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ABSTRACT Formation anisotropic constants play an important role in the determination of formation
stresses, fractures, lithology, and mechanical properties. These formation characteristics provide critical
inputs to wellbore stability during drilling and optimal completion designs of hydrocarbon bearing reservoirs.
However, there are no available techniques for the estimation of a sub-set of formation anisotropic constants
using Logging-While-Drilling (LWD) sonic data. Inversion of LWD-sonic data for anisotropic constants is
rather challenging because of a strong coupling between the collar-flexural and formation-flexural modes
propagating along the borehole. The influence of a strong coupling between the collar and formation flexural
modes on LWD-sonic data are significantly different in fast and slow formations. Consequently, frequency
dependent sensitivities of the measured collar and formation flexural dispersions to changes in the formation
anisotropic constants are significantly different as well. New inversion algorithms provide estimates of a
sub-set of Transversely-Isotropic (TI)-constants from measured collar and formation flexural dispersions
in both fast and slow formations. Computational results confirm validity of the proposed algorithms using
synthetic dispersion data obtained in a fast Bakken shale and slow Austin chalk TI-formations in the presence
of a drill-collar to account for the LWD sonic tool in a liquid-filled borehole.

INDEX TERMS Formation anisotropic constants from Logging-While-Drilling (LWD) sonic tools, inver-
sion of drill-collar and formation-flexural mode dispersions for formation TI-constants, geophysical and
geomechanical measurements, sonic well logging.

I. INTRODUCTION

SONIC logging has a lot more potential to provide several
geophysical, geomechanical, and petrophysical forma-

tion properties than is generally obtained in the oil and
gas industry [1], [2], [3], [4]. Many of these formation
properties are derived from formation anisotropic constants
associated with formations in the presence of either stresses,
drilling-induced and natural fractures, microlayerings or thin
laminations [5], [6], [7], [8], [9], [10]. However, to esti-
mate formation anisotropic parameters requires inversion
algorithms that account for the presence of Logging-While-
Drilling (LWD) or wireline sonic tools in the borehole and a
detailed understanding of the rock lithology and facies that
has been logged. Estimates of anisotropic constants using
LWD sonic tool data has the potential to obviate a need
to run wireline sonic tool that would reduce the cost of
completing the well for hydrocarbon production. Therefore,
it is desirable to have a reliable LWD tool model to account

for any interactions between the tool and formation modes
propagating along the borehole. In addition, model-based
inversions of borehole guided mode dispersions are needed
to estimate formation anisotropic constants for both fast and
slow formations.

Borehole guided-mode propagation characteristics in a
concentrically placed drill-collar in fast and slow formations
are significantly different. For example, refracted shear head-
waves are not detected by hydrophone receivers placed in the
LWD sonic tool in slow formations. Therefore, estimation
of formation shear slownesses is rather challenging, and is,
generally, not attempted using a dipole transmitter in a LWD
sonic tool. This has led to an effort to log quadrupole modes
that are largely independent of the drill-collar modes and
can be processed to yield formation shear slownesses at low
frequencies. Nevertheless, an array of hydrophone receivers
recordwaveforms that can be processed to identify a bandlim-
ited collar-flexural and formation-flexural dispersive modes.
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Both the collar-flexural and formation-flexural dispersions
can be inverted with the help of a model- based algorithm to
yield accurate estimates of formation shear slownesses and a
subset of formation TI-constants.

Historically, Logging-While-Drilling (LWD) sonic tools
provide estimates of formation compressional velocity from
the measured transit times of compressional headwaves.
Recent introduction of dipole and quadrupole transmit-
ters in the logging-while-drilling (LWD) sonic tools enable
estimates of shear velocity in both fast and slow for-
mations. A generic LWD sonic tool consists of a thick
drill collar placed in a liquid-filled borehole surrounded
by anisotropic formations. The presence of a thick drill
collar introduces a strong collar mode that interferes with
the formation mode propagating along the borehole axis.
A strong coupling between these propagating modes makes
conventional processing of recorded waveforms rather chal-
lenging. A conventional processing of sonic waveforms is
based on frequency-filtering or time-windowing of an array
of recorded waveforms that often lead to a certain degree
of uncertainty in the shear slowness estimates unless they
are verified by estimates from a wireline sonic tool [11].
In addition, the dominant collar mode in the recorded wave-
forms in slow formations deters estimates of formation shear
slownesses using conventional processing techniques. These
observations have led to the introduction of a quadrupole
transmitter that generates formation quadrupole mode. The
formation quadrupole mode is essentially not affected by
the presence of drill collar over a limited bandwidth and
low-frequency part of quadrupole dispersion is rather close
to the formation shear slowness [14], [15], [16]. Conse-
quently, quadrupole shear loggingwas introduced in the LWD
sonic tools as a way to avoid processing of dipole flexural
waveforms, because of a strong coupling with the dominant
collar-flexural mode [14], [15], [16], [17], [18], [19]. All
existing processing techniques to estimate formation shear
slownesses fromLWD sonic waveforms are based on filtering
out collar arrivals in fast formations and then using a con-
ventional Slowness-Time-Coherence STC processing of an
array of recorded waveforms [11]. However, none of these
processing algorithms can provide estimates of a subset of
formation TI-constants.

