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ABSTRACT Phononic crystals are artificial periodic structural composites. With the introduction of nonlin-
earity, nonlinear phononic crystals(NPCs) have shown some novel properties beyond their linear counterparts
and thus attracted significant interest recently. Among these novel properties, the second harmonic character-
istics have potential applications in the fields of acoustic frequency conversion, non-reciprocal propagation,
and nondestructive testing. Therefore, how to accurately manipulate the second harmonic band structure is
a main challenge for the design of NPCs. Traditional design methods are based on parametric analysis and
continuous trials, leading to low design efficiency and poor performance. Here, we construct the convolutional
neural networks(CNNs) and the generalized regression neural networks(GRNNs) to inversely design the
physical and geometric parameters of NPCs using the information of harmonic transmission curves. The
results show that the inverse design method based on neural networks is effective in designing the NPCs.
In addition, the CNNs have better prediction accuracy while the GRNNs have a shorter training time. These
methods also can be applied to the design of higher-order harmonic band structures. This work confirms the
feasibility of neural networks for designing the NPCs efficiently according to target harmonic band structures
and provides a useful reference for inverse design of metamaterials.

INDEX TERMS Neural network, nonlinearity, phononic crystal, inverse design.

I. INTRODUCTION

PHONONIC crystals are composite materials with a peri-
odic structure. The dispersion relations of phononic

crystals usually exhibit unique bandgap structures due to
wave scattering or local resonance of the periodic struc-
ture [1]. In recent years, by introducing nonlinearity into
phononic crystal systems, novel nonlinear properties in
the wave propagation that cannot be realized by linear
systems have been achieved. For example, nonlinear sys-
tems can exhibit novel wave responses, such as isolated
wave propagation, higher harmonic generation, and non-
reciprocal wave propagation, which have important appli-
cations [2], [3], [4], [5]. As the wave propagates through
the nonlinear phononic crystals(NPCs), fundamental wave
energy is converted into higher frequency waves, and this
conversion is called harmonic generation. Although second
harmonic generation is very common in NPCs, designing

the NPCs with the ideal harmonic band structure is still a
challenging problem due to material inhomogeneities and
computational complexity [5], [6], [7].

In the last decades, phononic crystals have been designed
by tuning the physical properties of materials and acous-
tic parameters to match specific dispersion characteris-
tics [8], [9]. This traditional method requires empirical and
experimental support, and the design process is complex, con-
suming a lot of time and computer memory. In recent years,
artificial intelligence technology has developed rapidly. Neu-
ral networks, as an important part of artificial intelligence
technology, are widely used in various fields such as com-
puter vision, speech recognition, and natural language pro-
cessing. Comparedwith traditional genetic algorithms, neural
networks can find the global optimal solution much faster in
the search space using large training data. Neural networks
are not only able to learn and represent complex nonlinear

166


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 3, 2023

https://orcid.org/0000-0002-5726-7844
https://orcid.org/0000-0002-7612-8989
https://orcid.org/0000-0003-1923-3026


K. Huang et al.: Neural Network-Based Inverse Design of Nonlinear Phononic Crystals

mapping relationships, but also can be accelerated by parallel
computing. Therefore, it has obvious superiority in deal-
ing with complex, nonlinear problems. Inspired by artificial
intelligence technology, the application of neural networks
in metamaterial design has also started to receive atten-
tion [10], [11], [12], [13]. For example, Peurifoy et al. trained
neural networks to approximate light scattering from multi-
layer nanoparticles [14]. Finol et al. used deep convolutional
neural networks and conventional densely connected neural
networks to predict the eigenvalues of phononic crystals and
concluded that deep convolutional neural networks outper-
formed conventional densely connected neural networks [15].
Ahmed et al. designed a broadband acoustic cloak based on
a probabilistic deep-learning model [16]. Liu et al. imple-
mented the inverse design of an acoustic ultra-material plate
by constructing the deep-learning neural networks model
using the desired bandgap center frequency and bandwidth
as inputs [17]. Gurbuz et al. proposed a method for designing
acoustic metamaterials based on generative adversarial neural
networks, which successfully achieved the inverse design
of structural metamaterials [18]. Liu et al. used supervised
learning neural networks and unsupervised learning neural
networks for the design of phononic crystals [19]. He et al.
applied the reinforcement learning algorithm and deep tan-
dem neural network to complete the inverse design of elastic
phononic beams [20].
Although previous studies have illustrated the feasibility

