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ABSTRACT Sparse array designs are a promising approach to improve the beam pattern and imaging
quality, especially for applications, where hardware resources are severely limited. In particular, spiral
sunflower arrays become increasingly popular due to their excellent point-spread-function (PSF) charac-
teristics and their simple, deterministic and scalable design. Therefore, several sunflower modifications for
further improvement have been investigated, e.g. density tapering based on window functions adapted from
apodization techniques. In this article, we introduce a two-scale spiral array design concept, which exploits the
specific PSF structure of the sunflower geometry, instead of relying on window functions. The modification
proposed combines two nested sunflower sub-arrays featuring two different spatial element densities such
that the locations of their respective main, side and grating lobe zones differ, resulting in a balanced and
improved composite one-way PSF in terms of main lobe width (MLW) and maximum side lobe level (MSLL)
under far-field and narrow-band conditions. First, we provide an analysis of the unmodified classic sunflower
geometry, describe its PSF zones and show how their locations in the PSF can be estimated based on the array
design parameters, which finally leads to the two-scale concept. Second, we examine a specificwell-matching
combination of nested sub-arrays to discuss the advantages and limitations of the resulting PSF. Third,
we benchmark the respective optimum arrays of the classic sunflower and density tapering strategies with the
two-scale method, where the latter shows an improved performance of the one-way PSF in terms of MLW
and MSLL. Fourth, the two-scale design strategy is validated using a real-world 64-element prototype for
narrow-band ultrasound imaging in air. We conduct two experiments to analyze the resulting PSF and angular
resolution. Overall, the results demonstrate that the proposed flexible four-parameter concept is particularly
valuable for high frame rate imaging as well as for transmit-only and receive-only applications.

INDEX TERMS Sparse array, spiral array, phased array, ultrasound, sonar, imaging.

I. INTRODUCTION

ONE of the major challenges of ultrasonic 3D imaging
systems, as used for non-destructive testing, environ-

mental perception and medical diagnostics, is to maintain
image contrast while ensuring a high angular resolution and
fast volume rates. Bringing these competing requirements
together is particularly difficult for emerging application
fields, where mobility is crucial and hardware resources
are severely limited. These advancing technologies range
from sonar systems, which provide a complementary per-
ception sensor modality for upcoming mobile autonomous
robotics [1], [2], [3], up to portable medical point-of-care
scanners, which enable life-saving diagnoses outside the

hospital, e.g. directly at the scene of an accident or for medics
in combat [4], [5], [6].

In both application examples, the 3D images are generated
using beamforming, so that contrast and angular resolution
are typically quantified based on the maximum secondary
lobe level (MSLL) and the main lobe width (MLW) obtained
from the point spread function (PSF). The PSF itself is depen-
dent on the beamforming technique and the array geometry
employed, both of which provide a respective computational
and physical starting point for improvement, where the latter
is the focus of this article.

In order to realize and enhance volumetric high-frame-rate
imaging on hardware-limited devices, a promising approach
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is to combine low-complexity conventional beamforming
with sparse array designs. Unlike traditional fully-populated
arrays, the aperiodic element positioning of sparse arrays
prevents severe MSLL degradation due to high grating lobes
even if the inter-element spacings exceed half wavelength
(λ/2) [7]. This way, large-aperture 2D arrays can be created
for improving the MLW without requiring a drastic increase
in the number of elements, system complexity and cost.

Sparse array synthesis is grouped into two categories,
i.e. stochastic and deterministic designs [8], [9]. Stochastic
sparse arrays rely on a randomized element positioning paired
with optimization schemes, e.g. genetic algorithms [10],
[11], [12], [13] or simulated annealing [14], [15], [16],
[17], in order to optimize for pre-defined quality metrics.
In contrast, deterministic methods provide a parametric
approach, that is easily controllable and scalable, allow-
ing a rapid and flexible customization to satisfy application
constraints [18], [19], [20], [21]. Additionally, the resulting
geometry can be used as a seed for a further optimization pro-
cedure as it already features decent characteristics from the
start.

A specific deterministic sparse array design is based on
the Fermat spiral. In particular, the sunflower pattern [22],
which results from sampling the Fermat spiral with Golden-
Angle increments, is highly effective at suppressing grating
lobes due to the aperiodic unique element positioning with
approximately uniform spatial density [23]. These sparse spi-
ral arrays become increasingly popular inmultiple areas, such
as satellite communications [24], [25], antenna arrays for
radar imaging and 5G communication [26], [27], [28], [29],
optical phased arrays [30], [31], [32], [33], acoustic noise
localization [34], [35], [36] and many ultrasound applica-
tions. The latter field includes air-coupled array technologies,
e.g. for haptic feedback [37], highly directive proximity sens-
ing in agriculture [38], [39], and in-air imaging [40], [41],
[42], as well as medical ultrasound applications, such as
high-intensity focused ultrasound (HIFU) [43], [44], [45],
[46] and diagnostic imaging [47], [48], [49], [50], [51], [52],
[53], [54], [55]. In order to further improve the characteristics
of the spiral sunflower array, multiple modifications have
been proposed.

In [56], the authors presented a spiral sunflower design
modification based on two-way line-by-line beamforming,
where the transmit and receive array geometries differ.
By excluding specific adjacent spiral arms in the transmit
and receive array pairs, the positions of the secondary lobe
maxima and minima in the respective PSFs can be manip-
ulated such that they cancel out. Although this method can
effectively reduce the overall side lobe level, relying on two-
way line-by-line beamforming is impractical for volumetric
imaging applications that require a minimum number of fir-
ing events to achieve high frame rates. Therefore, we focus
on concepts for improving the one-way PSF characteristics,
which are also valuable for transmit- or receive-only applica-
tions apart from imaging.