Conventional processing of dipole flexural waveforms
from a LWD sonic tool is rather challenging, because of
a strong coupling of the collar-based and formation-based
modes. This article describes a novel processing workflow
to estimate formation slownesses in both fast and slow for-
mations. This workflow is based on inverting the measured
collar-based and formation-based dispersions for formation
elastic constants that can be readily transformed into forma-
tion compressional and shear slownesses. These processing
algorithms account for the presence of drill collar and
there is no need to suppress or filter any of these modes
propagating along the borehole. Guidedmode dispersion sen-
sitivities to formation TI-constants can be calculated from an

integral equation that relates fractional changes in formation
TI-constants to corresponding changes in the dispersivemode
velocities. A set of these equations at multiple frequencies
(or wavenumbers) can then be inverted to estimate a subset
of formation TI-constants.

Most of the applications of sonic data are based on an
appropriate interpretation of anisotropic constants in con-
junction with the logged formation lithology. For instance,
relativemagnitudes of shear moduli in stress-dependent sand-
stones and carbonates can be used to estimate differences in
the maximum and minimum horizontal stresses. They can
also be used to estimate orientations of aligned fractures
or laminates in the formation with respect to the borehole
axis [6], [7], [9], [10].

Estimates of compressional and shear velocities in
anisotropic formations require a proper model-based inter-
pretation that must account for the presence of thick drill
collar in a liquid-filled borehole. The presence of a drill collar
causes significant changes in elastic wave propagation char-
acteristics that must be accounted for a reliable interpretation
of compressional and shear wave velocities as well borehole
guided-mode dispersions [26], [28].

Sonic data acquired while drilling can be used to estimate
formation anisotropy that provide mechanical characteriza-
tion of the drilled rock even before wireline sonic logging is
performed. Estimated formation anisotropy can be indicators
of the intrinsic anisotropy caused by microlayerings in shale
together with stress- and fracture-induced anisotropies of the
logged depth interval. Interpretation of formation anisotropy
is critically dependent on the rock lithology and image logs
that help to identify the presence of aligned fractures and
thin beddings. Rock lithology helps to distinguish between
microlayerings induced intrinsic shale and stress-induced
anisotropy in sandstones and carbonates as a major source
of observed anisotropy in the sonic data. Relative magni-
tudes of formation anisotropic constants are routinely used
to classify anisotropy as a Transversely-Isotropic (TI) for a
shale interval, or orthorhombic anisotropy associated with
formations subject to triaxial stresses. While these tasks have
been performed with open-hole logging using sonic data
from wireline tools, it has not been possible to obtain a
similar set of formation anisotropic constants using sonic
data acquired during drilling. However, recently developed
Logging-While-Drilling (LWD) sonic tools have the capabil-
ity of providing estimates of formation anisotropic constants
similar to those obtained with wireline sonic tools [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. Processing and interpretation of data acquired by wire-
line sonic tools are relatively easier in the absence of any
tool-based guided modes in the acquired data. In contrast,
LWD sonic tools consist of a thick drilling collar that acts
like a strong waveguide for elastic waves propagating along
a liquid-filled borehole.

This article describes novel algorithms to invert mea-
sured collar-flexural and formation-flexural dispersions for a
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subset of formation TI-constants that exhibits adequate dis-
persion sensitivity to these constants. The proposed algorithm
accounts for the presence of a drill-collar in a LWD sonic
tool. These techniques are based on model-based inversions
of measured collar-flexural and formation-flexural dispersive
modes generated by a dipole transmitter in a borehole sur-
rounded by a fast or slow TI-formation.