of applying neural networks to the inverse design of phononic
crystals, however, they are all limited in linear metamaterials,
and most of them use dispersion characteristic analytical
solutions to construct the dataset. Unlike previous studies,
we explore the application of neural networks in the design
of NPCs for the first time. On the one hand, the dispersion
characteristics of the second harmonic are difficult to obtain
by analytical solutions, so the use of transmission characteris-
tics to inversely design NPCs is necessary. On the other hand,
phononic crystals have finite periods in practical engineer-
ing. Therefore, it is more accurate to use the transmission
characteristics to evaluate the band structure than to use the
dispersion characteristics.

The purpose of this paper is to use neural networks for
designing NPCs with the specific second harmonic band
structure. The neural networks method not only can reduce
the computational cost but also can keep the designed NPCs’
transmission characteristics highly consistent with the target
transmission characteristics. First, for generating the data set,
we calculate the transmission curves of the second harmonic
in a one-dimensional two-phase NPC using the finite element
method(FEM). Then, we introduce the principles and basic
structures of two neural network models named the convolu-
tional neural networks(CNNs) and the generalized regression
neural networks(GRNNs), and illustrate the NPC inverse
design process. Finally, three cases are investigated, i.e., two-
parameter, three-parameter, and four-parameter predictions,
and the performance of the two neural networks is tested.
This work provides an effective method for designing NPCs

FIGURE 1. A multilayered NPC model with nonlinear interfaces.

FIGURE 2. A NPC discretization model (finite waveguide is
approximated as two masses coupled with a linear spring, and
the interface interaction is approximated as a nonlinear spring).

with the specific harmonic band structure, demonstrating
new ideas for better implementation of frequency conversion
devices or acoustically nonreciprocal transmission.

II. THEORETICAL ANALYSIS
A. NPC MODEL
The purpose of NPC inverse design is to input the band
structure of the second harmonic transmission curve and then
output the corresponding physical and geometric parameters.
We can use the powerful nonlinear fitting function of the neu-
ral network to realize the fast design of the second harmonic
band structure.

The model that generates the dataset is shown in Fig. 1,
which considers the longitudinal wave propagation in the
layered direction of the one-dimensional multilayer structure.
The structure consists of two different types of N alternating
linear elastic layers, which are layer 1 (density ρ1, wave
velocity c1, thickness h1) and layer 2 (density ρ2, wave
velocity c2, thickness h2). They are embedded between two
linearly elastic semi-infinite media with the same proper-
ties as the layer 1 media. All these media can be regarded
as interconnected at the interface through N+1 nonlinear
elastic interfaces. To ensure that the different linear elas-
tic layers are connected alternately, we set N to an odd
number.

The wave propagation phenomenon in this nonlinear sys-
tem is difficult to solve exactly in analytical form, so here
we establish a discrete mass-spring model of this structure
(as in Fig. 2) for analysis. This is a classical method that
can easily realize the numerical analysis of this nonlinear
structure [21], [22], [23], [24], [25], [26].

The motion equation of this structure is shown as (1).
With initial incentive:

uinc (x − c1t) = A cos
(
ωc−1

1 (x − c1t)
)

. (1)

Here u is the mass displacement, A is the initial amplitude, ω
is the angular frequency of the wave, and t is the time.
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If the nth layer is the linear elastic layer i (i = 1 or 2), its
corresponding motion equation is:

ρihi
2
ün,1 +

2ρic2i
hi

(
un,1 − un,2

)
= −f

(
un,1 − un−1,2

)
, (2)

ρihi
2
ün,2 −

2ρic2i
hi

(
un,1 − un,2

)
= f

(
un+1,1 − un,2

)
. (3)

Here ün,1 and ün,2 denote the displacement of the first and the
secondmass of the nth layer. f denotes the nonlinear interface
interaction force.

