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ABSTRACT Conventional color flow processing is associated with a high degree of operator dependence,
often requiring the careful tuning of clutter filters and priority encoding to optimize the display and
accuracy of color flow images. In a companion paper, we introduced a novel framework to adapt color
flow processing based on local measurements of backscatter spatial coherence. Through simulation studies,
the adaptive selection of clutter filters using coherence image quality characterization was demonstrated as
a means to dynamically suppress weakly-coherent clutter while preserving coherent flow signal in order
to reduce velocity estimation bias. In this study, we extend previous work to evaluate the application of
coherence-adaptive clutter filtering (CACF) on experimental data acquired from both phantom and in vivo
liver and fetal vessels. In phantom experiments with clutter-generating tissue, CACF was shown to increase
the dynamic range of velocity estimates and decrease bias and artifact from flash and thermal noise relative
to conventional color flow processing. Under in vivo conditions, such properties allowed for the direct
visualization of vessels that would have otherwise required fine-tuning of filter cutoff and priority thresholds
with conventional processing. These advantages are presented alongside various failure modes identified in
CACF as well as discussions of solutions to mitigate such limitations.

INDEX TERMS Acoustic clutter, adaptive clutter filtering, color flow imaging, image quality, spatial
coherence, ultrasound.

I. INTRODUCTION

COLOR flow imaging has become a standard mode on
virtually all clinical ultrasound scanners and is widely

used for diagnosing cardiovascular abnormalities, guiding
needle biopsies, and examining tumor vascularity, among
many other applications [1]. In the liver, color flow images
can provide valuable information unobtainable from con-
ventional B-mode for identifying hepatocellular carcinoma
and tracking the progression of liver transplantation and cir-
rhosis [2]–[5]. In fetal sonography, color flow imaging has
become a routine component of the second trimester exam
for assessing heart function and anatomy and detecting the
impedance of blood flow in the umbilical cord [6], [7].

Despite its widespread use, color flow imaging remains
challenged by its poor accuracy and sensitivity, particularly
in the presence of tissue and transducer motion [8]–[10].
These limitations are in large part a result of sub-optimal
clutter filtering – a pre-processing step applied prior to veloc-
ity estimation to remove unwanted slowly-moving, low fre-
quency (pulse-to-pulse sampling) acoustic noise known as
clutter. Clutter filters with wide passbands and low cutoff
frequencies are susceptible to velocity underestimation due to
poor attenuation of clutter, while more aggressive filters with
higher cutoff frequencies compromise the detection of slow
flow, resulting in the complete or partial removal of flow sig-
nal [11]–[13]. In one study examining color flow imaging of
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the fetal umbilical cord [14], clutter filter selection was noted
as one of the primary sources of error in measuring volume
rate in arterial and venous umbilical flow. As demonstrated by
numerous studies [12], [15], such errors are clinically relevant
and have been directly linked to false or missed diagnoses.

In attempt to address such issues, methods have been
developed to adapt clutter filters based on measured clutter
content. These techniques apply estimates of tissue motion
prior to filtering to either down-mix clutter into the filter
stopband [16], [17] or adjust the stopband itself to optimally
attenuate clutter [18], [19]. Others apply various forms of
eigen-based filtering to remove slow-time signal components
based on assumed thresholds for clutter frequency andmagni-
tude [20]–[23]. To date, virtually all existing methods derive
feedback from measurements of echo magnitude and fre-
quency or a combination of both to perform adaptive filtering.
As a result, they suffer from well-known limitations when
magnitude and frequency information are insufficient to sep-
arate blood and tissue backscatter from clutter [20].

In a companion paper, we introduced a novel method to
adapt clutter filtering based on measurements of backscatter
spatial coherence [24]. Under the assumption that clutter has
lower spatial coherence than signal from on-axis tissue or
blood, this method adapts clutter filtering on each frame and
pixel of color flow data by applying pixel-wise measurements
of spatial coherence at the output ofmultiple clutter filters and
selecting the filter that maximizes local coherence for subse-
quent velocity estimation. As demonstrated by this previous
study, spatial coherence is able to provide a direct measure of
clutter that is inversely correlated with both velocity estima-
tion bias from acoustic clutter and high variance jitter from
thermal noise. By relying exclusively on spatial coherence
feedback andwithout any direct assumptions related to clutter
magnitude or frequency, coherence-adaptive clutter filtering
or CACF was observed to provide accurate measurements
of slow flow under clutter-free conditions and reduced bias
under cluttered conditions in Field II simulation [25].

In the present study, we extend previous simulation results
to evaluate the practical application of CACF in phantom
experiments with calibrated flow rates and different clutter
realizations as well as in vivo color flow acquisitions of liver
and fetal vessels. section II provides a brief introduction
to the conventional color flow processing pipeline and the
modifications required to perform CACF. In section II-B,
we describe the methods used to compare the performance
between conventional processing and CACF. The results of
these comparisons along with example matched color flow
images and a discussion of the advantages and limitations of
CACF compared to conventional color flow processing are
presented in sections III and IV, with concluding remarks in
section V.