Amethod for improving the general one-way PSF bymodi-
fying the spiral sunflower array geometry, referred to as den-
sity tapering, has been proposed for antenna arrays in [25].
Density tapering adapts the idea of weighting the element
sensitivities based on a spatial window function to reduce
the side lobe level, also known as apodization [57]. However,
instead of weighting the sensitivities themselves, the spatial
density of the element distribution is altered depending on
the window function. This way, the MLW and MSLL can be
fine-tuned without sacrificing overall sensitivity. In [48], den-
sity tapered spiral arrays have been examined for ultrasound
imaging including a comparison of multiple window func-
tions. Additionally, the authors have created two 256-element
CMUT and PZT array prototypes [58], [59], [60] based on a
Blackman window taper and experimentally evaluated vari-
ous medical ultrasound imaging applications [49], [50], [51],
[52], [53]. In [61], Sarradj investigated another density taper-
ing approach based on a parametric window function and
a non-linear least squares method for element positioning,
enabling a flexible one-parameter control of the taper.

In this article, we introduce a two-scale sparse spiral array
design concept, which exploits the specific PSF structure of
sunflower arrays, instead of relying on window functions for
density tapering. The modification proposed combines two
nested sunflower sub-arrays featuring two different spatial
element densities such that the locations of their respective
main lobe, side lobes and grating lobes, referred to as PSF
zones, differ and combine favorably. As a result, the com-
posite array geometry has a balanced and improved one-way
narrow-band PSF in the far-field in terms ofMSLL andMLW
compared to the previous approaches.

The main contributions are grouped into four categories.
First, we provide an analysis of the PSF characteristics of
the unmodified classic sunflower array for different aperture
diameters and number of elements in order to introduce a
concept for estimating the PSF zone locations requiring only
the basic array design parameters. Second, we elaborate the
two-scale array design and extend the PSF zone estimation
for its sub-arrays. In addition, we investigate a specific well-
matching sub-array combination for highlighting its advan-
tages and limitations. Third, we benchmark the respective
64-element and 256-element arrays of the classic sunflower
and density tapering strategies with the two-scale method and
examine multiple optimum sub-array combinations in more
detail. Fourth, the two-scale design strategy is validated using
a real-world prototype for ultrasound imaging in air, which
consists of 64 MEMS microphones and one piezoelectric
ultrasonic transducer. Based on this prototype, we conduct
two experiments to analyze the resulting PSF and angular
resolution.

The remainder of this article is organized as follows.
Section II includes themodel for generating the beam patterns
and PSF, as well as the analysis of the classic sunflower
geometry and its PSF zone estimation. Based on this, the
two-scale array design is introduced along with the evaluation
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of a well-matching sub-array combination. Section III covers
the benchmarking and the optimum two-scale sub-array com-
binations. Section IV includes the real-world prototype and
experiments for validation. Finally, we conclude and discuss
further ideas for improvement, as well as remaining questions
in Section V.

II. METHODS
Here, we describe the classic sunflower array geometry and
analyze the resulting PSF behavior in terms of MLW and
MSLL for variable aperture sizes and number of elements.
In addition, we introduce the different PSF zones observed
and methods to estimate their locations which finally lead to
the two-scale array design concept.

A. BEAM PATTERN AND POINT SPREAD
FUNCTION MODEL
The key factors for the following evaluations are the far-field
beam pattern and one-way PSF, i.e. the beam pattern with a
single centered point source. The model used for their gener-
ation is based on the normalized and discretized well-known
Rayleigh integral, where we assume point elements and point
sources, as well as far-field and narrow-band conditions.
Therefore, the model allows an application-independent anal-
ysis focused on the array element positions, as the effects of a
particular element size, focal distance, or specific bandwidth
are not included. The superimposedmagnitude p for the beam
pattern scanning direction (u, v) = (sin(θ ) cos(ϕ), sin(ϕ)) is
given by

p(u, v) =

∣∣∣∣∣aH(u, v)

(
L−1∑
l=0

a(ul, vl) · pel(ul, vl) · sl

)∣∣∣∣∣ , (1)

where θ and ϕ are the azimuth and elevation angles, L is the
number of point sources, l is the corresponding source index,
(ul, vl) and sl are the l-th source direction and magnitude,
respectively, and a(u, v) ∈ CM×1 is the array-specific steer-
ing vector, whose m-th entry is given by

am(u, v) = exp
(
j
2π
λ
(xmu+ ymv)

)
. (2)

Here, M is the number of elements and (xm, ym) is the posi-
tion of the m-th array element. The term pel(ul, vl) includes
the directivity of the elements themselves and is negligible
if point elements are assumed, i.e. pel = 1. Otherwise,
if elements with extended sizes are considered, pel can be
calculated by sampling the element aperture, as explained
in [40], that is

pel(ul, vl) =
1
K

K−1∑
k=0

exp
(
j
2π
λ
(xkul + ykvl)

)
, (3)

where K is the number of sample points, k the sample point
index and (xk , yk ) is the sample point position. The PSF is
generated by evaluating (1) for the directions in the complete
hemisphere, i.e.

√
u2 + v2 ≤ 1 (if not stated otherwise), and

for a single centered point source, such that L = 1, sl = 1 and

(ul, vl) = (0, 0). The beam patterns and PSFs are generally
normalized to their maximum value.

B. CHARACTERISTICS OF THE CLASSIC
SUNFLOWER SPIRAL ARRAY
The position of the m-th element of the planar classic sun-
flower array rm is determined by discretely sampling the
Fermat spiral based on the models in [22] and [61] with the
design parameter V = 5, that is

(Rm, φm) =

(
Rap

√
m
M

, 2π (m− 1)
1 +

√
V

2

)
, and (4)

rm = (xm, ym) = (Rm cos(φm),Rm sin(φm)) , (5)

where Rm is the corresponding radius of the m-th element
to the aperture center, φm is the corresponding angle and
Rap = Dap/2 is the maximum aperture radius. The model
defines the element radii to the center Rm such that the area
of the ring spanned by two successive radii is constant and
equivalent to theM -th part of the total aperture area, that is

1Am = π
(
R2m − R2m−1

)
=

πR2ap
M

. (6)

The design parameter V controls the number and positions
of the spiral arms created by altering the angular distance
between two successive elements. With the parameter V = 5,
this angular distance corresponds to the Golden Angle, which
in conjunction with the constant ring area 1Am, results in an
approximately uniform spatial element density, a main char-
acteristic of the classic sunflower array [25]. Therefore, the
sunflower geometry depends only on two parameters, i.e. the
total number of elementsM and the aperture diameter Dap.

