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ABSTRACT This paper presents an improved lumped element model for clamped, circular-shape,
piezoelectric micromachined ultrasonic transducers (pMUTs). A small signal equivalent circuit is developed
to include electrical, mechanical, and acoustic domains, which are analyzed separately and combined with
the associated couplings. For the first time, a two-term mode shape approach is adapted to reveal intrinsic
and extrinsic properties of a pMUT, such as equivalent circuit parameters, input impedance, velocity,
displacement, bandwidth, quality factor, directivity, and the on-axis pressure in the near and far field. These
properties are compared with prior reports in the literature and exact solutions, as well as Finite Element
Method (FEM) simulations. The errors relative to exact solution for all these properties are below 0.5%.
These improvements in error are from 5x to about 3 orders of magnitude better than those of prior works.
As such, the improved model could be helpful in design and simulation tools for pMUTs.

INDEX TERMS Piezoelectric micromachined ultrasonic transducers, pMUT, lumped element model,
equivalent circuit model, analytical model, mode shape.

I. INTRODUCTION

M ICROMACHINING technologies have unveiled
exciting applications for ultrasonic transducers for the

last couple of decades. Micromachined ultrasonic transduc-
ers (MUTs) are best known for their capability to provide
medical diagnostics in the form of ultrasonic images [1]
in human body or liquid [2]. In recent years, MUT appli-
cations have been expanded in the air medium such as
range finders [3]–[5], fingerprint sensing [6], [7], human
machine interface [8], [9], gesture recognition [10], surface
metrology [11], [12], and more. There are two transduction
mechanisms in MUTs: the capacitive [13] and piezoelectric
scheme [14]. Performance enhancement studies can be sum-
marized in two approaches; (1) optimal geometric designs
such as collapse mode [15] in capacitive MUTs (cMUTs) or
curved [16], ring [17], free [18] and pinned [19] boundary,
bimorph [20] structures in piezoelectric MUTs (pMUTs);
and (2) thin film materials with high piezoelectric properties
such as PZT [21] and AlN [22]. In this study, pMUTs are
investigated since they have shown prominent features in air
applications such as no need for a bias voltage and the large
displacement under the flexural vibration mode.

In parallel to the performance enhancement efforts,
an accurate analytical model is needed to gain a better

understanding of the physical mechanism for improved
structures. As stated in [23], the purpose of computation is
to have insights and not just pure numbers. Although con-
structing a better model takes time, once it is done it can
be used forever [24]. Hence, there has been great effort to
construct improved models focusing on transduction mecha-
nisms [25], mechanical structures [16], and complete physics
analysis [26]. However, these models are mostly complicated
with advanced functions which result in unpractical equiva-
lent circuit models.

In this paper, we present an improved lumped element
model for clamped circular-shape pMUTs. It starts with
the mechanical structure to reflect important intrinsic and
extrinsic design parameters. Then, a two-term mode shape
approach is used in three domains: mechanical, electrical, and
acoustic. An approximate energy-based method, Rayleigh-
Ritz, is utilized to predict more accurate mode shapes and
the Lumped elements and equivalent circuit model are pre-
sented with comparisons of literature and exact solution.
An improved small signal electro-mechano-acoustic equiv-
alent model is established to analyze several key parame-
ters such as: electrical input impedance, frequency response,
bandwidth, quality factor, directivity, and the acoustic on-axis
pressure in the near and far fields. The model has been
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verified with FEM simulations to calculate the errors in all
design parameters as less than 0.5% in terms of accuracy
compared to prior literature work. These results indicate that
this energy-based method can be utilized to obtain accu-
rate mode shapes as well as design parameters for circular-
shape pMUTs. Furthermore, the methodology should also be
applicable for other pMUT structures such as rectangle, ring
shapes and the dual electrode bimorph designs.

II. IMPROVED LUMPED ELEMENT MODEL FOR A
pMUT CELL
The physical analysis of a unimorph, clamped, circular
pMUT shown in Fig. 1.a is separated into three domains:
mechanical, electrical, and acoustic. In the mechanical
domain, a two-term mode shape approach based on the
approximate energy method is used. In the electrical domain,
the strain field effect is analyzed in order to obtain an opti-
mum electrode coverage area and the effects of the deformed
shape on the acoustic radiation impedance are investigated in
the acoustic domain. Finally, all domains are integrated using
an equivalent circuit model with important parameters such
as the electrical capacitance, electromechanical transduction
ratio, mechanical impedance, and acoustic impedance.