In the case of spring-type interfaces with weak quadratic
nonlinearity, the nonlinear interface equation is:

f
(
1u

)
= K

(
1 − β1u

)
1u. (4)

Here K is the interface linear stiffness, β is a positive param-
eter representing the interface nonlinearity and1u represents
the relative displacement at the interface.

The boundary conditions of the model are:

ρ1c1u̇0 = K
(
u1,1 − u0

)
− βK 2(u1,1 − u0

)2
− 2ρ1c12uinc(−c1t

)
, (5)

ρ1c1u̇N+1 = −K
(
uN+1 − uN ,2

)
+ βK 2 (

uN+1 − uN ,2
)2

.

(6)

Here u0 is the displacement at the end of the first semi-infinite
medium, which is at x = 0. And uN+1 is the displacement at
the beginning of the second semi-infinite medium, which is at
x =

h1(N−1)+h2(N+1)
2 . Rearranging the above equation yields:

u̇0=
K

ρ1c1

(
u1,1 − u0

)
−

βK 2

ρ1c1

(
u1,1 − u0

)2
− 2Aω sin(ωt),

(7)

ün,1 = −
4c2i
h2i

(
un,1 − un,2

)
−

2K
ρihi

(
un,1 − un−1,2

)
+

2βK 2

ρihi

(
un,1 − un−1,2

)2
, (8)

ün,2 =
4c2i
h2i

(
un,1 − un,2

)
+

2K
ρihi

(
un+1,1 − un,2

)
−

2βK 2

ρihi

(
un+1,1 − un,2

)2
, (9)

u̇N+1 = −
K

ρ1c1

(
uN+1 − uN ,2

)
+

βK 2

ρ1c1

(
uN+1 − uN ,2

)2
. (10)

The goal is to use neural networks to find features in the
dataset and predict material parameters for the NPC with the
target second harmonic passband. We use the ODE45 finite
element method(FEM) to solve (7)-(10) for displacement’s
numerical solutions. After obtaining the displacement signal
at the end of thewaveguide, we calculate the second harmonic
amplitude A2ω by processing the steady-state displacement
signal using the fast Fourier transform. For better feature
extraction, we obtain the transmission spectrum curve of

TABLE 1. Model initial parameters.

the second harmonic by calculating the transmittance based
on (11).

T = 10log

∣∣∣∣A2ω

A

∣∣∣∣ . (11)

B. THE DATA SET
For the longitudinal wave propagation of this model, the
material density ratio ζ , wave velocity ratio η, and normalized
interface linear stiffness K are the main physical parameters
affecting the second harmonic behavior, and the material
thickness ratio 3 is also an important factor. ζ , η, K , 3 are
defined as (12). Kmax is the largest value in the K data set.
Since the β mainly affects the second harmonic magnitude,
but not its band structure distribution, it is not included as
an output parameter of the neural network in this paper.
Therefore, in the inverse design of the NPC, the second har-
monic transmission curve can be used as the neural network
input. The physical parameters ζ , η, Kmax and the geometric
parameter 3 can be used as the neural network output.

ζ =
ρ1

ρ2
, η =

c1
c2

,K =
K

Kmax
, 3 =

h1
h2

. (12)

In addition, we need to set the initial parameters of the model
as shown in Table 1.