In the following, the resulting one-way PSFs for different
aperture diameters and three typical fixed total numbers of
elements are used to investigate the corresponding MSLLs
and theMLWat−6 dB (MLW6), both beingwidely usedmet-
rics for contrast and angular resolution (Fig. 1). The MLWs
monotonously decrease with increasing aperture diameter,
whereas being independent of the observed number of ele-
ments. In contrast, the MSLLs transition from a lower to a
higher plateau, where there is no further significant increase.
The level of the plateaus as well as the diameter at which the
plateau transition occurs are both dependent on the number
of elements. Therefore, if a low MSLL is desired, there is
an optimal aperture diameter for each M , where the MLW
is narrowest, which is just before the transition to the higher
plateau.

In order to clarify the plateau-like increase in MSLL,
we examine the PSF of a 64-element array for two different
aperture diameters (Fig. 2). The typical one-way PSF of the
classic sunflower array can be categorized into three basic
zones, i.e.

1) the main lobe zone (MLZ),
2) the side lobe zone (SLZ), where low secondary lobes are

formed,
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FIGURE 1. MSLL (a) and MLW6 (b) extracted from the normalized
PSFs of classic sunflower arrays for various aperture diameters
Dap and three fixed numbers of elements M. While the MLW6
steadily narrows with increasing aperture diameter independent
of the number of elements, the MSLL features a plateau-like
increase, where the transition from a low to a high plateau
depends on both, the aperture diameter and the number of
elements.

3) and the grating lobe zone (GLZ), where the side lobe
level rises significantly.

The three zones are clearly evident in the radial view
[Fig. 2(c)], showing the respective maximum side lobe level
for each concentric ring of radius Ruv =

√
u2 + v2 centered

on the PSF origin (u, v) = (0, 0). We define the transition
radius from MLZ to SLZ (RMLZ) at the first minimum of the
main lobe. The transition radius from SLZ to GLZ (RGLZ)
is specified at the side lobe level that exceeds the first, and
typically highest, secondary lobe in the SLZ. We found that
the MLZ transition RMLZ is mainly dependent on the aperture
diameter, whereas the GLZ transition (RGLZ) depends on
the inter-element spacings. Therefore, enlarging or reducing
the aperture diameter with a fixed number of elements will
narrow or widen the PSF zones, respectively. By maintaining
a sufficiently small aperture, the GLZ can be forced out of
the PSF, so that the MSLL decreases significantly [Fig. 2(b)].
This way, the lower MSLL plateau in Fig. 1 is reached,
although with the drawback of main lobe widening.

The estimation of the positions of the three zones is of
major interest for the array design. We found that for the
classic sunflower array, the transition from MLZ to SLZ
RMLZ can be estimated with the well-known first-minimum-
approximation for circular apertures [62], that is

RMLZ ≈ 1.22λ/Dap. (7)

The estimation of the SLZ to GLZ transition (RGLZ) requires
analyzing the inter-element spacings. Since most of the
inter-element spacings of the classic sunflower array are
different to each other, we use Delaunay triangulation [63],
[64] to obtain the specific inter-element spacing between each
neighboring element [Fig. 3(a)]. In [56], the authors use the

FIGURE 2. Two examples of 64-element classic sunflower arrays
with a large (Dap = 15λ) (a1) and a small aperture diameter
(Dap = 5λ) (b1) and their corresponding normalized PSFs (a2,
b2) showing their different PSF zones. The radial view (c) shows
the respective highest side lobe levels for each concentric ring
with radius Ruv =

√
u2 + v2 centered around the PSF origin.

With a sufficiently high element density, e.g. as in (b), a GLZ is
not formed.

most prominent inter-element spacing d̂ in the correspond-
ing histogram [Fig. 3(b)], i.e. with the highest number of
occurences, to estimate the position of the radius, where the
highest grating lobes are located. However, we are interested
in the SLZ to GLZ transition and observed that the mean
inter-element spacing d̄ gives a good estimate, that is

RGLZ ≈ λ/d̄ . (8)

Based on this relation, we found that the classic sunflower
array geometry allows to directly estimate RGLZ with the
basic design parameters (Dap, M ) as follows. We analyze
the area associated to each element Acell,m using Voronoi
tessellation and found that it is in good agreement with the
M -th part of the total area just as with the circular ring area
1Am between two successive elements in (6). The Voronoi
cell area of each element can be approximated by a circular
disk with a diameter corresponding to the mean inter-element
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FIGURE 3. Voronoi tesselation and Delaunay triangulation
applied to a 64-element classic sunflower array to find the
various element cells and inter-element spacing (a) and the
corresponding histogram of inter-element spacing values (b).
The transition from MLZ to SLZ Ruv,MLZ is effectively estimated
with the overall aperture diameter Dap (c), approximately
independent of the number element. The estimation of the
transition radius from SLZ to GLZ Ruv,GLZ requires minor
corrections dependent on the number of elements.

spacing, resulting in the relation

Acell,m ≈ π

(
d
2

)2

≈
πR2ap
M

= 1Am. (9)

Therefore, the SLZ to GLZ transition RGLZ can be estimated
by combining (8) and (9), that is

RGLZ ≈ λ

√
M

Dap
. (10)

We validate the approximations by determining the true
respective transition radii of the classic sunflower arrays
for different aperture diameters and number of ele-
ments [Fig. 3(c),(d)]. While the RMLZ estimate is in
good agreement with the true radii, minor correction fac-
tors hM are required for a more precise estimation of
RGLZ ≈ hM λ

√
M

Dap
depending on the number of array

elements, i.e. (h32, h64, h96, h128, h256) = (0.8, 0.85, 0.94,
0.99, 1.05).
In order to prevent the formation of the GLZ in the

PSF, as well as in beam patterns, where a source can
be located off-center in a specific field-of-view within
Rfov =

√
u2 + v2, the transition to the GLZ must be chosen

to be RGLZ ≥ 1 + Rfov. For example, if a source can
be located in a field-of-view spanning the full hemisphere

(±90◦), i.e. Rfov = 1, the GLZ transition must be at least
RGLZ ≥ 2 for GLZ prevention. Therefore, the aperture
diameter is required to be Dap ≤ 0.5

√
Mλ, so that the

mean inter-element spacing is d̄ ≤ 0.5 λ, just as for the
half-wavelength criterion of periodic dense arrays.