FIGURE 1. (a) 3-D schematics of a clamped circular-shape uni-
morph pMUT with deformed diaphragm showing the layers and
electrodes. (b) Cross sectional view of the vibrating diaphragm
with geometric parameters in the thickness direction.

A. pMUT STRUCTURE AND DESIGN CONSIDERATIONS
In this study, a circular-shape diaphragm free to vibrate in
the transverse direction and clamped at the outer edge (see
Fig. 1.a) is analyzed. The circular geometry is mostly pre-
ferred due to the mechano-acoustic transduction. For the
same surface area, thickness, applied force, and boundary

conditions, the mean displacement of the fundamental mode
over the surface area is the largest in the circular diaphragm
as compared to those in the triangular, rectangular, pentagon,
etc. diaphragms. This circular diaphragm composes of multi-
ple layers for the pMUT: elastic, piezoelectric and electrodes,
as shown in Fig. 1b.

There are many characteristic parameters in the pMUT
design to optimize the performance. First and most impor-
tantly, the acoustical power output is the key element to
improve both the working distance and signal to noise ratio
(SNR). A maximum acoustic pressure is obtained when the
diaphragm surface velocity is maximized. In general, the
displacement at the resonance is equal to the low frequency or
quasistatic displacement multiplied by the quality factor, Q.
If only a maximum displacement is considered, a high qual-
ity factor is favored. However, the acoustic power output
also depends on the radiation impedance which has two
components: resistive and reactive part, where power flows
through the resistive component; while reactive component
stores the power. As such, an ultrasonic device is favored
to have the high resistive and low reactive component to
produce large outputs, or a low quality factor. Higher resistive
component decreases the quality factor counteracting the
high displacement requirement. As such, there is a balance
between the acoustic power and surface displacement dur-
ing the design process. Another design consideration is the
bandwidth which affects the mechano-acoustic transduction
efficiency and axial resolution. A device with high bandwidth
will result in a high loss mechanism in the mechanical struc-
ture. While most loss mechanisms are unwanted energy dissi-
pations, the loss due to the acoustic radiation is encouraged to
produce large power flow from the mechanical domain to the
acoustic domain in the ambient environment, which is called
the mechano-acoustic transduction efficiency. To maximize
this efficiency under a large bandwidth, the characteristic
mechanical impedance of the transducer should be matched
to that of the medium and this bandwidth consideration has
a strong correlation with the quality factor. As stated before,
a high quality factor is desired for higher displacement ampli-
tude at the resonance and a high bandwidth is desired for
the high power output flow. However, since the bandwidth is
generally inversely proportional to quality factor such that a
design balance must be reached. Finally, the electromechani-
cal coupling coefficient is defined as a change in the stiffness
or capacitance as response to the change in the electrical or
mechanical boundary conditions. The electromechanical cou-
pling coefficient can also be defined as a portion of the total
input electrical energy stored in the mechanical form for a
static voltage [27]. It is highly dependent on the piezoelectric
coefficient and the geometric property, such as the stress-
strain distribution inside the diaphragm. All combined, these
domains and coupling between them are analyzed separately
in the following sections. An energy based, intuitive method
is followed in order to obtain lumped parameters accurately
in the equivalent circuit analysis.
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B. MECHANICAL DOMAIN
In the mechanical domain, the transverse vibration of a cir-
cular disk clamped at the outer edge is analyzed. Although
the exact solution of a transversely vibrating circular disk
is available in the literature [27]–[32], a more compact and
easy-to-handle approximate solution is preferred. The exact
solution is also given here for the sake of completeness and
comparison. The equation of motion is first derived with
an assumption that the thin plate theory applies to work in
the two dimensions instead of three dimensions [31]–[34].
The displacement of each point on the plate is described by
only the displacement of mid-plane (neutral plane). The most
general form of equation of motion of a transversely vibrating
thin plate without any dissipative elements is given as [33]:

D∇4w (r, θ, t)+3
∂2w (r, θ, t)

∂t2
= f (r, θ, t) (1)

where w(r, θ, t) is the transverse displacement; f (r, θ, t) is
transversely applied external force; 3 is the surface density;
and D is the flexural rigidity. For a multilayer structure as
shown in Fig. 1b, 3 and D are given by [33]:

3 =

q∑
i=1

ρihi

D =
q∑
i=1

Yi
3
(
1− v2i

) [(zi − zN )3 − (zi−1 − zN )3] (2)

where q is the number of layers; ρ is the layer density; h is
the layer thickness; Y is the Young’s modulus of the layer;
v is Poisson’s ratio of the layer; zN is the distance of the
neutral axis from the bottom; and zi is the distance measured
from the bottom of the whole stacked layer to the top surface
of each layer. For the same structure, the neutral axis is
calculated [21]:

zN =
1
2

q∑
i=1

Yi
(
z2i −z

2
i−1

)
1−v2i

q∑
i=1

Yi(zi−zi−1)
1−v2i

(3)

where zi is given as:

zi =
i∑

j=0

hj (4)

The exact solution to the axisymmetric modes of the
undamped, free vibration of clamped diaphragm can be
obtained after applying the separation of variables technique
two times; one for the separation of time terms and one for
the separation of spatial coordinates [31].