II. METHODS
A. CONVENTIONAL COLOR FLOW PROCESSING
In color flow imaging, transmit-receive cycles are repeated at
each imaging location to collect an ensemble of channel echo

signals. Using delay-and-sum beamforming, these channel
signals are time-delayed and summed to form beams that
sample each imaging location in ‘‘slow-time’’ at intervals
determined by the pulse repetition frequency (PRF).

To isolate echoes from moving blood or tissue and remove
those corresponding to slow-moving or stationary clutter,
each ensemble is filtered along the slow-time dimension typ-
ically using a finite or infinite impulse response (FIR or IIR)
filter with a fixed frequency response. Color flow images are
formed by measuring the average phase shift between clut-
ter filtered slow-time samples. This is commonly performed
using 2-D autocorrelation:

φ̂[Er]

= tan−1


K∑
k=1

∑
r∈1Er

Q[r, k + 1]I [r, k]−Q[r, k]I [r, k+1]

K∑
k=1

∑
r∈1Er

I [r, k + 1]I [r, k]+Q[r, k + 1]Q[r, k]

 ,
(1)

where I andQ represent the complex in-phase and quadrature
beamsum signals, respectively, acquired at slow-time samples
k and k + 1 across an ensemble of K repeated lines for a
kernel1Er centered about imaging location Er [26]. The phase
shift φ̂ is converted to an estimate of axial velocity, given
assumptions for the sound speed c, center frequency f0, and
PRF where:

v̂[Er] = −
cPRF
4π f0

φ̂[Er]. (2)

Prior to being mapped to the output display, velocity esti-
mates are passed through what is commonly referred to as
a priority encoder, which functions to identify and display
pixels containing reliable velocity information, while reject-
ing those corresponding to noise and clutter. Among the
many methods employed in commercial systems, two com-
mon techniques for priority encoding include variance and
power thresholding [27]. Variance thresholds are applied to
eliminate regions of spatially and temporally random velocity
estimates from thermal noise, also known as jitter, while
power thresholds are applied to remove low amplitude echoes
from clutter or thermal noise.

In practice, such thresholds can be implemented in the fol-
lowing manner where, for a given spatial kernel 1Er centered
about spatial location Er , the output color flow pixel at Er is
rejected and set to 0 cm/s if the variance inside the kernel is
above some threshold σ 2:

if
1
|1Er|

∑
r∈1Er

(
v̂[r]− v̄

)2
> σ 2 then v̂[r] = 0, (3)

where v̄ is the average velocity within 1Er :

v̄ =
1
|1Er|

∑
r∈1Er

v̂[r]. (4)

Additionally, the pixel is rejected if the average power of
clutter filtered signals inside the kernel is below some power
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threshold P given in decibels:

if 10 log10


1
|1Er|

∑
r∈1Er

K∑
k=1
|U [r, k]|2

max
{r∈image}

K∑
k=1
|U [r, k]|2

 < P then v̂[r] = 0,

(5)

where U are the beamsummed IQ signals at slow-time sam-
ple k . In the clinical workflow, these thresholds are tuned by
users to balance between the appearance of artifacts and real
flow.

Together, the above components make up the core process-
ing steps used in this study to implement conventional color
flow imaging:

1) Clutter filtering using standard IIR filters
2) Velocity estimation via Eqs. (1) and (2)
3) Priority encoding via Eqs. (3) to (5)

B. COHERENCE-ADAPTIVE COLOR FLOW PROCESSING
CACF applies image quality feedback derived from backscat-
ter spatial coherence to adaptively inform the selection of
clutter filters in each frame and at each pixel in a color flow
image. While CACF does not require any custom transmit
sequencing, modifications in receive processing are needed
to measure spatial coherence and its response to changes in
clutter filtering.

Fig. 1 describes the pipeline for color flow image formation
using CACF. As in conventional color flow imaging, channel
data are collected over an ensemble of slow-time samples and
time-delayed to focus the received echoes. Rather than sum-
ming the channel signals prior to clutter filtering, as is done
in conventional color flow imaging, clutter filtering is per-
formed on a per-channel rather than per-beam basis to enable
the measurement of spatial coherence from post-clutter fil-
tered channel data.

In this study, the spatial coherence is calculated as the
normalized correlation between channel signals averaged as
a function of the spatial separation or lag m and across
slow-time samples k:

R̂[m; Er] =
1

K (M − m)

K∑
k=1

M−m∑
i=1

ui[Er, k]u∗i+m[Er, k]

|ui[Er, k]| |ui+m[Er, k]|
(6)

where M is the total number of receive elements, K is the
slow-time ensemble size, and ui and ui+m are time-delayed,
clutter filtered complex IQ channel signals received at ele-
ments i and i+m. Note that measurements of correlation
in Eq. (6) are restricted to signals obtained over the same
transmit-receive cycle, and thus they have no dependence on
scatterer motion.