In summary, we have analyzed the MLW and the
plateau-like MSLL behavior of the classic sunflower array
resulting from its three PSF zones, whose locations can be
estimated prior to field simulation with the aperture diameter
and number of elements.

C. TWO-SCALE SPIRAL ARRAY DESIGN
The key idea leading to the proposed two-scale array design
is to exploit the specific PSF zone structure of the classic sun-
flower array by combining two sub-arrays featuring two dif-
ferent spatial element densities and aperture sizes, resulting in
different PSF zone locations (Fig. 4). The combination of PSF
zones enables to improve and flexibly balance the MLW and
MSLL, similar to density tapering, without being constrained
by almost-discrete MSLL plateaus. Since we focus on the
one-way beam patterns, both combined sub-arrays are used
only for transmitting or only for receiving, depending on
the use case. Therefore, a combination of PSF zones cor-
responds to a complex addition, instead of a multiplication
as in the two-way case. Although, two dedicated classic
sunflower arrays can be used to combine their specific far-
field PSFs, nesting an inner and outer sub-array allows for a
more compact design. Assigning the sub-arrays into an inner
area and outer ring ensures that their element densities can
be separately defined for one-way beamforming, which is
more complicated for two nested sub-arrays, that both start
from the center and cover a shared area, since the respective
element distances are influenced by each other. Therefore,
the two-scale spiral array is fully defined with four design
parameters, that is

Rm =



Rin

√
m
Min

,

for 1 ≤ m ≤ Min,√√√√(
R2ap − R2in

)
(m−Min)

M −Min
+ R2in

for Min + 1 ≤ m ≤ M ,

(11)

where Rin = Din/2 and Rap = Dap/2 are the inner and total
aperture radius, Min and M are the inner and total number of
elements. The corresponding element position angles φm and
the transformation into Cartesian coordinates are equivalent
to (4) and (5).

In order to estimate RMLZ and RGLZ for both sub-arrays
of the two-scale geometry, we analyze their corresponding
design models. First, the radii of the inner sub-array are
consistent with the classic sunflower design as in (4) using
the respective inner aperture diameter Din and inner number
of elements Min. Second, the model for the outer sub-array
radii is based on the similar design rule as in (6) of the classic
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sunflower geometry, i.e. the area of the ring spanned by two
successive radii 1Am,out = π

(
R2m − R2m−1

)
is constant and

equivalent to the area of the outer sub-array divided by the
number of outer elements. Therefore, the inner and outer ring
areas are given by

1Am,in =
πR2in
Min

, (12)

1Am,out =
π (R2ap − R2in)

M −Min
. (13)

As a result, we obtain a composite array with only two
different element densities, which are constant within each
sub-array. Therefore, the two-scale array design allows to
estimate the transition from SLZ to GLZ for the inner RGLZ, in
and outer sub-array RGLZ, out in the same way as shown in
Section II-B, that is

RGLZ, in ≈ λ

√
Min

Din
and RGLZ, out ≈ λ

√
M −Min

D2
ap − D2

in

. (14)

The estimation of RMLZ, in and RMLZ, out of both sub-arrays is
equivalent to (7) with the respective inner and total aperture
diameters.

In summary, the ability to estimate the PSF zone locations
using the basic design parameters is a major advantage of the
two-scale design, since a desired PSF zone combination can
be specified prior to field simulation.

D. CHARACTERISTICS OF THE TWO-SCALE
SPIRAL ARRAY
Next, we examine a 64-element two-scale array to demon-
strate the MLW and MSLL balancing and improvement.
We focus on a geometry that exploits a specific PSF zone
combination, although other advantageous combinations are
possible, as shown in Section III. In particular, a GLZ-free
inner sub-arraywith awideMLZ is positionedwithin an outer
sparser sub-array (Fig. 4), such that
a) the high GLZ of the outer sparse sub-array is combined

with the low SLZ of the inner sub-array, and
b) the low SLZ of the outer sparse sub-array is paired with

the MLZ and first secondary lobe of the inner sub-array,
resulting in two effects. First, the main lobes of both
sub-arrays accumulate to an overall higher level and form
a combined main lobe with a narrow peak and broad base.
Second, the overall side lobe level is more balanced, such
that there are no pronounced differences between the SLZ
and GLZ, which otherwise typically consist of relatively low
and high side lobe levels. Both characteristics lead to an
effective reduction of the MSLL, whereas a narrow peak
of the combined MLW is preserved. As a result, a higher
imaging resolution with reduced artifact formation compared
to the classic sunflower array is expected. Nevertheless, there
is another characteristic to consider, namely the main lobe
base level (approx.−11 dB in the example), where the narrow
peak transitions into the broad base, whose effects are pointed
out next.

FIGURE 4. Example two-scale 64-element array nesting a denser
inner sub-array with a sparser outer sub-array (a) , resulting in
an advantageous PSF zone combination demonstrated in the
corresponding normalized PSF (b) and its radial view (c). The
combined main lobe consists of a narrow peak and broad base,
whereas the overall side lobe level is more balanced without
distinct transitions from SLZ to GLZ.

In order to emphasize the advantages and drawbacks of
this particular two-scale spiral array, we examine the result-
ing beam patterns of two adjacent horizontally positioned
point-sources at varying angular spacings. The beam patterns
of the two-scale array and classic sunflower array are then
compared, whereas both geometries are selected to have an
equal −6 dBMLW (MLW6) in their respective PSFs (Fig. 5).
The angular spacing θs between the two adjacent positioned
equal-strength point-sources is gradually increased from 0◦

to 20◦ in steps of 0.5◦. For each spacing θs, we generate
the resulting beam patterns of the two-scale and classic
sunflower array using the multi-source model in (1) with
L = 2, where the corresponding source locations are u0 =

+ arcsin (θs/2) and u1 = − arcsin (θs/2). Based on these
beam patterns, we evaluate the angular resolution and the
minimum level between the two sources. If the minimum
inter-source-level [Fig. 5(c)] drops below 0 dB, two distinct
maxima are formed, such that both sources are separable in
the beam pattern and the corresponding spacing defines the
angular resolution.