W0n (r) = J0 (k0nr)−
J0 (k0na)
I0 (k0na)

I0 (k0nr) (5)

where a is the radius of the diaphragm; r is the radial coordi-
nate given in Fig. 1a; Jn and In are the Bessel’s function and
modified Bessel’s function, respectively; and k0n is the mode
shape dependent parameter. The mode-of-interest is the one

which has the largest volumetric mean velocity. In general,
ultrasonic transducers are excited at the fundamental mode
(where n is equal to zero) which is axisymmetric about the
center line of the diaphragm. The mode shape dependent
parameter becomes k00 and the multiplication with the radius
a is equal to 3.196 [33]. The exact fundamental mode shape
and the corresponding natural frequency are given by [26]:

W00 (r) = J0 (k00r)−
J0 (k00a)
I0 (k00a)

I0 (k00r)

ω00 = k200

√
D
3

(6)

From the designer perspective, the exact solution given above
is difficult to handle since it contains advanced functions like
Bessel’s functions. In order to have more intuitive and acces-
sible design procedure, an approximate solution with better
accuracy than the one used in the literature is developed.

The Rayleigh-Ritzmethod is an energy based, approximate
method for vibration problems, which usually gives suffi-
ciently enough accurate solutions for the small number of
lowest modes. This method is suitable for acoustic applica-
tions, since ultrasonic transducers are excited at the funda-
mental mode. Here, the vibration frequency of a conservative
system (no dissipating elements and non-conservative forces)
has a stationary value in the neighborhood of a natural mode
which is, in fact, a minimum value in the neighborhood of
the fundamental natural mode [35]. In other words, energy is
conserved in the system having no dissipative elements, i.e.,

Vmax = Tmax (7)

where Vmax and Tmax are the maximum potential and kinetic
energies, respectively. The kinetic energy is a function of the
square of the velocity, which can be separated in spatial and
time dependent terms as:

Tmax = ω
2Tmax

∗ (8)

where Tmax
∗ is the maximum kinetic energy solely dependent

on spatial coordinates, and ω is the frequency of vibration.
Rayleigh’s quotient is defined as the ratio of the maximum
potential and kinetic energies and given by [29]:

R = ω2
=

Vmax

Tmax∗
(9)

The shape of the deformation is approximated by trial func-
tions, φ(r). The fundamental assumed mode shape, W0(r), is
constructed by the superposition of trial functions as:

W0 (r) =
p∑
i=1

ciφi (r) (10)

where p is the number of trial functions used. Trial func-
tions are selected among the admissible set satisfying the
geometric boundary conditions, which are resulted from pure
geometric compatibility like displacement and slope.

It is possible to calculate several natural frequencies and
corresponding mode shapes at once. As p increases, the accu-
racy of the mode shapes and natural frequencies increases
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TABLE 1. Comparison of natural Frequency and mode shape calculations for the fundamental mode of a clamped circular plate.

and the most significant improvement is on the first natural
frequency. Effect of the improvement decreases from the first
to the last mode shape of interest. The calculated natural
frequency always approaches to the real value from top [36]
due to additional constraints such as higher stiffness, imposed
by the incorrect assumption of modes, which is another indi-
cation of that Rayleigh’s principle is a minimization method.
Using the assumed mode shape, the potential and kinetic
energy terms are obtained as [29], [31], [33]:

Vmax =
D
2

2π∫
0

a∫
0

(
d2W0 (r)
dr2

+
1
r
dW0 (r)
dr

)2

rdrdθ

Vmax =
1
2
EcT [K ] Ec

Tmax
∗
=
3

2

2π∫
0

a∫
0

(W0 (r))2rdrdθ

Tmax
∗
=

1
2
EcT [M ] Ec (11)

where the Ritz coefficient vector is Ec = [c1, c2, ...,cp]T and
[K ] and [M ] are stiffness and mass matrices, respectively.
With these energy terms, Rayleigh’s quotient becomes the
function of constant coefficients:

R
(
c1, c2, · · · , cp

)
=
Vmax

(
c1, c2, · · · , cp

)
Tmax

(
c1, c2, · · · , cp

) (12)

As stated before, vibration frequencies have stationary value
in the neighborhood of natural frequencies. That is the min-
imum value of Rayleigh’ s quotient and it can be found by
equating the rate of change of R with respect to the Ritz
coefficients (ci’s) to zero.