The data set consists of the training set and the testing set,
and the data in the training set and the testing set are different.
Then we consider three cases. For the first case, the training
set A and the testing set A consist of 80 and 20 sets of data,
respectively, where 3 = 0.81 and K = 0.63 unchanged and
the values of ζ and η range from 0.50 to 1.00 and 0.60 to
1.10; for the second case, the training set B and the testing
set B consist of 800 and 200 sets of data, respectively, where
3 = 0.81 remains unchanged and the values of ζ , η and K
are in the ranges 0.50-1.00, 0.60-1.10 and 0.17-1.00; for the
third case, the training set C and the testing set C consist of
8000 and 2000 sets of data, where ζ , η, K and 3 take values
in the ranges 0.50-1.00, 0.60-1.10, 0.17-1.00 and 0.65-1.00,
respectively. In order to make the first passband and stopband
of the transmission curve fall in the range of 0 to 1 MHz as
much as possible, physical parameters in these range are used.
The specific values of ζ , η, K and 3 are shown in Table 2.

III. NEURAL NETWORK-BASED INVERSE DESIGN
METHOD
After the second harmonic transmission curve of the NPC is
obtained using the FEM, further features need to be extracted
to serve as training data available for the neural network.
The detailed steps are as follows. Firstly, we determine the
frequency range of the second harmonic to be designed and
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TABLE 2. The specific values of ζ , η, K and 3.

divide the entire frequency range into multiple small inter-
vals. Then we set a threshold value and determine whether
each small interval belongs to the passband or the forbidden
band. The number 1 is used here to indicate the passband
and the number 0 to indicate the stopband. So that the sec-
ond harmonic’s passband and stopband characteristics can be
represented by a simple one-dimensional array consisting of
1 and 0.

In this paper, we use CNNs and GRNNs to construct map-
ping relations between second harmonic band features and
material parameters. And we also compare the performance
of both neural networks.

A. THE CNN’S PRINCIPLE AND BASIC STRUCTURE
The Convolutional Neural Network (CNN) is a neural
network model commonly used in areas such as image recog-
nition, speech recognition, and natural language processing.
In contrast to an image, the transmission curve is a one-
dimensional signal. If the transmission curve image is directly
used as input for training, the useless information will be
greatly increased, which is not conducive to the prediction
of metamaterials by the neural network. So we propose a
one-dimensional neural network. The convolution kernel of
the one-dimensional CNN is always moving in one dimen-
sional direction. The related algorithms have a wide range
of applications in speech recognition and fault detection.
As shown in Fig. 3, it has a basic structure including the
convolutional layer, the pooling layer, and the fully con-
nected layer. The convolutional layer is the core part of CNN,
which performs convolutional operations on the input signal
to extract features for data identification. The pooling layer
reduces the dimensionality of the feature map and reduces
the computation, while also retaining the most important
features. The fully connected layer is the last part of the neural
network, which realizes the classification or prediction of the
input by connecting the extracted features to the output layer.

In our work, the hidden layer consists of multiple fully
connected layers. The deeper the hidden layer is, the better
the ability to learn data features. The fully connected layer
consists of multiple neurons, each consisting of an input,

FIGURE 3. CNN model graph.

a weight, a bias, and an activation function. The output of
each neuron is defined as:

yo = g
(
wx + b

)
. (13)

Here x is the input, w is the weight, b is the bias, g is the
activation function, and yo is the output of the neuron. The
activation function we choose is the Relu function, which is
commonly used as the activation function for CNNs due to its
advantages of no gradient disappearance problem and faster
training [27]. The Relu function is defined as:

g
(
x
)

= max
(
0, x

)
. (14)

The mean square error (MSE) function has been used a
lot for high-precision estimation of finite sample posterior
probabilities of neural networks, so we use the MSE function
as the cost function, which is defined as:

L =
1
m

∑ (
yt − yp

)2
. (15)

Here m is the number of sample sets in the training set, yt is
the target output (in this paper, the material parameters), and
yp is the output of the CNN in training. The training process
of the CNN in this paper is carried out by the Adam gradient
descent optimization algorithm [28], and a satisfactory neural
network can be obtained by optimizing the cost function and
adjusting the weights and biases so that it can predict the
output more accurately.

The model graph of CNN is shown in Fig. 3.

