation, and lower zone predominance [8] in chest scans
of COVID-19 patients. Because of these features in the lung
scans, it has been shown that chest scans can be used to detect
the virus [9] in patients. The two available methods of chest
scans are i)CT scan and ii)X-ray. [10], [11] has shown deep
learning-based methods for detecting COVID-19 from chest
CT scans.

But CT scans are not as available or cost-effective as X-ray.
Almost every hospital has X-ray facilities and it is very easy
to get an X-ray done. So being able to detect COVID-19 from
X-ray images will have much more impact and will be able
to reach a lot more people even in the less developed areas.

Deep Learning-based approaches are being used in the field
of medical image analysis and automatic diagnosis for some
time now due to the great improvements in their performance
and their potential for becoming an adjacent tool for clinicians
[12]–[14]. We have seen deep learning being applied for
Alzheimer’s disease detection from neuroimaging [15], retinal
image analysis [16], breast cancer detection [17], skin cancer
classification [18] and many other sectors. Deep learning-
based methods have seen significant application in chest X-
ray image related tasks such as: Nodule classification [19],
Tuberculosis detection [20], rib suppression [21], Pneumonia
detection [22] and Lung segmentation [23].

Given the success of deep learning-based methods in chest
X-ray image-related tasks, it is only natural to use it for clas-
sifying COVID-19 from chest X-ray images. A lot of research
is being done in this field. [24] suggested COVID-Net, a deep
convolutional neural network for classifying COVID-19 in
chest X-ray images. It was trained on a dataset containing
3 classes (normal, pneumonia, and COVID) and achieved
a 93.3% accuracy across the classes. DarkCovidNet another
CNN model for this task developed by [25] was trained on both
3 classes and 2 classes (COVID and Non-COVID) and attained
an accuracy of 87.02% and 98.08% respectively. Another
CNN model based on the Xception [26] architecture named
CoroNet [27] was trained on 4 classes (normal, COVID,
bacterial pneumonia and viral pneumonia), 3 classes and 2
classes and its accuracy for each of this case was 89.6%,
95% and 99%. [28] proposed a method of segmenting lungs
from a chest X-ray image and using random patches from
that segmented image to train a pretrained ResNet-18 [29] to
classify COVID-19. [30] used a small dataset of 50 normal and
50 COVID-19 patients images to train InceptionV3, ResNet-
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50 and Inception-ResnetV2 models and got an accuracy of
97%, 98% and 87% respectively for 2 classes.

In this study, we propose a deep learning-based approach
for detecting COVID-19 from patient’s chest X-ray images.
We developed a convolutional neural network model with
InceptionNetV3 [31] as the backbone and use transfer learning
to initialize the model with weights trained on Imagenet [32]
dataset. We add our classification layer at the end of this model
and do an end to end training for this entire network on a
balanced dataset containing 3 class of normal, pneumonia, and
COVID chest X-ray image and also train in on a 2 class dataset
(COVID and Non-COVID). We were motivated by the efforts
of the open-source research community and decided to play
our part in this fight against this pandemic through this work.

II. DATASET

As COVID-19 is a new disease, there is a huge scarcity
of publicly available chest X-ray images corresponding to
COVID-19 patients. So no one specific dataset was available
for this study and a combination of several datasets was used
to address this problem.

We obtained pneumonia(both viral and bacterial) and nor-
mal chest x-ray images from [33], an open sourced dataset
released on the Kaggle platform. The dataset contains 5,863
chest x-ray images(4273 pneumonia and 1590 normal) classi-
fied into two categories.

For COVID-19 chest x-ray images, we collected our data
from Dr. Cohen’s [34] open-source Github repository. The
repository contains an open database of Covid-19 cases with
chest X-ray or CT images and is being updated regularly.
Chest x-ray images are largely compiled from websites such as
Radiopaedia.org, the Italian Society of Medical and Interven-
tional Radiology, and Figure1.com [34]. At the time of writing
this paper, the repository contained 408 COVID-19 chest x-ray
images.

Our combined primary dataset consisted of 4273 pneumo-
nia, 1590 normal, and 408 COVID-19 chest x-ray images.
As the dataset was unbalanced, a resampling technique called
random under-sampling [35] was used to make the dataset
balanced. It involved randomly deleting examples from the
majority class until the dataset becomes balanced. Thus, our
final dataset consists of 408 pneumonia, 408 normal, and
408 COVID-19 chest x-ray images. From this, we randomly
distributed the images into train and test sub-folders and
generated five different folds for cross-validation. The training
set consists of 978 images of three different classes and
the test set contains 246 images, also classified into three
different classes. We also created a separate dataset for two-
class classification which contains 408 COVID-19 and 816
non-COVID-19 chest x-ray images. Also, all the images were
resized to 299 × 299 pixels with a resolution of 96 dpi.