∂R
∂ci
= 0, i = 1, 2, · · · , p

∂R

∂
⇀c
=

1
T ∗max

(
∂Vmax

∂
⇀c
− λ

∂T ∗max

∂
⇀c

)
= E0 (13)

where λ is the eigenvalue of the eigenvalue problem con-
structed by the mass and stiffness matrices [M ] and [K ]

obtained by the partial derivation of the maximum potential
and kinetic energies with respect to Ritz coefficients [33]:

∂Vmax

∂
⇀c
=

⇀c
T
[K ]

∂T ∗max

∂
⇀c
=

⇀c
T
[M ] (14)

Then the eigenvalue problem of order p is defined as follows:

[[K ]− λ [M ]] Ec = E0 (15)

Eigenvalues are the Rayleigh quotients for each mode and
corresponding eigenvectors are the Ritz coefficient vectors.
The two boundary conditions for the clamped disk are the
geometric boundary conditions and they are given as zero
displacement and zero slope at the clamped edge. Therefore,
the trial functions are selected among the set given by:

φi (r) =
[
1−

( r
a

)2]i+1
, i = 1, 2 (16)

Then the assumed mode shape is (p=2):

W 0 (r) = c1

[
1−

( r
a

)2]2
+ c2

[
1−

( r
a

)2]3
(17)

where c1 and c2 are Ritz coefficients to be determined in
the minimization of Rayleigh’s quotient as explained. The
obtained eigenvalue and corresponding eigenvector for the
fundamental mode (superscript 0 corresponds to the funda-
mental mode) are:

λ(0) = 104.3877 and c(0) =
[
3.067
1

]
(18)

Table 1 compares the natural frequency and normalized
mode shape calculations for the fundamental mode obtained
from the exact solution, the literature, and this work. In the
natural frequency calculations, error made in literature with
respect to the exact solution is 1.14%: however, this error is
dropped to 0.03% in this work. While both results are good
enough for engineering purposes, this work provides better
approximations.

Normalized mode shapes obtained from the exact solution,
literature and this work are given in Fig. 2a for comparison.
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FIGURE 2. Fundamental mode shape and errors made in approx-
imate calculations versus normalized diaphragm radius. (a) The
normalized mode shapes for fundamental mode obtained from
the exact solution, literature, and this work. (b) Comparison of
errors in the mode shape calculation for both the literature and
this work with respect to the exact solution. The maximum error
percentage at the inner (red color) and outer (orange color)
electrode regions are indicated.

Errors made in the literature and this work with respect to the
exact solution are given in Fig. 2b. Although inner electrodes
are generally used for the pMUT cell, the maximum errors
are indicated for both inner and outer electrode regions. The
errors in this work are decreased more than one order of
magnitude as compared to those of the literature.

C. ELECTRICAL DOMAIN
In the electrical domain, electrical and coupling energy
between electrical and mechanical domains are analyzed.
The electrical enthalpy approach is utilized rather than just a
potential energy for a broader perspective. For a mechanical
system only, the Lagrangian approach is enough; however,
electrical enthalpy describes piezoelectric as well. For a lin-
ear, adiabatic piezoelectric continuum, the electrical enthalpy
density is defined as [38]–[40]:

h̃ (S,E) =
1
2
ST cES − ST eE −

1
2
ET εSE (19)

where superscript T stands for transpose; superscriptE stands
for the constant electric field; superscript S stands for the
constant strain field; c is the stiffness; S is strain field vector;
e is the piezoelectric strain coefficient matrix; E is electric
field vector; and ε is dielectric permittivity matrix.
Application specific assumptions based on mechanical

and electrical considerations are made to simplify the com-
plicated electrical enthalpy and piezoelectric constitutive
equations. From the classical plate theory, shear strains are
assumed to be negligible. Hence, the strain field vector has
only three normal components. Another assumption is that
electrical field applied only in the transverse direction, that

is E = [0 0 E3]T . Moreover, the material is assumed to
be transversely anisotropic, since most of the piezoelectric
materials has an in-plane isotropy. Then the three terms in
the given electrical enthalpy are reduced to [27], [38], [40]:

h̃1 =
1
2

[
Y

1− v2

(
S2rr + 2vSrrSθθ + S2θθ

)
+
e231
cE33

E2
3

]

h̃2 = − (Srr + Sθθ )