Although both MLW6 are equal, the two-scale array can
separate the two sources at a smaller angular spacing (6◦)
compared to the classic sunflower array (8.5◦), thus providing
a higher effective angular resolution. In addition, the MSLL
of the two-scale array is significantly lower (−9.86 dB vs.
−4.12 dB), since the high GLZs of both sources accumulate
for the classic sunflower array, increasing the risk of artifact
formations. In contrast, the side lobes in the beam patterns of
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FIGURE 5. Comparison of the normalized one-way beam
patterns of the classic sunflower (a) and two-scale array (b),
both featuring the same MLW6 = 9◦, for two adjacent point
sources with varying angular spacings, i.e. 10◦ (row 1) and 14◦

(row 2). Due to the accumulation of the GLZs of both sources,
the resulting MSLL of (a) is significantly higher compared to (b),
increasing the risk of artifact formation. The minimum side lobe
level between the two sources for various spacings (c) shows
that the two-scale array can separate closer-spaced sources,
but requires larger spacings for a higher separation contrast
due to the broad main lobe base.

the two-scale approach are more evenly distributed as in its
PSF, without particularly high or low levels, so that theMSLL
is kept low. However, the higher resolution and lower MSLL
of the two-scale array come at a cost. Due to the wide main
lobe base of the two-scale array, the minimum inter-source-
level has a flatter, plateau-like roll-off with increasing source
spacing compared to the classic sunflower array. Conse-
quently, although even closely spaced sources are separable,
a high separation contrast requires a larger source spacing
compared to the classic sunflower array. The roll-off of the
minimum inter-source level is mainly determined by the main
lobe base level of the corresponding two-scale array PSF.
Therefore, the main lobe base level must be considered in
the two-scale array design. The re-increase of the minimum
inter-source level for the classic sunflower array at 15◦ and
above 20◦ angular spacing arises due to the accumulation of
side lobes, which is expected behavior.

In summary, compared to the classic sunflower array with
the same MLW6, the two-scale array provides a higher angu-
lar resolution and a more effective artifact suppression due to
the lower MSLL at the expense of reduced contrast between
closely spaced but separable sources.

III. BENCHMARKING, RESULTS AND DISCUSSION
In this section, we benchmark the two-scale array geometries
with the classic sunflower arrays and with density tapering
approaches for modifying the sunflower spiral geometry.
We implement two methods of density tapering for reference.
One is based on a fixed window function introduced in [25]
and [48], where the element positions are determined itera-
tively. Here, we consider a Blackman window [Fig. 6(a2)],
which has been utilized in multiple previous works, e.g. [58],
[59], and [58]. The other method is described by Sarradj
in [61] and relies on a configurable single-parameter (H )
window, based on the modified zero-th order Bessel function,
where the radii of the elements are obtained by solving a
non-linear least squares problem [Fig. 6(b)]. Depending on
the chosen H -parameter, the Sarradj method (SAR) enables
to taper the element density to the center (H > 0) [Fig. 6(b2)]
or to the periphery of the aperture (H < 0) [Fig. 6(b3)].
The main difference of the density tapering methods to the
two-scale array approach [Fig. 6(a3)] is that the latter does
not rely on window functions, originating from amplitude
apodization, but rather aims for an advantageous PSF zone
combination.

In order to highlight the similarities and differences of
the design methods, we compare their density window func-
tions with respect to the non-tapered classic sunflower case.
Therefore, we derive the equivalent density window function
for the two-scale array, enabling to recreate the geometry
introduced in this article using the density tapering method
described in [25] and [48], based on the following consider-
ations. The tapering method defines the radii Rm such that
the ring area spanned by two successive radii weighted by
the density window function f (R) is constant (K ) [25], [48],
that is

2π
∫ Rm

Rm−1

f (R)R dR = K , (15)

where K is defined as the M -th part of the effective total
aperture area K = 2π/M

∫ Rap
0 f (R)R dR. For example, the

equivalent density window function of the classic sunflower
array is f (R) = 1, since the ring areas 1Am are already
defined to be constant (6), such that

2π f (R)
∫ Rm

Rm−1

R dR = π
(
R2m − R2m−1

)
=

πR2ap
M

, (16)

where πR2ap/M = 1Am = K . Since the ring areas of the
two-scale geometry (1Am,in, 1Am,out) are constant within
each sub-array as shown in (12) and (13), its equivalent
density window function relative to the non-tapered classic
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sunflower case with equal aperture diameter is given by

f (R) =


1Am

1Am,in
=
R2apMin

R2inM
, for 0 ≤ R ≤ Rin,

1Am
1Am,out

=
R2ap(M −Min)

(R2ap − R2in)M
, for Rin < R ≤ Rap.

(17)

Therefore, the equivalent density window function of the
two-scale array consists of two discrete density levels in
contrast to the Blackman and SAR tapering methods, which
feature a smooth characteristic [Fig. 6(c)]. Besides that, the
similarities of the Blackman and SAR tapering methods
become evident in the comparison. The SAR window func-
tionswithH = 1 andH = 4 lead to a respectivelyweaker and
stronger inner tapering compared to the Blackman window,
which is approximately identical to SAR H = 2.5. In fact,
many spiral array geometries are contained in the set of
solutions created by the SAR method for varying H param-
eters, including the classic sunflower array, which results
for H = 0.

A. DESIGN METHODS BENCHMARKING
For benchmarking, we generate different array geometries
with a fixed number of elements (M = 64 and M =

256) based on the four design methods presented, each with
varying design parameters. The aperture diameter, which is
the only variable parameter for the classic sunflower and
the Blackman density tapered array, is varied in the inter-
val Dap ∈ {2, 3, . . . , 60}λ. For each aperture diameter, the
H -parameter of the SAR arrays are additionally varied within
H ∈ {−5, −4.8, . . . , 5}. The two-scale array geometries are
created using any combination ofDap with the remaining two
variable parameters, i.e. inner diameterDin and inner number
of elementsMin, in the intervalsMin ∈ {1, 2, . . . ,M −1} and
Din ∈ {[1, 2, . . . , 59]λ |Din < Dap}. The interval boundaries
for the parameter sweep are chosen to be comparable to
existing literature, e.g. as in [61].
Subsequently, the corresponding PSF for each array geom-

etry is formed from which the performance metrics, i.e.
MLW6 and MSLL, are automatically extracted. We use the
MSLL as it reflects the worst-case metric in the formation
of side lobe artifacts. In order to consider the side lobes that
are created by an off-center point-source located within the
full-hemisphere field-of-view as well, we evaluate the PSF
within Ruv =

√
u2 + v2 ≤ 2 instead of ≤ 1. For clear com-

parison, we select and show only the optimum arrays with
the lowest MSLL per MLW6 of each approach. Here, we do
not consider two-scale arrays with an main lobe base level
above −9 dB. Otherwise, the comparison would be clearly in
favor of two-scale arrays with a narrowMLW6 but poor sepa-
ration contrast for closely spaced sources (Section II-D). The
MLW6 andMSLL of the selected arrays of all approaches are
then compared (Fig. 7). First, we conside the array geometries
using 64 elements.