TABLE I
DATASET SUMMARY

Disease No. of Sample Images
Primary Unbalanced Dataset Balanced Dataset

COVID-19 408 408
Normal 1590 408

Pneumonia 4273 408

In table I, the summary of the prepared dataset is shown.

Fig. 1. Model Architecture and Workflow

III. METHODOLOGY

To solve our task of classifying COVID19 patients from
chest X-ray images we developed a deep learning model and
used various training schemes to improve the performance of
the system. These are described in the following sections.

A. Data Augmentation

The input image size of the network architecture is 299
x 299. Some data augmentations of the following categories
were also introduced to the input data: horizontal flip, transla-
tion, rotation, zoom etc. The model was built to classify chest
x-ray images into three classes: Covid-19, Normal condition
and Pneumonia (viral bacteria) which were labelled as 0, 1
and 2 respectively.

B. Model Architecture

1) Inception Block: Rather than preparing a deep learning
model from scratch, it is always a better idea to lay a founda-
tion of a tried and tested model and build a model on top of
that. In our proposed model, we considered InceptionV3 to be
our base model. In the history of the continuous progression of
CNN networks, the Inception network was a revolutionary step
forward because of its complex and well-engineered design.
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InceptionNet was the first CNN classifier to use meticulous
measures to ensure better performance while balancing out
speed and accuracy at the same time by making the network
wider rather than deeper. This wide network feature was
achieved by using varying sizes of filters on the same level
and this was implemented in InceptionV1 [31]. Later, in order
to upgrade computational speed, a new scheme of factorizing
filter size 5 x 5 convolution into two 3 x 3 convolutions was
introduced along with representing any 3 x 3 convolution filter
with a 3 x 1 convolution filter following a 1 x 3 convolution
filter. This upgraded strategy was utilized in InceptionV3 [36]
network which is the base model of our proposed architecture.
InceptionV3’s ability to learn an increasing number of features
as a very deep CNN while maintaining high efficiency for
the network was the motive behind this choice. It also has
a smaller computational cost than other networks such as
VGGNet. Although we are working with a comparatively
smaller dataset now, eventually when we move on towards
extended datasets, InceptionV3 possesses more probability of
performing better than other seemingly simple models namely
VGG, AlexNet, GoogLeNet etc.

2) Classification Layers: In our architecture, there are some
other layers following the base model which is InceptionV3
Network. The first layer right after the base model is a global
average pooling (GAP) [37] layer. This GAP layer lowers the
total number of parameters making the model less prone to
overfitting. Next comes a dense layer of 1024 units which uses
the rectified linear unit (ReLU) activation function followed
by a dropout layer where dropout fraction = 0.2. Finally,
the model is completed with a softmax layer producing the
outputs. This model has a total of 23,904,035 parameters,
out of that 23,869,603 are trainable parameters and the other
34,432 are non-trainable parameters. Architecture details with
layer parameters, output shape, etc are given in table II.

TABLE II
LAYER AND PARAMETER DETAILS OF THE PROPOSED ARCHITECTURE

Layer (type) Output Shape Parameters
InceptionV3 (Model) (None, 8, 8, 2048) 21802784
Global Average Pooling (None, 2048) 0
Dense (None, 1024) 2098176
Dropout(0.2) (None, 1024) 0
Dense (None, 3) 3075
Total Parameters: 23,904,035
Trainable Parameters: 23,869,603
Non-trainable Parameters: 34,432

C. Training Scheme

While training our network, we initialized the parameters
using parameters from the pre-training done on the ImageNet
dataset. This transfer learning scheme was adopted to avoid
overfitting since the training dataset was relatively smaller.
The hyperparameter values used while training the model are
learning rate=0.01, epoch=40, batch size=32. To improve the
performance of the model, the value of the loss function was
checked every 3 epochs, and if it stayed constant learning
rate was reduced to one-tenth of its value while ensuring the
minimum learning rate to be 1e-6. The model was trained
using the Adam optimization algorithm. The proposed model
was implemented with Keras library using TensorFlow 2.0

backend. The entire training and testing process was performed
on Google Colaboratory Server.