(
e13 − e33

cE13
cE33

)
E3 −

e231
cE33

E2
3

h̃3 = −
1
2
εS33E

2
3 (20)

where all specific enthalpy terms contain the electrical field.
In addition, piezoelectric coefficient in thin films is defined
by effective coupling coefficient, which is given as [14]:

e31,f = e31 − e33
cE13
cE33

(21)

Rewriting these equations can illustrate the two domains and
coupling between these domains.

h̃Elastic =
1
2

Y
1− v2

(
S2rr + 2vSrrSθθ + S2θθ

)
h̃Coupling = −e31,f (Srr + Sθθ )E3

h̃Electrical = −
1
2

(
εS33 +

e231
cE33

)
E2
3 (22)

where the first term is identical to potential energy given
in equation (11) after inserting the strain-displacement rela-
tions [41] and taking the integral over the volume. The sec-
ond term contains both the strain and electrical field, that is
the coupling between them through piezoelectric transduc-
tion, e31,f . The last term is purely electrical and defines the
electrical energy.

Electrode design is determined by maximizing the cou-
pling energy term. As seen, the coupling energy term com-
poses of the piezoelectric coefficient, e31,f , sum of the
strains, Ip, and applied electrical field,Ve. Inserting the strain-
displacement relations can yield:

HCoupling = −e31,f VeZpIP (23)

where Zp and Ip are defined as:

Zp =
1
hp

∫ zp−zN

zp−hp−zN
zdz

Ip = −
∫
Ae

(
∂2w
∂r2
+

1
r
∂w
∂r

)
dAe (24)

where Ae is electrode area; zp is the distance from the bottom
surface of the layer stack to the top surface of the piezoelectric
layer; zN is the distance from bottom of the layer stack to
the neutral axis; and hp is the thickness of the piezoelectric
layer. It is noted that Zp defines the distance from neutral axis
of whole layer stack to midplane of the piezoelectric layer,
in other words, it is the moment arm.
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FIGURE 3. (a) Normalized sum of the strains, Ip with respect to
the ratio of the inner electrode radius to the diaphragm radius
for the exact solution, literature and this work. (b) Comparison
of errors in the literature and this work with respect to the exact
solution. The maximum error percentage at the inner electrode
and outer electrode regions are indicated in red color and orange
color boxes.

In Fig. 3a, Ip values from the literature and this work are
given as a function of the normalized radius that is the ratio
of inner electrode radius to the diaphragm radius. In general,
∼60% radius ratio is utilized in literature [20], [37]. However,
the true maximum coupling is achieved when the ratio is
67.1%, i.e., the inner electrode radius equals ∼2/3 of the
diaphragm radius. Using the mode shape used in literature,
the ratio is found as 70.7%. Errors made in the literature and
this work with respect to exact solution are given in Fig. 3b.
The error made in this work is about 5x smaller than the error
made in the literature.

D. ACOUSTIC DOMAIN
In the acoustic domain, a vibrating diaphragm disturbs the
medium and creates an acoustic field which can be described
by pressure. In this analysis, the vibrating diaphragm is
placed in a medium that is considered to be infinitely large
such that the boundaries need not to be considered and it is
assumed to be homogenous, isotropic, and non-viscous.

The generated pressure field is given by the Rayleigh’s
integral [24], [28], [32], [42], [43]:

p
(
r ′, θ ′, z

)
=
iρmcmk
2π

∫∫
A

(
∂w (r, θ, t)

∂t

)
e−ikR

R
dA (25)

where ρm is the density of the medium; cm is the acoustic
velocity in the medium; k is the wave number given as ω/cm;
and R is the distance vector between the point N in the

FIGURE 4. Coordinate system used in the acoustic domain.
(a) Point N(r’,θ ’,z) is defined in the acoustic medium as a point
of interest and pressure at point N generated by an infinites-
imal area on the surface. (b) Coordinate system used in the
calculation of the radiation impedance describing the pressure
on an infinitesimal area on the surface generated by another
infinitesimal area on the same surface (z = 0).

medium and the differential element on the vibrating surface
as shown in Fig. 4a. The acoustic field created by the vibrating
surface is divided into two regions: the near and far field.
In the near field, energy transfer between the vibrating mass
and the surrounding medium takes place in both directions.
Hence, the acoustic medium does not travel away from the
surface. Although this near field does not affect the far field
solution, it is important in the mechano acoustic efficiency
of the transducer. The term of wave propagation is defined
in the far field, since the wave travels away from the source.
The transferred acoustic power is proportional to the radi-
ation resistance of the medium. Therefore, the impedance
at the surface which is also called the radiation impedance
is important and it is given by the pressure at the surface
devided by the surface velocity. The pressure at the surface
is given by Rayleigh’s integral; however, this time the point
of interest, N , is on the surface (Fig. 4b).