To derive a single measurement of coherence at each imag-
ing location Er , estimates from Eq. (6) are summed up to a
maximum lag Q to compute the short-lag spatial coherence
(SLSC):

SLSC[Er] =
∑Q

m=1 R̂[m; Er]. (7)

To characterize color flow image quality across a bank
of clutter filters, measurements of SLSC are obtained from
the same channel data passed in parallel through a bank of
different clutter filters. As shown in Fig. 1, adaptive filter
selection is performed by comparing the spatial coherence
at each imaging location Er across different filters and iden-
tifying the filter fopt which maximizes the spatial coherence.
The velocity estimate at the output of filter fopt and at Er is
subsequently mapped to the corresponding location in a final
output image. This process is repeated across all imaging
locations to form a CACF color flow image, wherein each
pixel represents the output velocity of the clutter filter with
the highest local spatial coherence.

C. DATA ACQUISITION
Color flow channel data were acquired using a C5-2v curvi-
linear array on the Verasonics Vantage 256 system transmit-
ting at 3.5 MHz with an 8 cm focal depth and F/2 focal
geometry with rectangular apodization. Receive data were
captured at a 14 MHz sampling frequency and dynamically
focused with a constant F/2 rectangular apodization. At each
imaging location, transmits were sampled over 14 ensemble
firings at 3 kHz PRF. Each acquisition consisted of 20 full
color flow imaging frames consecutively acquired at 12 Hz,
giving a total acquisition time of 1.7 seconds. This acquisition
sequence was used to collect all datasets in the study.

D. PHANTOM EXPERIMENTS
To evaluate the performance of CACF under calibrated imag-
ing conditions, a series of experiments was performed using
a CIRS 069 Doppler flow phantom (Norfolk, VA). Blood
was simulated using a 1% (mass/mass) starch-water mixture
and circulated through a 4.8 mm diameter vessel which was
oriented at a 70◦ Doppler angle and embedded at 8 cm depth
in a tissue-mimicking material. Flow was introduced using a
peristaltic pump connected to a pulse dampener to maintain
continuous flow through the vessel.

Color flow data were acquired for both clutter-free and
cluttered conditions by imaging through water and porcine
abdominal wall, respectively. To maintain a fixed imaging
window across all phantom conditions, the transducer was
offset 5 cm from the top surface of the phantom using a
water-filled well affixed atop the phantom. This allowed for
the placement of intervening tissue while keeping the same
relative positioning of the phantom and transducer. Cluttered
imaging conditions were examined for two tissue samples
of different thickness, consisting of intact skin, connective
tissue, fat, and muscle.

To quantify the relative clutter levels generated by the two
samples, the lag-one coherence (LOC) was measured from
fixed 1× 1 cm regions-of-interest (ROIs) of uniform speckle
in the phantom following the methods outlined in [28].
B-mode contrast was also measured between an ROI placed
in anechoic water below each abdominal wall (clutter only)
and a nearby ROI inside the phantom (clutter and speckle).
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FIGURE 1. The proposed algorithm for CACF where at pixel location Er (a) ensemble channel data are passed through a series of
clutter filters, hf , (b) SLSC is measured at the output of each filter to identify the filter fopt that maximizes spatial coherence, and
(c) the corresponding velocity estimate, v̂[fopt;Er], at the output of fopt is mapped to an output image. This process is repeated
across all pixels to form a CACF color flow image. Note that conventional color flow imaging is roughly summarized by one
vertical column of this diagram going along the dotted line from a single clutter filter to its output velocity image.

Motion in the tissue layers was introduced using tubes
connected to a second peristaltic pump, operated separately
from the flow pump, that served to couple 2 Hz cyclic motion
into each sample. Tubing was fastened to the sides of each
tissue sample using elastic bands and arranged in a way
that maintained a clear acoustic path between the transducer,
tissue, water, and phantom. Water in the well was filled
sufficiently high to submerge both the transducer face and
tissue, while keeping the tissue out of direct contact with the
phantom. In this way, the well served not only to maintain
a fixed imaging window, but also to physically decouple
tissue from the phantom, allowing the intervening tissue to
move while keeping the phantom stationary. Images of the
experimental setup, including top-down and cross-sectional
views of the phantom and well, are shown in Fig. 2.

Color flow channel data were acquired through water and
the two tissue samples for flow pump settings from 160 to
320 mL/min, corresponding to calibrated flow rates from
approximately 5 to 10 cm/s after Doppler angle correc-
tion (v = v0 cos 70◦). Channel data were used to form
color flow images using conventional clutter filtering with
projection-initialized IIR filters with cutoff frequencies from
fc = 0.03 to 0.14 · PRF corresponding to velocity cutoffs
vc = 2.0 to 9.2 cm/s. CACF was implemented using SLSC
feedback (Q = 10) and a filter bank consisting of 8 IIR filters
with cutoff frequencies spanning from fc = 0.03 to 0.24·PRF
(vc = 2.0 to 15.8) in addition to a ‘‘no filter’’ condition
in which velocity and coherence estimates were measured
directly from the raw channel signals without clutter filtering.