B. THE GRNN’S PRINCIPLE AND BASIC STRUCTURE
General Regression Neural Network (GRNN) is a feed-
forward neural network, which is a modified form of Radial
Basis Function Neural Network (RBF-NN), mainly com-
posed of four layers: input layer, pattern layer, summation
layer and output layer, as shown in Fig. 4. The input layer
accepts the information from the external input, passes the
information to the pattern layer, which processes the informa-
tion by nonlinear mapping, then passes the processed result
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to the summation layer, and finally the output layer performs
the final calculation.

The most important feature of GRNN is that its pattern
layer uses radial basis functions as activation functions. The
radial basis is a type of local basis function that uses the
distance between the input and the output of the pattern layer
as the main reference factor for the function value. Common
radial basis functions include the Gaussian function, polyno-
mial function, etc. By adjusting the parameters of the radial
basis function, the neural network can be adapted to different
types of data. The radial basis function used in this paper is
the Gaussian function, defined as:

g
(
ri
)

= exp
(

−
∥ri∥
2σ 2

)
. (16)

Here ri represents the distance between the input sample and
the learning sample of the ith pattern layer neuron and σ is
the smoothing factor.

In GRNN, the number of neurons in the pattern layer is
equal to the number of input samples, and the arithmetic
sum and weighted sum of the summation layer are used to
calculate the neural network prediction output. In contrast
to the backpropagation algorithm, the weights of GRNN do
not require iterative training, and their pattern layer weights
are determined directly from the training samples. Then we
can optimize the smoothing factor to obtain output results
with excellent performance. Since GRNN usually have a sim-
pler structure with fewer layers and parameters. The GRNN
algorithm computes the weights and updates the parameters
faster, leading to quicker train speed. Its output layer outputs
as follows:

Yp =

∑m
i=1 wig

(
ri
)∑m

i=1 g
(
ri
) . (17)

Herewi is the weighting coefficient and yp is the output of the
GRNN. The GRNN neural network which can handle non-
linear problems, has strong adaptability and generalization
ability and has a wide range of applications in curve fitting
problems.

The model graph of GRNN is shown in Fig. 4.

C. NEURAL NETWORK-BASED INVERSE DESIGN
PROCEDURE
After building the neural network, the model is trained using
data from the training set, and then the model’s generaliz-
ability is evaluated using the testing set. We evaluate the
prediction accuracy of the model by calculating the root mean
square error (RMSE) function of the target and predicted val-
ues. For the lower the RMSE value, the higher the prediction
accuracy. RMSE is defined as:

RMSE =

√∑n
i=1

(
yt − yp

)2
n

. (18)

Here yt is the target value of material parameters, yp is the
predicted value of material parameters, and n is the number
of output material parameters.

FIGURE 4. GRNN model graph.

In addition, because directly putting the transmission
curves into the neural network processing will add a lot
of redundant invalid information, and it is also not favor-
able to use the trained neural network for the prediction of
phononic crystals. In order to better obtain the characteristics
of the second harmonic transmission curve, we identify the
transmission curves’ stopband or passbands with 0 and 1,
respectively. At first, the frequency range to be studied is set
to 0-1 MHz, so that the first passband and the first forbidden
band of each sample are completely covered. Then we use
1000 Hz as the unit frequency to divide the whole frequency
range and set the threshold to determine the unit frequency is
whether passband or stopband. This threshold is determined
by both the transmission curve shape and the design goals.
Based on the shape of the existing transmission curve, the
threshold is set to -100 dB. The unit frequency interval of
each sample falling in the passband or stopband is judged by
the threshold value, identified by the numbers 1 and 0, respec-
tively, and stored in a one-dimensional array as samples.

The inverse design process is shown in Fig. 5. First, the
target transmission curve band features are represented by
a 1 × 1000 one-dimensional array, which is then fed into
a trained neural network. The network outputs the required
material parameters, from which the predicted second har-
monic transmission curve can be obtained.

IV. RESULTS AND DISCUSSIONS
We study the inverse design of a one-dimensional NPC for
three cases. The parameters ζ , η are first considered; then
the parameters ζ , η,K are considered; and finally four param-
eters ζ , η, K and 3 are considered.
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FIGURE 5. The NPC’s inverse design flow graph.