The velocity profile is obtained using the displacement
profile derived in the mechanical domain analysis, and the
differential elements are shown in Fig. 4b. The transformation
relation between the cordinates are given as [32]:

r =
√
r ′2 + R2 − 2r ′R cos (2)

Rmax = r ′ cos (2)+
√
a2 − r ′2 sin2 (2) (26)

where Rmax is the maximum value for a given pair of (r ′,2).
The limits of the Rayleigh’s integral in the R corrdinate is
from 0 toRmax . The acoustic impedance is given as the ratio of
the force on a point devided by the velocity of the surface [32].

za =
Fa
va

=

∫∫
A
p (r, 0) dA

va
=
ρmcm
πa2

(
1−

J1 (2ka)
ka

+ j
K1 (2ka)

ka

)
(27)

where J1 and K1 are the Bessel and Struve functions of first
order. These functions are difficult to work with and the
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TABLE 2. Comparison values of normalized resistive and reactive radiation impedance components for piston vibrator, this work,
exact solution and finite element simulation results.

pMUTs works in small ka region, in general. The acoustic
radiation impedance is simplified as [32]:

za = Ra + iXa =
ρmcm
πa2

(ra + ixa) (28)

where Ra is the resistive and Xa is the reactive term. Power
in the mechanical domain is transferred to the acoustical
domain through the resistive term. In addition, ra and xa are
dimessionless resistive and reactive terms, respectively, and
they are more convinient to use for the comparison pusposes.
Fig. 5a and 5b show the comparison of results from the
literature (a piston vibrator), this work, and Finite Element
Simulation (FEM). It is found that there is an approximate
frequency after which, both resistance and reactance values
are close in all three solutions [44]. In general, ultrasonic
transducers work in the low ka (�1) values where k is the
wave number and a is the radius in which all solutions con-
verge. Table 2 gives the detailed numerical values for small ka
for the dimensionless resistive and reactance components of
the radiation acoustic impedance in the piston vibrator, exact
solution, this work and FEM results.

E. LUMPED PARAMETERS AND EQUIVALENT
CIRCUIT MODEL
Equivalent circuit models are powerful tools when working
in multi-physics as in the case of piezoelectric ultrasound
transducers [27]. As explained above, there are three energy
domains and couplings in the transduction path: electrical,
mechanical, and acoustical. Instead of analyzing the struc-
tures in three dimensional manners using partial differen-
tial equations which can be computationally demanding and
physically non-intuitive, they can be analyzed in simplified
representations as an electrical equivalent circuit. In addition

FIGURE 5. Comparison of the dimensionless (a) resistance, ra,
and (b) reactance, xa, for a piston vibrator, this work, and FEM
simulations as a function of wave number multiplied by the
radius of the circular diaphragm (ka).

to being computational friendly, electrical circuit models
enable designer to see the energy and power flow not only
in the electrical domain but also in all physical domains [45].
In the equivalent circuit analysis, lumped parameters are used
as circuit elements in each domain. Most general electro-
mechano-acoustical equivalent circuit is given in Fig. 6a
for ultrasonic transducers. Each physical domain and corre-
sponding effort and flow variables are given. In the electri-
cal domain, an electrical voltage Vin is the effort variable
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FIGURE 6. (a) Most general form of the equivalent circuit showing all three physical domains separately. Each domain and
corresponding effort and flow variables are given with ideal transformers. (b) Butterworth–Van dyke (BVD) representation of the
most general equivalent circuit together with acoustic domain impedance shown separately. All the domains are transformed into
the electrical domain. (c) Equivalent circuit used in the velocity and displacement calculations. All domains are transformed into
the mechanical domain.

and defines the potential difference between electrodes and
current, i, which is the flow variable. C0 is the electrical
clamped capacitance also called as feedthrough capacitance
obtained from the electrical enthalpy given in equation (22).
Electrical and mechanical domains are coupled with an ideal
transformer having the turns ratio of η. It is defined by the
coupling enthalpy given in equation (23), that is:

HCoupling = ηVew(0) = −e31,f VeZpIP
η = −e31,f ZpIP (29)

The transformer turns ratio is defined as the ratio of effort
variables in the coupled domains:

η =
Fe
Vin

(30)

In the mechanical domain, the generated piezoelectric force
Fe is the effort variable and the velocity of the vibrating
mass vm is the flow variable. The symbols mm, km, and
bm are equivalent mechanical mass, stiffness and damping,
respectively. Similarly, mechanical and acoustical domains
are coupled with another ideal transformer having the turns
ratio of Aeff . This is also a well-known relation between the
force and pressure.