Average velocities inside the vessel were compared
between conventional filtering with different cutoff

frequencies and CACF. Averaging was performed over ROIs
spanning the entire lateral and axial extent of the vessel and
across all 20 frames to reduce the effects of residual pulsatility
from the pump. Velocities obtained from the lowest cutoff
filter (fc = 0.03) under clutter-free imaging conditions were
used as a standard of comparison between the different filter
and clutter conditions. These serve to represent the ‘‘ideal’’
velocity estimates with minimal bias from either clutter or the
attenuation of slow flow.

Average velocities in stationary regions outside the vessel
were also measured to evaluate the sensitivity of conventional
and coherence-adaptive filtering to flash artifacts generated
by moving clutter. This analysis was repeated for conven-
tional color flow images formed with varying levels of pri-
ority encoding with variance thresholds ranging from 0.1 to
3 mm/s and power thresholds from −35 to −10 dB, both
applied over 2× 2 mm kernels.

E. In Vivo STUDIES
Using the same acquisition sequence as in phantom exper-
iments, color flow channel data were acquired from in
vivo liver and fetal vessels. Liver data were acquired from
a healthy volunteer with a body mass index (BMI) of
24.4 kg/m2. Fetal data were acquired at the Duke Fetal Diag-
nostic Center from a second trimester fetus in a 21 year-old
patient with a pre-pregnancy BMI of 32.1 kg/m2. Written
consent was obtained from all study participants, and all
data were collected under protocols approved by the Duke
University Medical Center Institutional Review Board.

Channel data were used to form matched color flow
images with conventional and coherence-adaptive filtering
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FIGURE 2. (a) Experimental setup used to image flow under
conditions with moving clutter. (b) Top-down view of the well
and (c) cross-sectional view of the well and phantom.
Starch-water mixture is pumped through the CIRS 069 phantom
and imaged using a C5-2v transducer through an intervening
well containing water and a porcine abdominal layer. Using a
separate peristaltic pump, motion is coupled through tubing
attached to each side of the porcine abdominal layer to
generate moving clutter.

implemented in the same manner as in the phantom exper-
iments. Images formed with CACF were qualitatively com-
pared to conventional color flow images formed with
different clutter filters and varying degrees of priority encod-
ing. To evaluate the temporal and spatial stability of CACF,
the average and standard deviation of velocity estimates
within select vessels in the liver and fetal color flow images
were measured across the 20 sequentially acquired frames in
each dataset. ROIs were selected based on vessels identified
from B-mode images captured prior to each color flow acqui-
sition and used for both conventional and coherence-adaptive
filtering conditions.

III. RESULTS
A. PHANTOM EXPERIMENTS
1) CLUTTER MEASUREMENTS
Table 1 shows the measured contrast and LOC in each of the
phantom imaging conditions. As expected, contrast and LOC
are greatest when imaging through water and decrease with
clutter from intervening tissue. Of the two samples, tissue #2
is not only thicker, but results in lower values of LOC and
contrast, indicating higher levels of clutter and noise relative
to tissue #1.

2) COLOR FLOW ACCURACY
Fig. 3 plots the average velocity measured inside the CIRS
069 vessel under different flow and clutter conditions for
images formed with no clutter filtering, conventional filtering
with low (fc = 0.03 · PRF; vc = 2.1 cm/s) and high
(fc = 0.09 · PRF; vc = 5.9 cm/s) cutoff frequencies, and
CACF. Average velocities are plotted as a function of ‘‘ideal’’
average velocities from the low cutoff filter under clutter-free
conditions with the gray diagonal representing a one-to-one
correspondence between the measured and ideal velocities.

Under clutter-free conditions in Fig. 3a, it follows that
the low cutoff filter falls directly along the diagonal. CACF
closely matches this ideal behavior, while the high cutoff
filter shows an upward bias that decreases with increasing
flow rate. In Fig. 3b, slow-moving clutter from tissue #1 is
expected to introduce a downward bias in velocities. This is
most obvious in the low cutoff filter, but less so in the high
cutoff filter and CACF, which maintain roughly the same
behavior as in Fig. 3a. In Fig. 3c, clutter from the thicker
tissue #2 leads to severe velocity underestimation across all
filters, particularly in CACF, which shows velocities well
below the diagonal and on par with those measured using no
filter.

3) COLOR FLOW IMAGES
Fig. 4 shows example color flow images from points A, B, and
C in Fig. 3. These capture conditions where notable differ-
ences can be observed between conventional and coherence-
adaptive filtering. Fig. 4a showsmatched images of slow flow
acquired through water. Consistent with the average velocity
measurements in Fig. 3a, the low cutoff filter image reveals
low velocities expected for the slow flow rate setting, while
the high cutoff filter image shows significant overestimation.
CACF, which preferentially selects filters with lower cutoff
frequencies under the conditions examined in A, produces an
image with low velocities inside the vessel similar to the low
cutoff filter.