Fig. 2. Accuracy and Loss plot of the training

IV. RESULT

The model was trained for each of the 5 folds of data and it
was tested on 3 class test set of each fold. For each of the test
set we calculated Precision, Sensitivity, F1-score and Accuracy
as our performance metric and it can be seen in table III.

TABLE III
PRECISION, SENSITIVITY, F1-SCORE AND ACCURACY ACROSS ALL 3

CLASSES FOR THE 5 FOLDS OF DATA

Folds Precision(%) Sensitivity(%) F1-score(%) Accuracy(%)
Fold 1 98.37 98.37 98.37 98.37
Fold 2 94.28 93.90 93.89 93.90
Fold 3 96.38 95.94 95.92 95.94
Fold 4 96.34 95.89 95.89 95.89
Fold 5 97.57 97.53 97.53 97.53

Average 96.59 96.33 96.32 96.33

From table III we can see that our model got a highest
accuracy of 98.37% from fold 1 and the average accuracy
for all the 5 folds is 96.33%. We also generated the same
performance metrics in a class-wise basis for all of the folds.
The class-wise result for fold-1 can be seen in table IV.

TABLE IV
PRECISION, SENSITIVITY, F1-SCORE AND ACCURACY OF THE 3 CLASSES

FOR FOLD 1

Class Precision(%) Sensitivity(%) F1-score(%) Accuracy(%)
COVID19 98.80 100 99.39 100

Normal 97.56 97.56 97.56 97.56
Pneumonia 98.77 97.56 98.16 97.56

As evident from table IV, our model performance excep-
tionally well in the COVID19 class getting an accuracy of
100%. While for both the Normal and Pneumonia class it gets
an accuracy of 97.56%. This claim are further supported by
the confusion matrix we generated for each of the folds. The
confusion matrix for fold-1 and fold-3 are presented in figure
3.

We also trained our model on a 2-class dataset derived from
the 3-class dataset where the Normal and Pneumonia classes
were labeled as Non-Covid19. We used the Precision, Sensi-
tivity, Specificity, F1-score and Accuracy as the performance
metric for this task. This detailed result is presented in table
V.

As we can see from table V, our model performance
increases significantly for the 2 class dataset and it obtained an
accuracy of 98.78% for the COVID19 class. As for the Non-
COVID19 class it was able to detect all the images correctly.
We ran this setup for all of the folds and the confusion matrix
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TABLE V
PRECISION, SENSITIVITY, SPECIFICITY, F1-SCORE AND ACCURACY OF THE 2 CLASSES FOR FOLD 2

Class Precision(%) Sensitivity(%) Specificity(%) F1-score(%) Accuracy(%)
COVID19 100 98.78 100 99.39 98.78
Non-Covid19 99.39 100 98.78 99.67 100
Average 99.70 99.39 99 99.54 99.39

Fig. 3. Confusion Matrix of the Test Set for 3-class Dataset

for fold-1 and fold-2 are presented in Figure 4. From the
confusion matrices we can see that the model was able to
classify most of the test set images correctly for both the folds.

Fig. 4. Confusion Matrix of the Test Set for 2-class Dataset

As stated in section 3, we used data augmentation in our
training scheme. We also tried to train model without using
any of the data augmentations and compared their performance
in table VI.

TABLE VI
COMPARISON OF PERFORMANCE FOR DATA AUGMENTATION

Data Type Precision(%) Sensitivity(%) F1-score(%) Accuracy(%)
With

Augment 96.59 96.33 96.32 96.33

Without
Augment 94.61 94.31 94.23 94.31

From table VI we can observe that the model performed
better when using data augmentation techniques compared to
when we trained without using any data augmentation. We
got an accuracy of 94.31% without using data augmentation
which is lower than our average accuracy of 96.33%.

While using Imagenet weights as initialization, we had
the option of freezing some of the layer of InceptionV3
model with that weight and training rest of the layers. We

tried freezing different number of layers and compared their
accuracy in Figure 5.

Fig. 5. Accuracy vs Number of Unfrozen Layers plot for our proposed model

As we can see from Figure 5 when all the layers were
frozen the model performance was relatively poor but as we
increased the number of unfrozen layers the accuracy went
up. But there is very little difference in performance from 200
unfrozen layers onward.

As we mentioned in section 1, a lot of research work is
currently being done on classifying COVID19 patients from
chest X-ray images. These studies are being conduct in both 3-
class and 2-class datasets with variation in number of images
in the dataset and the model architecture. A comparison of
our proposed system with the existing literature is presented
in table VII.