FIGURE 6. Comparison of example geometries of the design
methods used for the benchmark, i.e. the classic sunflower
array (a1), different spatial density tapering modifications based
on a fixed Blackman window (a2) [25], [48] and the approach of
Sarradj [61] using a parametric (H) density window function (b) ,
as well as the two-scale method proposed in this article (a3).
The SAR method allows a flexible modification by varying the H
parameter, e.g. for peripheral tapering (b3). The density window
functions (c) show the density taper relative to the non-tapered
classic sunflower case and emphasize the differences and
similarities of the methods.

The classic sunflower arrays provide the reference baseline
for the comparison. Their characteristic MSLL plateaus at
approximately −8.8 dB and −16.5 dB including their steep
transition are clearly noticeable, similar as in (Fig. 1).

The Blackman window density tapering approach has,
to some extent, a lower MSLL for the same MLW6, partic-
ularly between 14◦ and 21◦, where a MSLL improvement
from −8.8 dB down to −11.5 dB is observed. In addition, the
MSLL can be further reduced below the lower plateau of the
classic sunflower approach for MLWs wider than 32◦.
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FIGURE 7. Benchmark of the four design methods showing the
resulting one-way PSF quality metrics of the optimum arrays of
each approach with a fixed number of elements (64 (a) and
256 (b)) and varying design parameters. Sources located
off-center in the entire hemisphere (field-of-view of ±90◦) are
considered for MSLL evaluation. The optimum 64-element
arrays of the two-scale method include five different types of
PSF zone combinations (I to V), all of which feature improved or
similar MLW and MSLL compared to the other approaches.
Similar results are obtained for 256-element arrays, although
the two-scale approach provides no further MSLL improvement
for main lobe widths wider than 15◦.

The SAR arrays generally outperform the classic sunflower
and Blackman window method as expected, since they are a
subset of the SAR geometries. The variation of the H param-
eter enables a more flexible balancing between MLW and
MSLL, e.g. with peripheral density tapering. This way, the
performance gaps of the Blackman approach are overcome.

Finally, the two-scale array design provides the low-
est MSLLs for most MLWs compared to the previous
approaches, although the MSLLs for rather narrow or wide
MLWs (e.g. < 7◦ and > 31◦) are similar to the SAR den-
sity tapering method. In general, similar results are obtained
for the 256-element array geometries, where the classic
sunflower method shows two distinct MSLL plateaus, the
SAR technique outperforms the Blackman approach, and the
two-scale geometries provide lower or similar MSLL per
MLW compared to the SAR method. However, for wide
MLWs above 15◦, the two-scale approach reaches a plateau
and stops to improve the MSLL at approximately−27 dB,
whereas it can be further lowered by the Blackman and SAR
technique.

Clearly, there are specific PSF zone combinations that lead
to particularly effective improvements, while others perform
only similarly or worse compared to previous density tapering
approaches. For example, one of the greatest improvements
for the 64-element geometries occurs for an MLW of 14◦,
where the MSLL of the two-scale approach (−13.4 dB) is
significantly lower than for the classic sunflower (−8.8 dB)
or SAR (−11.1 dB) method. In fact, this particular two-scale
array utilizes the PSF zone combination (Type III) analyzed
in Section II-D. Overall, five different types (I to V) of
advantageous PSF zone combinations are observed in the set
of optimum 64-element two-scale arrays, which are examined
next.

B. OPTIMUM TWO-SCALE ARRAY COMBINATION TYPES
The first type [Fig. 8(I)], consists of a large-aperture outer
sub-array which includes most of the available elements, and,
therefore, predominantly determines the PSF. In contrast, the
contribution of the inner sparser sub-array is only supportive
by adding to the relative main lobe level and by positioning
its first secondary lobe (SL) minimum close to the first high
side lobe of the outer sub-array.

Type two [Fig. 8(II)], features a more balanced distribu-
tion of the inner and outer number of elements, although
the latter is still dominant. Most importantly, the inner and
outer aperture diameters Din and Dap differ only slightly.
This way, a denser outer ring sub-array is formed filled by
a sparser inner sub-array. As a result, both MLWs are similar
to each other and accumulate without significant widening.
The low SLZ of the sparse inner sub-array is positioned
near the highest side lobes of the outer array, equalizing the
overall side lobe level. In general, this type is similar to the
peripheral density tapering of the SAR approach, e.g. for
H = −2 [Fig. 6(b3)].

The third type [Fig. 8(III)] is the basis of the original
idea for the two-scale array design, outlined in the previous
sections. Here, the distribution of the number of elements is
balanced as well, with the inner sub-array being denser and
more populated. Basically, the densities of the inner and outer
sub-arrays are inverted compared to type II, resulting in a
different PSF zone combination, as depicted in Section II-D.
The MSLL is significantly reduced compared to the other
approaches given the sameMLW6. Still, there is the drawback
of reduced contrast between closely spaced sources. The opti-
mum 256-element two-scale array geometries, which provide
improved results compared to the previous approaches, con-
sist exclusively of this type III.

In type four [Fig. 8(IV)], the PSF is primarily determined
by the inner denser sub-array, while few outer sparse elements
contribute only as support for balancing out the side lobe
level, forming the counterpart to type I.