Fig. 4b and Fig. 4c show the corresponding color flow
images of the fastest flow rate imaged through clutter-
generating tissue. Under moderate clutter levels from tis-
sue #1, the high cutoff filter image shows high velocities
inside the vessel consistent with the faster flow rate setting.
Meanwhile, the low cutoff filter image shows artifactual
regions of low velocity both inside and outside of the vessel.
CACF, which preferentially selects filters with higher cutoff
frequencies under the conditions examined in B, produces an
image with high velocities inside the vessel similar to the high
cutoff filter.

As clutter levels increase with tissue #2, significant
degradation is observed across all filters in Fig. 4c. With
conventional filtering, moving clutter results in flash artifacts
outside and decreased velocities inside the vessel. This is
most apparent in the low cutoff filter image, which shows
severe underestimation and poor visualization of flow at both
ends of the vessel. In the CACF image, large regions of the
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TABLE 1. Clutter measurements.

FIGURE 3. Measured average velocity inside the CIRS 069 vessel
for color flow images formed with no filtering, conventional
filtering with fc = 0.03 and 0.09 · PRF, and CACF plotted against
the ‘‘ideal’’ average velocities measured using fc = 0.03 under
clutter-free conditions. Data are shown for images acquired
through (a) water, (b) tissue #1, and (c) tissue #2. Error bars
represent the standard error across the vessel and
20 consecutively acquired frames. Points A, B, and C
correspond to example images in Fig. 4a, Fig. 4b, and Fig. 4c,
respectively.

vessel show velocities close or equal to 0 cm/s. As indi-
cated by the filter selections, this loss of velocity informa-
tion is associated with a preferential selection of no filtering
(fc = 0 · PRF) for pixels inside the vessel.

4) COLOR FLOW ARTIFACTS
Figs. 5a and 5b show a series of matched color flow
images formed from the same channel data acquired through
tissue #1. Fig. 5a compares conventional filtering with fc =
0.09·PRF and CACFwithout priority encoding, while Fig. 5b
compares conventional filtering with priority encoding for a
range of different power (P) and variance (σ 2) thresholds.
Color flow images formed with conventional color flow

processing reveal artifactual velocities outside of the vessel
in the form of random thermal noise (jitter) and bulk motion
from moving clutter (flash), neither of which are apparent
in the corresponding CACF image. These artifacts can be
reduced by decreasing the variance threshold or increasing
the power threshold. As observed in the rightmost columns
of Fig. 5b, this is associated with a concomitant loss of pixels
inside the vessel as flow signal is removed along with the
artifacts.

These trends are captured Fig. 5c, which plots the average
velocities measured in ROIs defined inside and outside of
the vessel for different P and σ 2. Given that the phantom
is stationary with motion confined to scatterers inside the
vessel, mean velocities outside the vessel (top) are expected to

approach 0 cm/s, with nonzero values indicating the presence
of artifacts.

Consistent with the images in Figs. 5a and 5b, decreases in
the average velocities both inside and outside of the vessel are
observed for conventional processing (green) with increas-
ing P and decreasing σ 2, suggesting an intrinsic trade-off
between the suppression of artifacts and the preservation
of flow with priority encoding. This results in an optimal
power threshold at P = −15 dB, which achieves complete
suppression of flash artifacts (0 cm/s outside) while main-
taining an average velocity inside the vessel around 6 cm/s.
Variance thresholding, designed specifically to remove high
variance jitter, is largely ineffective in suppressing flash arti-
facts, resulting in velocities outside the vessel > 0 cm/s for
thresholds as low as σ 2

≤ 0.1 mm/s.
Corresponding average velocities for CACF without pri-

ority encoding are plotted in black in Fig. 5c. Results show
an average velocity outside the vessel approaching 0 cm/s
with an average velocity inside the vessel of 6.3 cm/s. These
measurements are largely consistent with CACF images in
Figs. 4a, 4b and 5a, which show clear delineation between
moving scatterers inside and stationary scatterers outside the
vessel.

B. In Vivo STUDIES
1) COLOR FLOW IMAGES
Figs. 6 and 7 show example color flow images obtained from
in vivo liver and fetal vessels. Matched images are shown
for conventional processing with increasing filter cutoff fre-
quency (fc = 0.03, 0.09, and 0.14 · PRF) from top to
bottom and increasing priority encoding from left to right.
Corresponding CACF velocities and filter selections without
priority encoding are included at the bottom of each figure.

Fig. 6 shows color flow images of the liver with regions
containing small vessels (I) and slowflow (II). Images formed
with the lowest cutoff filter reveal significant flash artifacts.
These artifacts can be reduced with increasing cutoff fre-
quency and priority thresholds, but not without loss of flow
signal. With higher cutoff frequencies, blood flow in both I
and II is attenuated, leaving high variance jitter from thermal
noise (Figs. 6e and 6i). With increased priority encoding,
small vessels in I are removed before flash artifacts can be
fully eliminated (Fig. 6d). Careful selection of the filter cutoff
and priority thresholds in Fig. 6f can yield an optimized image
capable of capturing flow in both I and II. Alternatively, a sim-
ilar image can be directly obtained using CACF (Fig. 6o).