Aeff =
Fsurf
Psurf

(31)

In the acoustical domain, the surface pressure, Psurf is the
effort variable and the volumetric velocity, va is the flow vari-
able. The total pressure at the surface equals the summation
of the output pressure of the transducer Pout and the incident
pressure in the medium Pin. The variable, za, represents the

acoustic radiation impedance of the vibrating surface in a
medium. In the transmitter mode, the incident pressure, Pin,
is set to be zero. Hence, the output pressure Pout equals the
surface pressure Psurf . Table 3 gives the comparison of each
lumped parameters for the exact solution, literature and this
work.

III. RESULTS AND DISCUSSIONS
In order to compare the results, the reduced electrical equiv-
alent circuit, also known as Butterworth–Van dyke (BVD)
representation, of the pMUT is given Fig. 6b. The terms, Re,
Le, and Ce represent the electrical resistance, inductance, and
capacitance, respectively and Za,e represents the acoustical
impedance transformed into the electrical domain.

The equivalent circuit used in the surface average velocity
and displacement calculations is given Fig. 6c, where Rm,
Lm, and Cm are the mechanical resistance, inductance, and
capacitance, respectively and Za,m represents the acoustical
impedance transformed into the mechanical domain. All of
these transformed electrical and mechanical domain parame-
ters are given in Table 4.

The results of the equivalent circuits for this work, exact
solution, and literature are examined and comparedwith FEM
simulations. In all results, the specific and simplest case of
pMUT is the single electrode and unimorph structure in the
air medium. The piezoelectric material is selected to be AlN
which is one of the most commonly used piezoelectric mate-
rial [50]. In order to ease the complexities, the elastic layer is
also selected to be AlN. All material properties, dimensions
and medium properties are given in Table 5.
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TABLE 3. Comparison equivalent circuit parameters obtained from exact solution, for piston vibrator, and this work.

TABLE 4. Equivalent circuit parameter transformed into
electrical and mechanical domains.

Frequency response, on-axis pressure at small and large ka
values, single element input impedance, bandwidth, quality
factor, and directivity of a single pMUT cell are compared.
First, the equivalent input impedance is obtained from the
equivalent circuit given in Fig. 6b as follow:

Zin =
Vin
i
=

[
sC0 +

η2s

s2mm + sA2eff za + km

]−1
(32)

where s is the frequency parameter equals to jω. The input
impedance comparison is shown in Fig. 7. There is a constant
error of 24% in the literature in contrast to an error of 0.005%
in this work with respect to the exact solution.

The velocity and displacement of the diaphragm are
obtained using the equivalent circuits given in Fig. 6c.

TABLE 5. Summary of the dimensions and material properties
for comparison study.

The velocity and displacements are given as:

vm =
Fe

Zmechanical
=

ηVins
s2mm + sAeff 2za + km

um =
∂wm
∂t
= jωwm (33)

Figs. 8a and 8b show the velocity and displacement outputs
versus the frequency, respectively, between this work, the
literature, exact solution, and FEM.As explain in themechan-
ical domain analysis, the error made in the literature for the
natural frequency calculation has about 1.14% in error and:
this error is dropped to 0.03% in this work with respect to the
exact solution. While both errors are small and good enough
to be used in engineering purposes, this work provides much
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FIGURE 7. Electrical input impedance comparison for this work,
exact solution, literature, and FEM. Zoomed-in image shows the
region around the resonance of the diaphragm.

FIGURE 8. (a) Velocity and (b) and displacement comparisons for
this work, exact solution, and literature. The zoomed-in images
show the regions around the mechanical resonance.

better accuracy for the natural frequency. The overall velocity
error in the literature is around 4.7% and it drops to 0.16% in
this work.