A. CNN-BASED INVERSE DESIGN AND ANALYSIS
Different CNN neural network structures are selected for the
three cases, and the RMSE is compared to determine the
optimal structure of the CNN.

For the first case (two-parameter), the following four dif-
ferent CNN structures are compared.

CNN-1-1: 1000 - convolutional layer - pooling layer -500-
200-100-50-2

CNN-1-2: 1000 - convolutional layer - pooling layer-500-
200-100-50-50-2

CNN-1-3: 1000 - convolutional layer - pooling layer-500-
200-100-50-50-50-2

CNN-1-4: 1000 - convolutional layer - pooling layer-500-
200-100-50-50-50-50-2

For the second case (three parameters), the following four
different CNN structures are compared.

CNN-2-1: 1000 - convolutional layer - pooling layer-800-
400-200-100-3

CNN-2-2: 1000 - convolutional layer - pooling layer-800-
400-200-100-100-3

CNN-2-3: 1000 - convolutional layer - pooling layer-800-
400-200-100-100-100-3

CNN-2-4: 1000 - convolutional layer - pooling layer-800-
400-200-100-100-100-100-3

For the third case (four parameters), the following four
different CNN structures are compared.

CNN-3-1: 1000 - convolutional layer - pooling layer-1000-
800-400-200-100-4

CNN-3-2: 1000 - convolutional layer - pooling layer-1000-
800-400-200-100-100-4

CNN-3-3: 1000 - convolutional layer - pooling layer-1000-
800-400-200-100-100-100-4

CNN-3-4: 1000 - convolutional layer - pooling layer-1000-
800-400-200-100-100-100-100-4

FIGURE 6. The RMSE of the testing set for different CNNs.

FIGURE 7. The RMSE of the testing set for different GRNNs.

Here, ‘‘1000’’ is the number of dimensions of the input
layer samples, and ‘‘2’’, ‘‘3’’, ‘‘4’’ are the number of
neurons in the output layer. The convolutional layer is a
one-dimensional convolutional kernel to extract features from
the input data, and the size of the convolutional kernel is
3. The pooling layer adopts the maximum pooling strategy,
and the size of the convolutional kernel is 2. The rest is the
number of hidden layer neurons. Too many neurons may lead
to overfitting, while too few neurons may lead to underfitting.
Therefore, the method of verifying the performance of the
testing set is used to determine the appropriate number of
neurons. The RMSE of the testing set with different CNN
structures for the three cases is given in Fig. 6. It is shown that
for the first case, the prediction error of CNN-1-2 is smaller;
for the second case, the prediction error of CNN-2-3 structure
is smaller; for the third case, the prediction error of CNN-3-3
structure is smaller.

B. GRNN-BASED INVERSE DESIGN AND ANALYSIS
For GRNN, we set the number of neurons in the pattern
layer equal to the number of input samples. For the first
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FIGURE 8. The target and predicted second harmonic
transmission curve of the testing set A(FEM indicates the target
transmission curve, CNN and GRNN indicate the transmission
curve predicted by CNN and GRNN, respectively).

case, the GRNN structure is set to be GRNN-1: 1000-80-
Summation layer-1; for the second case, the GRNN structure
is set to be GRNN-2: 1000-800-Summation layer-2; for
the third case, the GRNN structure is set to be GRNN-3:
1000-8000-Summation layer-3.

The GRNNs’ RMSE of the testing set for the three cases
are given in Fig. 7. It can be seen that the prediction error
stays at a better scale for all three cases.

C. COMPARATIVE ANALYSIS OF CNN AND GRNN
Here, the NPC parameters are predicted for three cases and
the target and predicted transmission curves of the second
harmonic are compared to verify the neural network per-
formance. The structures of CNN in the three cases are
CNN-1-2,CNN-2-3,CNN-3-3, and the structures of GRNN
are GRNN-1, GRNN-2, and GRNN-3 respectively.