V. DISCUSSION

Our proposed method of using InceptionV3 based archi-
tecture with pretrained Imagenet weights and employing data
augmentation in the training scheme has resulted in an overall
good accuracy for both the 3-class and 2-class dataset. As we
can observe in table III the model had accuracy in the range
of 93.90% to 98.37% for all of the folds of data. Even the
lowest accuracy of 93.90% is still quite high. The model’s
performance did not vary that much across the folds meaning
the system is robust and reliable.

The system’s performance improves dramatically when ap-
plied in the 2-class dataset as should be the case because the
task becomes much easier for the learning algorithm. Another
thing to notice in table III and table V is the high precision
and the sensitivity of the model. High sensitivity means a low
number of false-negative cases and that our model misses less
number of COVID19 cases. This holds for both the 3-class and
2-class setup and makes us hopeful of the system’s potential.

Table VI shows that our intuition of using data augmentation
and pre-trained weights for the network does lead to better
performance. As in these cases using these techniques yields
a much higher accuracy. Using data augmentation makes the
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TABLE VII
COMPARISON OF OUR PROPOSED METHOD WITH THE EXISTING LITERATURE

Study Architecture Accuracy 3-class(%) Accuracy 2-class(%)
Ioannis et al. [38] VGG19 93.48 98.75
Wang and Wong [24] Covid-Net N/A 92.4
Sethy and Behra [39] Resnet-50 N/A 95.38
Hemdan et al [40] VGG19 N/A 90
Narin et al [30] Resnet-50 N/A 98
Ozturk et al [25] DarkCovidNet 87.02 98.08
Khan et al [27] CoroNet 89.6 99
Proposed Method InceptionV3 96.33 xxxx

model more generalized and robust which makes it able to
deal with much more variation in test set distribution and
helps these data-hungry deep learning algorithms learn better
representation [41]. As for using pre-trained weights rather
than training from the scratch, it was reported in [42] that
when limited training data is available pre-trained networks
tend to outperform networks that are trained from scratch. And
our experimentation also led to the same conclusion.

Table VII compares our proposed method with the existing
literature. It can be seen here that our model manages to
perform better than the other methods presented in this table.
We get an average accuracy of 96.33% for the 3-class setup,
while for the 2-class setup it is 99.39%. Another point to note
here is that we use more COVID19 class data in our study
compared to the other studies mentioned. [38] acquired an
accuracy of 93.48% for the 3-class setup but used 224 COVID,
700 Pneumonia, and 504 normal class images. DarkCovidNet
[25] used 224 COVID, 500 Pneumonia and 500 normal class
images that resulted in an accuracy of 87.02% in the 3-
class setup. CoroNet [27] used 310 normal, 330 pneumonia-
bacterial and 327 Pneumonia-viral X-ray images for their 3-
class setup and got an accuracy of 89.6%. So using more
COVID19 data and improving the performance makes our
system a lot more reliable.

VI. CONCLUSION

Despite the success of our method when compared against
other existing literature we do have certain limitations, es-
pecially when it comes to deploying this sort of a model
for large scale practical use. The most important limitation
is the lack of verified datasets of chest X-rays of Covid-19
patients available for training our model to make it practically
deployable. Currently, we have only trained the model for
3-classes, but training it with more classes such as SARS,
bacterial and viral pneumonia, etc. would certainly make it
more robust. Finally, we still do not know the human-level
accuracy for detecting Covid-19 from chest X-rays, and it
would be interesting to compare our model against that.

It has been more than 6 months since the advent of the
Covid-19 pandemic, and still, the number of people being
infected by the virus is increasing every day. Using chest
radiology is one of the most common methods used to detect
infected patients. However, this process is done manually
by radiologists and as such, there is a glaring shortage of
radiologists around the world in this critical period. At the
same time manually checking every patient’s X-ray is a time-
consuming task and is prone to human errors. Thus it is vital to
develop a fast, reliable, and automated process for detection of
the virus in chest X-rays. Our method of automatic COVID

19 detection from Chest X-ray images is one such process.
Despite not being production-ready, we believe that based on
the ideas of our literature a large-scale model can be built and
deployed. Through that, we can achieve a faster diagnosis,
faster isolation of infected patients, and less human contact
during diagnosis, all of which will lead to much stronger
mitigation of the Covid-19 pandemic.
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