In this study, it is assumed that the dominating damping
(Bm) is coming from the acoustic radiation impedance on
the surface due to the air medium. Hence, mechanical damp-
ing factors including thermomechanical damping, anchor
loss, etc. are neglected (bm=0) and the damping factor is

simplified as:

Bm = 2Re(Za,m) = 2ρmcmπac2ra (34)

where the multiplier 2 comes from the fact that medium is on
both sides of the diaphragm. The transducer bandwidth (BW)
and quality factor (Q) are given as:

BW =
1
2π

Bm
mm
=

1
π

ρmcmπac2ra
mm

Q =

√
mmkm
Bm

=

√
mmkm

2ρmcmπac2ra
(35)

Bandwidth and quality factor comparisons between this
work, the literature, and exact solution are given in Figs. 9a
and 9b, respectively. The bandwidth, BW, error in the litera-
ture with respect to the exact solution drops from 4.9% to a
value of 0.17% in this work. Similarly, the quality factor error
drops from 3.5% to 0.04%.

FIGURE 9. (a) Bandwidth, and (b) quality factor comparisons
for this work, the exact solution, and literature. The zoomed-
in images show the regions around the mechanical resonance.
Results of this work and the exact solution are very close such
that the blue color line (this work) is not visible in the figure.

The directionality is defined as the ratio of the far field
pressure at a specific angle, ϕ as shown in Fig. 4a to the on
axis pressure at ϕ = 0◦. Using the pressure equation given in
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equation (25), the directionality, D(ϕ), is derived as;

D (φ) =

∫∫
A

(
∂w(r,θ,t)

∂t

)
e−ikR
R dA∫∫

A

(
∂w(r,θ,t)

∂t

)
dA

(36)

where the vector distance between the infinitesimal element
on the surface and the point in medium, R, is:

R2 = R21 − r
2
− 2R1r sin (ϕ) cos (θ)

R ≈ R1 − r sin (ϕ) cos (θ) , R1 � a (37)

Fig. 10 shows the result of the directionality for different ka
values, i.e., frequencies. For the very low ka�1 values, all the
approaches have good approximation for the directionality.
As the ka values increases, the error between the literature
and the exact solution increases, while results in this work
follows the exact solution more closely. It is noted that the
piston vibrator approximation is used in literature whereas
the two-term mode shape is used in this study.

FIGURE 10. (a-d) The directivity comparison for this work, the
exact solution, and literature. The directivity is shown for differ-
ent frequencies, i.e., ka values.

Lastly, the on-axis pressure is calculated by setting ϕ = 0◦

in the pressure calculation equation and the Rayleigh’s inte-
gral and the sectorial distance, R, become [24], [28], [32],
[42], [43]:

p
(
r ′, θ ′, z

)
=

iρmcmk
2π

∫∫
A

(
∂w (r, θ, t)

∂t

)
e−ikR

R
dA

R =
√
R21 + r

2 (38)

Fig. 11a shows the on-axis pressure as a distance from the sur-
face is given for the resonance frequency. In this region, i.e.,
small ka values, all the approaches capture similar behavior
for the near and far field pressure. Fig. 11c shows the error
of the on-axis pressure from the literature is around 15% in
the near field and 7% in the far field. In this work, these
errors drop to 0.34% and 0.38% in the near field and far field,
respectively. Similarly, Fig. 11b shows the on-axis pressure at

FIGURE 11. On-axis pressure at a distance z from the diaphragm
surface at: (a) 250 kHz corresponding to a small ka value ∼0.5;
and (b) 5 MHz corresponding to a large ka value∼10. The error of
the on-axis pressure for: (c) 250 kHz and (d) 5 MHz of vibration
frequency of the diaphragm. The near and far fields errors are
separately indicated in both frequencies.

high ka values. In the near field, the literature results have the
error of more than 80 and this work has only 0.05% error as
shown in Fig. 11d. All the approaches capture the far field
on-axis pressure behavior for high ka values and the error in
the literature is around 7% and it decreases to 0.38% in this
work.

IV. CONCLUSION
An improved, two-term mode shape approximation for the
circular-shape pMUT has been demonstrated. The small sig-
nal electro-mechano-acoustic equivalent model can analyze
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many parameters such as individual equivalent circuit param-
eters, input impedance, frequency, bandwidth, quality factor,
directivity, and the on-axis pressure in the near and far fields.
The proposed model was compared with the literature, exact
solution and finite element method simulations. The error in
all these parameters are decreased below 0.5% compared to
exact solution. In addition, enhancements in these param-
eters compared to literature error ranges from 5x to three
orders of magnitude. We found that the correct modelling
of deformation shape is critical for the model accuracy. The
approximate energy based method can be utilized to obtain
more accurate mode shapes and parameters for different types
of ultrasonic transducers such as rectangle, ring geometries
and dual electrode, bimorph structures.
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