FIGURE 9. Prediction accuracy of CNN and GRNN for the testing
set A.

FIGURE 10. The target and predicted second harmonic
transmission curve of the testing set B.

In the first case, the density ratio and sound velocity ratio
of NPC are predicted. The data set consists of the training set
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FIGURE 11. The error statistics of CNN and GRNN for the testing
set B.

TABLE 3. Comparison of CNN and GRNN. Training time refers to
the time required to train the neural network, and computation
time refers to the time required to inversely design the NPC
parameters by the neural network.

A and the testing set A. The second harmonic transmission
curves that are calculated by the physical parameters pre-
dicted by the neural network for the testing set A are shown in
Fig. 8 (due to the space limitation, only two sets of predictions
for the testing set A, B, and C are shown as examples). The
gray area in the figure indicates the band where the input
target transmission curve is ‘‘1’’, and the white area indicates
the band where the input target transmission curve is ‘‘0’’.
FEM denotes the target transmission curve, and CNN and
GRNN denote the transmission curves calculated by CNN
and GRNN prediction, respectively. The prediction accuracy
is shown in Fig. 9. Both neural networks show good perfor-
mance in predicting the transmission curves, where the CNN
performs better, but the GRNN has a much shorter training
time.

In the second case, we inversely design the NPC’s three
parameters: density ratio, sound velocity ratio, and normal-
ized interface linear stiffness. The data set consists of the
training set B and the testing set B. Here the two sets of

FIGURE 12. The target and predicted second harmonic
transmission curve of the testing set C.

predictions for the testing set B are shown as examples,
in Fig. 10. It can be seen from the figure that for the
three-parameter prediction, both neural networks also give
satisfactory results. The error statistics for the testing set B’s
predicted results is shown in Fig. 11. The prediction error
mostly stays in a small range, and the prediction error of CNN
is smaller than that of GRNN.

In the third case, we inverse design the NPC’s four param-
eters: material thickness ratio, density ratio, sound velocity
ratio, and normalized interface linear stiffness. The data set
consists of the training set C and the testing set C. Fig. 12
shows the two sets of prediction results for the testing set C.
The error statistics of the testing set C are shown in Fig. 13.
It can be seen that the prediction results of both neural net-
works are still better, and the prediction error of CNN is still
smaller than that of GRNN.

The comparison of CNN and GRNN is shown in Table 3.
It is shown that the computational time required to predict
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FIGURE 13. The error statistics of CNN and GRNN for the testing
set C.

by neural network is extremely short, and the computational
speed is much better than the traditional method which is with
continuous trial and error. In addition, the neural network pre-
diction accuracy is excellent. For the three cases of prediction,
CNN is better than GRNN in terms of prediction accuracy,
while GRNN is better than CNN in terms of training time
andmodel simplicity.We can choose different neural network
models according to the actual situation.

V. CONCLUSION
In this paper, both CNN and GRNNmodels are trained and an
inverse design method for one-dimensional NPC is proposed.
The method uses the band structure of target transmission
curve as the input to the neural network, and the network
will output the corresponding NPC material parameters. The
designed material parameters include density ratio, sound
velocity ratio, interface stiffness and thickness ratio. For all
three cases of design, CNN and GRNN exhibit satisfac-
tory performance. In particular, CNNs exhibit more precise
prediction accuracy, while GRNNs have unique advantages
in terms of training speed and model simplicity. Compared
with traditional algorithms, the neural network construction
requires a large number of samples for training, and although
the method requires some time and computational resources,
the process can be done in parallel and at once. At the same
time, the method differs from the traditional methods relying
on analytical theory and parametric analysis, providing new
ideas for the inverse design of metamaterials.

This paper demonstrates the feasibility and superiority of
neural network-based inverse design for NPCs. In fact, two
and three dimensional metamaterials will be more complex
in design and computation, consuming more time and com-
putational resources. Therefore, it will be more meaningful to
apply neural networks to two or three dimensional metama-
terial design. The present work provides a useful foundation
for future related research.
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