Fig. 7 shows color flow images of umbilical flow
(I) in a moving fetus (II). For lower cutoff frequencies
(Figs. 7a to 7d), fetal motion results in flash artifacts that
overwrite the higher velocity umbilical flow. As shown in
Figs. 7e and 7i, these velocities can be recovered using higher
cutoff filters with stop bands wide enough to attenuate clutter
from the nearby moving tissue. This is similarly achieved
with CACF, which selects for higher cutoff frequencies in
regions containing flow (Figs. 7n and 7o).
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FIGURE 4. Example images sampled from A, B, and C in Fig. 3 corresponding to (a) slow flow imaged through water path and faster
flow imaged through (b) tissue #1 and (c) tissue #2. Matched color flow images are shown for no filtering, conventional filtering with
cutoff frequencies at fc = 0.03 and 0.09 · PRF, and CACF. B-mode images and CACF filter selections are included for reference with
ROIs used for measurements in Fig. 3 outlined in white.

Note that Fig. 7o shows stable velocity estimates in not
only the umbilical vessel but also the fetus itself, suggesting
a potential for CACF to simultaneously capture motion from
both blood and tissue. This is possible to a certain degree with
conventional processing in Fig. 7f, but is made difficult by
its strong dependence on filter cutoff and priority encoding
which can lead to the loss of velocity information in either
blood (Figs. 7a to 7d) or tissue (Figs. 7i to 7l) when tuned
inappropriately.

2) COLOR FLOW STABILITY
Figs. 8 and 9 examine the stability of CACF in the liver
vessel (II) in Fig. 6 and umbilical vessel (I) in Fig. 7,
respectively. Figs. 8a and 9a compare the averages and
standard deviations of velocity estimates over multiple
frames of matched color flow images formed with con-
ventional and coherence-adaptive filtering. Images from
a subset of these frames are included for reference in
Figs. 8b and 9b.

For the liver vessel in Fig. 8, CACF shows time-varying
velocities that closely match the velocities measured with
conventional filtering. With regards to spatial stability, mea-
surements of standard deviation for CACF are comparable
to those of the best-case conventional clutter filter (fc =
0.03 · PRF). For conventional filters, particularly those with
higher cutoff frequencies, increased standard deviations are
observed in frames with lower velocities where flow signal
is removed leaving residual jitter. This is not observed with
CACF, which maintains relatively low standard deviations
across all 20 frames (Fig. 8b).

For the umbilical vessel in Fig. 9, average velocities
with CACF are observed to track closely with velocities
from higher cutoff filters, which more aggressively attenu-
ate clutter generated by fetal motion. Unlike higher cutoff
filters, however, the recovery of flow from moving clutter
with CACF is not observed with a concomitant increase
in jitter. As in Fig. 8a, standard deviations with CACF
in Fig. 9a are on par with the lower standard deviations
observed with conventional filtering with fc = 0.03 and
0.06 · PRF.

IV. DISCUSSION
A. COLOR FLOW ACCURACY
In phantom studies, velocity measurements obtained using
a low cutoff filter under clutter-free conditions were used
as an approximation for the ground truth flow rate. While
an absolute comparison of measured velocities to the actual
ground truth velocities would be far more compelling, the
derivation of such values is challenging, and when performed
incorrectly, can be confounded by numerous factors including
the Doppler angle, flow pump calibrations, beam geometry,
and spatial and temporal nonuniformities. These measured
velocities therefore serve as an imperfect but necessary ref-
erence to assess the performance of different filters operating
under different imaging conditions. Of the conditions exam-
ined in this study, they are expected to most appropriately
capture the ideal, bias-free behavior given the wide filter
passband and lack of spectral content from moving clutter or
non-flow signal.

Given this standard of comparison, CACF is observed to
maintain close to ideal velocity estimation across a range
of flow rates under clutter-free and moderately cluttered
conditions. As shown by Figs. 4a and 4b, this is largely
attributed to the appropriate selection of low cutoff filters
under clutter-free conditions to minimize the attenuation of
slow flow and high cutoff filters under cluttered conditions to
suppress slow-moving reverberation and/or off-axis clutter.
The result is an increased dynamic range of velocity estima-
tion, capable of providing more accurate visualization of both
low and high velocity flow without the manipulation of filter
cutoffs and/or priority thresholds.