Finally, in type five [Fig. 8(V)], the sub-arrays differ only
slightly in spatial density and therefore resemble the classic
sunflower array more closely compared to the previous types.
Nevertheless, even the small differences cause the side lobe
minima and maxima to balance each other out, resulting in a
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FIGURE 8. Five different types of advantageous sub-array combinations observed in the set of optimum two-scale arrays (Fig. 7).
Type I and IV feature either a dominant outer or inner sub-array, whereas the opposite sub-array is only supportive. In II and III, the
ratio between inner and outer elements is more balanced and the sub-arrays are of different spatial densities for exploiting the PSF
zone combinations. In particular, type III shows significant improvements compared to other design methods as examined in the
previous sections. The sub-arrays of type V have only minor differences in spatial densities, which nevertheless result in an
effective positioning of the side lobe minima and maxima for a more balanced overall side lobe level.
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significantly lower MSLL compared to the classic sunflower
approach. However, compared to the previous density taper-
ing approaches, type V provides only similar or worse results,
particularly for the 256-element arrays.

In summary, considering the progression from wide to
narrow MLWs, the optimum two-scale arrays feature an
increasing overall aperture, as well as a shift from type I to
V (M = 64) or type III to V (M = 256), respectively. For
all optimum combinations, the corresponding sub-array main
lobes accumulate to a higher level, whereas the overall side
lobe level becomes more balanced compared to the classic
sunflower approach. The most effective improvements over
the existing density tapering approaches are achieved, where
a dense inner sub-array is combined with a sparse outer sub-
array, with a balanced number of inner and outer elements,
as in type III. In contrast, for rather small apertures, where
both sub-arrays are dense and grating lobe zones do not form
(type V), the two-scale PSF zone combination is less effec-
tive. In this case, although significant improvements over the
classic sunflower array are achieved, the two-scale results can
be similar or even inferior compared to the Blackman and
SAR method.

C. BENCHMARK WITH EXTENDED ELEMENT
APERTURES
In the preceding analysis, unidirectional point elements
with infinitely small aperture sizes are assumed to provide
a generic technology-independent comparison. In order to
highlight the impact of extended element apertures, in this
section, we compare the array design methods, assuming
circular elements with a diameter of Dap,el = λ/2, as an
example. Here, we consider two resulting effects. First,
the minimum IES is limited to d = Dap,el, such that
non-realizable array geometries featuring overlapping ele-
ments are discarded. Second, the element directivity itself
leads to a degradation of the MSLL, when spatial filtering
for peripheral directions. Regarding the latter, we consider
spatial filtering and source positioning in the entire hemi-
sphere, i.e. within a field of view of±90◦, as in the preceding
comparison (Fig. 7). The element directivity is modeled as
described in section II-A. The design parameter space inves-
tigated is identical as described in section III-A and two
different numbers of elements are observed, i.e.M = 64 and
M = 256.
As expected, the resulting MLWs show an upper limit

because the array apertures can not become arbitrarily small
due to the extended elements (Fig. 9). The worst-caseMSLLs
of the optimum array geometries are approximately 3 dB
higher compared to the analysis based on point elements due
to MSLL degradation resulting from the element directivity
and the considered field-of-view. Furthermore, an increase
in MLW partly leads to a degradation of the MSLL, which
is shown as an example for the classic spiral and Blackman
geometries. The reason is that for these non-optimum array
geometries, the highest side lobes are located near the cen-
ter, as the main lobe is steered to the periphery and, thus,

FIGURE 9. Benchmark of the four design methods for extended
circular element apertures with a diameter of 0.5λ. The
comparison considers spatial filtering and source positioning
in the entire hemisphere (field-of-view of ±90◦). As the
minimum realizable array aperture is constrained by the
element sizes, the MLWs show an upper limit. Due to the
element directivities, there are non-optimum array geometries,
where the MSLL worsens with increasing MLW, which are
included as an example for the classic and Blackman method.

attenuated by the element directivity. All in all, the com-
parison highlights that the SAR and two-scale geometries
perform comparably well when assuming extended element
apertures, whereas the latter design method provides the low-
est MSLL per MLW, as in the comparison assuming point
elements (Fig. 7). The optimum two-scale array geometries
observed correspond to the types II and III, but feature
an overall larger total aperture compared to the example
in (Fig.8), so that the IES of the outer or inner denser
sub-arrays are consistently greater than 0.5 λ.

D. SCOPE AND LIMITATIONS OF THE STUDY
In this final section of the theoretical study, we high-
light the scope and limitations of the analysis and results.
As explained in Section II, the analysis is performed
using a generic application-independent model, assuming
far-field and narrow-band conditions, i.e. continuous wave
or temporally long bursts, such that the comparison is
based on worst-case assumptions. However, in the near-
field case, the results obtained with focused beams may
differ from the far-field results provided, depending on the
application-specific focal distance and region of interest.
Further deviations from the comparison results are likely to
occur, if high-bandwidth transducer technologies and tem-
porally short pulses are involved, that enable to exploit
true-time-delay and broad-band beamforming methods for
reducing side lobe levels. In addition, even larger element
sizes than the example size considered can further constrain
the realizable array geometries, so that the outcomes of the
comparison may also vary for this reason. Consequently, the
results presented are not directly valid for all applications,
particularly if the base conditions in terms of element size
and shape, bandwidth, focal distance and region of interest
differ significantly from the model assumptions used.

Apart from the limitations due to the generic model,
we emphasize that further modifications and optimization
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FIGURE 10. Two-scale array prototype for in-air imaging
consisting of one 32.8-kHz piezoelectric ultrasonic transducer
and 64 MEMS microphones, divided into a 40-element inner and
24-element outer sub-array. The microphones are approximately
unidirectional and broad-band, whereas the transducer is
highly narrow-band (4.3%).

procedures can certainly lead to improved solutions com-
pared to those investigated within the parameter space of
the study. For example, adding more than two sub-arrays
with different element densities can potentially provide
further improvements at the expense of a more compli-
cated array design including more parameters. Moreover, the
well-performing deterministic two-scale solutions identified
can be used as initial seeds for further stochastic optimiza-
tion methods. Nevertheless, these improvement strategies are
beyond the scope of this article and are worthy ideas for future
work.

IV. REAL-WORLD EXPERIMENTS
In this section, we validate the two-scale array design strategy
with a real-world prototype and two experiments in order to
investigate the PSF and the resulting angular resolution.