Improvements in dynamic range are similarly observed
under in vivo imaging conditions. In liver vessels in Fig. 6,
CACF provides direct visualization of slow flow and small
vessel branches that are otherwise overwritten by flash arti-
facts in filters with too low of a cutoff frequency or removed
in filters with too high of a cutoff frequency. For fetal images
in Fig. 7, this translates to the ability to image both high
velocity blood flow and low velocity tissue motion. Filters
selected by coherence feedback to optimize the visualization
of liver vessels (Fig. 6) and umbilical flow (Fig. 7) span awide
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FIGURE 5. Color flow images of the CIRS 069 vessel formed with
(a) conventional filtering with fc = 0.09 · PRF and CACF, both
without priority encoding, and (b) conventional filtering with
various power (top), variance (middle), and combined
power and variance (bottom) thresholds. (c) Average velocities
inside and outside the vessel measured from ROIs outlined in
solid and dashed white, respectively.

range, with higher cutoff frequencies selected in Fig. 7 in
comparison to Fig. 6. Such results suggest that a conven-
tional filter optimized for imaging in one clinical setting
may be inadequate for another. While ground truth velocities
are unavailable in vivo, phantom results suggest that CACF
images likely provide a more accurate representation of in

FIGURE 6. Color flow images of liver vessels formed using
conventional filtering with increasing filter cutoff (top to bottom)
and increasing priority thresholds (left to right). Corresponding
B-mode images and images of the selected filter cutoffs and
velocities with CACF are included on the bottom.

vivo blood flow and tissue motion compared to conventional
images.

It should be noted that the simultaneous measurement of
blood and tissue velocities as shown in Fig. 7o represents a
unique property of CACF. This has potential utility in appli-
cations such as echocardiography where the measurement of
both blood and tissue dynamics are clinically-relevant [29].
On the other hand, in applications focusing solely on the
characterization of blood, the appearance of tissue velocities
may be less desirable and likened to flash artifacts. In such
cases, CACF, as implemented in this study, may be ill-suited,
and future work should explore the addition of amplitude-
and/or velocity-dependent processing in combination with
CACF to provide this added level of blood and tissue signal
discrimination.

For the 3 kHz PRF used in this study, physiological motion
in the liver from respiration may not always induce appre-
ciable changes in average phase across the ensemble. For
this reason, we believe that the ∼0 cm/s velocities in the
liver tissue in Figures 6 and 8 are expected. Meanwhile, fetal
motion is highly dynamic and can produce large variations in
tissue velocity as shown in Figure 7.
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FIGURE 7. Color flow images of fetal umbilical cord and vessels
formed using conventional filtering with increasing filter cutoff
(top to bottom) and increasing priority thresholds (left to right).
Corresponding B-mode images and images of the selected filter
cutoffs and velocities with CACF are included on the bottom.

B. COLOR FLOW STABILITY
While the pixel-wise selection of clutter filters is expected to
introduce an additional source of variance in velocity estima-
tion, results in Figs. 8 and 9 suggest comparable temporal and
spatial stability between CACF and conventional filtering.
Under conditions both with and without tissue motion, CACF
velocities are well-behaved over time with standard devia-
tions that approach those of the best-case conventional filter.
The increased dynamic range of CACF furthermore allows
for stable velocity estimation and decreased standard devia-
tions in frames with slow flow that are otherwise dominated
by jitter with conventional filtering. Such results support the
ability for CACF to not only improve velocity estimation
accuracy, but do so without sacrificing temporal or spatial
stability.

C. COLOR FLOW ARTIFACTS
As shown in both phantom and in vivo images, the simul-
taneous measurement of coherent signal from both tissue
and blood scatterers with CACF leads to a reduction in
artifacts commonly encountered in conventional color flow
imaging. While tissue echoes are removed by conventional

filters, leading to the measurement of velocities from residual
thermal noise, reverberations, and off-axis clutter, CACF pre-
serves tissue echoes to derive more stable velocity estimates
in regions without blood. This reduces the dependence on
priority encoding and other forms of post-processing, all of
which rely on the appropriate selection of manually-tuned
thresholds and parameters. As shown by Fig. 5, color flow
images formed with CACF alone were able to outperform
matched images formed with both conventional filtering and
priority encoding with regards to not only velocity estimation
accuracy, but also the severity of color artifacts.

It should be noted that many methods for priority encoding
and color processing exist on commercial systems which are
far more sophisticated than the power and variance thresholds
applied in this study. Results in this study therefore serve as a
demonstrative, rather than exhaustive comparison of CACF
to conventional color flow processing. Nonetheless, all of
such post-processing methods are expected to have similar
limitations related to manual parameter tuning that may be
alleviated with CACF pre-processing.

D. LIMITATIONS AND FUTURE WORK
While many scenarios examined in this study show improve-
ments in color flow image quality with CACF, there remain
instances where the proposed method fails.

1) LOW SPATIAL COHERENCE
In regions containing high levels of weakly-coherent clut-
ter, thermal noise, and/or focusing errors, measurements of
SLSC are expected to be low across the entire filter bank.
As characterized in previous studies, low values of SLSC are
associatedwith increased variance, which in CACFleads to an
increase in the variance of filter selections and output velocity
estimates [24]. This is readily observed in the amniotic fluid
in Fig. 7 and the near-field in Fig. 6, where low-amplitude
signals and focusing errors are expected to result in SLSC
values approaching zero.