For this, we created an air-coupled two-scale array based
on type III, consisting of 64 small MEMS microphones
(Knowles SPH0641LU4H-1) featuring a digital interface.
In addition, we utilize one piezoelectric bending-plate trans-
ducer (ProWave 328ST160) with a diameter of 16mm and
a relatively low resonance frequency of 32.8 kHz to avoid
strong attenuation by the medium air (Fig. 10). The frequency
response of the transducer is narrow-band (1.4 kHz, 4.3%),
so that a temporally long excitation signal (40 cycles, 70Vpp,
bipolar square-wave) is required, which, however, enables
the pulse to reach a relatively high sound pressure level of
123 dB at a distance of 30 cm. Therefore, the narrow-band
assumption holds for this prototype and the experiments.
The microphones are broadband (10Hz to 80 kHz), compact

FIGURE 11. Measurement setup in the anechoic chamber (a) for
investigating the PSF in the far-field (2m). The target used is a
hollow steel sphere with a diameter of 10 cm. The PSF
measured (b) and its radial view (c) are in good agreement with
the corresponding simulation, highlighting the narrow main
lobe peak and balanced side lobe level.

(3.5 × 2.6 × 1mm3) and approximately unidirectional due
to the small aperture diameter of 0.325mm (0.03 λ). The
ports of the microphones are located on the bottom side and
are guided through the PCB with a thickness of 1.6mm by
using vias with a diameter of 0.6mm. The microphones each
provide a 4-MHz 1-bit PDM signal, all of which are converted
into 125-KHz 16-bit signals by an FPGA (Intel MAX10)
using 64 sinc-3 filters. The system architecture is based on
the design described in detail in our previous work [3]. The
type III two-scale array geometry is composed of the inner
denser sub-array with 40 elements and an aperture diameter
of 55mm, while the outer sub-array consists of 24 elements
and spans a total aperture of 190mm. The implementation of
signal pre-processing, narrow-band receive beamforming and
image formation is described in detail in [65].

The experiments are conducted in an anechoic chamber,
where the two-scale array is positioned in front of a linear
axis equipped with a movable slide. In order to measure the
PSF, we use a hollow steel sphere (�10 cm) as target, which
is mounted on a sound-absorbing fixture and positioned on
the slide at a distance of 2m, i.e. in the far-field, centered
to the array. The pulse is transmitted to the sphere, its echo
is received by all microphones and the PSF is formed at the
pulse maximum within the field-of-view Ruv =

√
u2 + v2 ≤

1 (Fig. 11). This measurement is repeated 32 times to obtain
the average value and the standard deviation. The latter is
consistently below 0.1 dB and is therefore excluded for clar-
ity. Furthermore, the PSF measured is compared to the ideal
simulation based on the model in (1).
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FIGURE 12. Measurement setup for investigating the angular
resolution (a) using two spheres. The spacing between the
spheres is gradually reduced and the separability of the two
reflections is evaluated in the ultrasound images (b)-(e). In the
horizontal sectional view (f), the closest separable spacing is
10 cm (5.7◦), as two distinct local maxima are formed.

The measured and simulated PSFs are in excellent agree-
ment, with themeasurement featuring a slightly higherMSLL
(−12.1 dB vs. −12.6 dB) and a wider MLW (8.05◦ vs. 7.47◦)
compared to the simulation. Overall, both, the balanced side
lobe level, as well as the distinctive shape of the main lobe
due to the combination of the two sub-arrays, are evident,
as expected.

In the next experiment, the achievable angular resolution
is investigated, comparable to the simulation in (Fig. 5). For
this, a horizontal mounting is positioned on the slide, onto
which two laterally adjacent hollow spheres (�5 cm) are
attached, whose spacing between each other can be variably
adjusted (Fig. 12). The sphere fixtures and the horizontal
mounting are covered with sound absorbers as well. The slide
is positioned at a fixed distance of 1m (far-field) and the spac-
ing between the spheres is symmetrically reduced from 20 cm
to 8 cm in steps of 2 cm. At each spacing, an image is formed
to evaluate the separability of the two sphere reflections. The

separability is achieved if the two sphere reflections form two
distinct local maxima in the image. As an example, four ultra-
sound images with different sphere spacings are provided,
as well as their horizontal sectional view at v = 0 (Fig. 12).

As the angular spacing between the spheres decreases,
the local minimum between the two reflections increases
in good agreement to the simulation (Fig.5). The MSLL is
between −10 dB (at 11.4◦) and −12.25 dB (at 4.6◦) for all
spacings considered. Due to the narrow main lobe peak, the
closest separable angular distance is 5.7◦, which corresponds
to a spacing of 10 cm between the spheres. In total, the
real-world experiments using the two-scale prototype created
confirm the results of the simulation and demonstrate that the
two-scale design provides a favorable trade-off between the
separation of closely spaced objects and a low MSLL.

V. CONCLUSION AND OUTLOOK
The two-scale sparse spiral array is based on a determin-
istic and flexible 4-parameter design method for improv-
ing the one-way PSF performance in terms of MLW and
MSLL compared to previous sunflower geometry modifica-
tion approaches, i.e. density tapering using window func-
tion. The improvements are achieved by exploiting the
sunflower-specific PSF structures of two nested sub-arrays
featuring two different spatial element densities which are
constant within each sub-array. This way, the PSF zone loca-
tions can be estimated prior to field simulation using the basic
array design parameters, enabling to narrow the search for
well-matched array configurations within pre-defined design
constraints. Due to the excellent one-way PSF characteris-
tics, the two-scale method proposed is particularly valuable
for imaging applications, where high frame rates are of
great importance, as well as for transmit- and receive-only
applications. Future work addresses the impact of addi-
tional density tapering on the two-scale sub-arrays, poten-
tially enabling further improvement. In addition, we evaluate
whether the two-scale array achieves favorable results in
the two-way beamforming mode as well, e.g. by using the
inner and outer sub-arrays separately for transmitting and
receiving. Moreover, we extend the prototype in terms of
transducer technology and firing schemes in synergy with the
two-scale design strategy to achieve further improvements
for high-frame rate imaging in air and conduct additional
experimental evaluations.
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