Besides conventional post-processing methods, one poten-
tial mitigation for this degradation would be to apply some
form of thresholding in order to reject pixels with low spatial
coherence. Fig. 10 provides an example of such an approach
applied to liver vessels located in the near-field. In this exam-
ple, a pixel was assigned no clutter filter if its maximum
SLSC value across all filters fell below 2, 4, and 6% of the
theoretical maximum SLSC in speckle. With small amounts
of thresholding, CACF images are able to show reduced
variance with little to no change in regions containing flow.

2) CORRELATED CLUTTER
Degradation in CACF is also observed with correlated clutter,
which can arise from a variety of sources including nearby
off-axis scattering and coherent reverberations. As shown in
previous simulations studies, under conditions with high clut-
ter levels and/or low signal-to-noise ratio, these forms of cor-
related clutter can appear more coherent than blood, leading
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FIGURE 8. (a) Average and standard deviation of velocity estimates from multiple frames of the liver vessel in Fig. 6. Data are shown
for conventional filtering with fc = 0.03 and 0.09 ·PRF and CACF. (b) Example images corresponding to frames A through B with ROIs
outlined in white.

FIGURE 9. (a) Average and standard deviation of velocity estimates from multiple frames of the umbilical vessel in Fig. 6. with fetal
motion. Data are shown for conventional filtering with fc = 0.03 and 0.09 · PRF and CACF. (b) Example images corresponding to
frames A through B with ROIs outlined in white.

FIGURE 10. Color flow images of small liver vessels formed
using CACF with increasing levels of coherence thresholding
applied going from left to right.

to the selection of filters containing slow-moving clutter and
a decrease in the accuracy of CACF velocities [24].

In the cluttered phantom images from tissue sample #2
(Fig. 4c),), incoherent acoustic clutter and thermal noise
are expected to more significantly degrade the coherence of
blood compared to partially coherent, but higher amplitude
clutter. This directly explains the selection of no filtering by
CACF in Fig. 4c, which in this case, maximizes coherence by
preserving the correlated off-axis clutter overwriting lower
amplitude blood inside the vessel. While this represents a
notable limitation of the proposed method, it should be noted

that such behavior is present only under conditions which rep-
resent challenging imaging scenarios for conventional color
flow processing as well.

A possiblemitigation for the loss of flowwith CACFwould
be to apply a non-uniform weighting to the SLSC values
measured across different filters, thereby tuning coherence
feedback to preferentially select a specific subset of clutter
filters. For instance, SLSC values at the output of the first
filter could be weighted by w1, the second by w2, and so on.
Such a scheme would allow filters containing small amounts
of flow to be selected over those containing large amounts of
correlated clutter. More advanced filtering schemes and their
associated trade-offs should be investigated in future work to
improve the performance of CACF under these known failure
modes.

E. COMPUTATION TIME
For M channels, K slow-time samples, and F clutter filters,
the expected number of floating point operations (FLOPs)
required for CACF is approximately O(FKM2

+ FK 2M +
FKM ), where FKM2, FK 2M , andFKM represent the number
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of operations required for coherence calculation, clutter filter-
ing, and channel summation, respectively. This is in compar-
ison to the O(KM + K 2) FLOPs required for conventional
clutter filtering, which consists of a channel sum followed by
a single filtering operation. In the example of a 64-channel
system with 14 slow-time samples and 8 clutter filters, this
amounts to a roughly 520× slowdown with CACF over
conventional filtering assuming serial CPU implementations
similar to those used in this study.

While this may seem prohibitive, it should be noted that
CACF is highly parallelizable as SLSC estimates can be
independently computed not only for each pixel, but also
each slow-time sample and filter. Additionally, algorith-
mic changes can be leveraged to further minimize com-
putational load. This includes sparsing the pixels used for
adaptive filter selection as well as the number of channels
and/or slow-time samples used to compute the SLSC in
each filter. Given previous demonstrations of real-time imag-
ing using coherence-based techniques [30]–[32], the above
shows promise for efficient implementations of CACF with
parallel, high throughput computing devices such as GPUs.

V. CONCLUSION
In this study, CACF was evaluated under realistic imaging
conditions in phantom and in vivo. In phantom experiments
with clutter-generating tissue, CACF was shown to reduce
velocity estimation bias from slow-moving clutter or the
attenuation of flow signal, resulting in an increase in the
dynamic range of velocity estimates compared to conven-
tional filtering. The simultaneous measurement of both blood
and tissue motion by CACF was shown to reduce the severity
of flash artifacts and jitter, decreasing the need for carefully
tuned priority thresholds. In liver and fetal imaging, these
properties translated to the improved visualization of blood
vessels, which were otherwise overwritten by moving clutter
or removed with suboptimal filtering and/or priority encod-
ing. Improved color flow image quality was observed without
significant decreases in temporal or spatial stability due to the
pixel-wise selection of clutter filters. While failure modes in
the current implementation of CACF were identified, a num-
ber of proposed solutions show promise to mitigate these
limitations with minimal overhead. Together, these findings
support the feasibility of CACF as a method to optimize
color flow image quality without the operator dependence of
conventional color flow processing.
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