II. METHODOLOGY
A. FORMATION ANISOTROPIC CONSTANTS FROM
BOREHOLE GUIDED-MODE DISPERSIONS
An array of recorded waveforms at multiple receivers can be
processed by a modified matrix pencil algorithm to isolate
both non-dispersive and dispersive arrivals in the wave-
train [25]. This is a standard processing technique that helps
to identify both the drill-collar and formation dominated
dispersions from recorded waveforms generated by a dipole
source in a LWD sonic tool. Both drill-collar and forma-
tion dispersions exhibit varying degrees of sensitivities to
changes in the five TI-constants of the surrounding formation.
Fractional changes in the borehole guided mode dispersions
caused by changes in the formation TI-constants and mass
density from a chosen Equivalent-Isotropic and Homoge-
neous (EIH) formation can be described by the following
integral equation [8], [30]

1Vk
V n
k

=
1ωk

ωn
k

=

∫
v dv1C lmpqunl,mu

n
p,qdv

2
(
ωn
k

)2 ∫
v dvρou

n
qunqdv

−

∫
v dv1ρunqu

n
qdv

2
∫
v dvρou

n
qunqdv

, (1)

where 1Vk /V n
k and 1ωk/ω

n
k , respectively, represent frac-

tional changes in the phase velocity and angular frequency
at a given wavenumber k; the superscript n denotes the
n-th mode of the liquid-filled borehole in the presence of a
concentrically placed drill collar; 1Clmpq and 1ρ, respec-
tively, denote differences in the elastic constants and mass
density of the surrounding formation from those assumed
in the reference EIH formation. In the sequel, we suppress
the superscript n for brevity. The effective isotropic reference
state can be described by the two Lamé constants λ and µ;
and mass density ρo. The eigensolution for a chosen borehole
mode n is denoted by the displacement unq, and must be
obtained in the presence of a concentrically placed thick drill
collar in a liquid-filled borehole [28]. We have used Cartesian
tensor notation for the elastic constants, a convention that
a comma followed by an index q implies partial derivative
with respect to xq, and a summation convention for repeated
indices. The Cartesian tensor indices l, m, p, and q take
values 1, 2, and 3. Since the measured mass density is used in
the chosen EIH reference state, there is no contribution from
the second term in Eq. (1).

When specialized to a TI-anisotropy (C11 = C22, C44 =

C55, C12 = C11 − 2C66, C13 = C23) with its symmetry axis
parallel to the vertical X3-axis, Eq. (1) can be reduced to the

following form [6], [7], [8]

1Vi
Vi

= S i111C11 + S i331C33 + S i551C55

+ S i661C66 + S i131C13, (2)

where

Stw (ki) =

∫
v EtEwdv

2{ω(ki)}2
∫
v ρouquqdv

, (3)

indices t and w denote the compressed Voigt’s notation and
take on values 1, 2, 3, . . . 6, and the strain Et is defined by

Et
def
= Epq =

1
2

(
up,q + uq,p

)
, (4)

and up denotes the displacement associated with the eigenso-
lution for either a collar or formation mode of a liquid-filled
borehole in the presence of a drill collar. Note that the
indices p and q in (4) denote the Cartesian tensor indices
and take values 1, 2, and 3. These Cartesian tensor indices
are replaced by Voigt’s compressed notation following the
convention: 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 →

5, and 12 → 6. The eigensolution up is calculated for a cho-
sen equivalent-isotropic and homogeneous (EIH) formation
defined by the measured formation bulk density, compres-
sional and shear velocities. These plane wave velocities are
then transformed into the two Lamé constants λ andµ, which
are the isotropic elastic constants in the chosen reference
state. The five unknowns 1C11, 1C33, 1C55, 1C66, and
1C13 to be solved for in (2) are related to the five TI-constants
at the logging depth as shown below

1C11 = C11 −
(
λ + 2µ

)
;

1C33 = C33 −
(
λ + 2µ

)
;

1C55 = C55 − µ;

1C66 = C66 − µ; and

1C13 = C13 − λ . (5)

Since sensitivities of the measured guided-mode dispersion
to the TI-constants C11 and C13 are relatively smaller than
those for the other three TI-constants, it is necessary to
construct difference equations at more than the minimum
5 wavenumbers (or frequencies). A matrix representation of
these equations associated with the formation-flexural mode
can be expressed as

Af x = bf , (6)

where

x = [1C11, 1C33, 1C55, 1C66, 1C13]T = Ctw − xref ,

(7)

bf =

[
1V1
V1

,
1V2
V2

,
1V3
V3

, . . .
1Vi
Vi

]T
, (8)

Af =

 S111 · · · S113
...

. . .
...

S i11 · · · S i13

, (9)
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Cpq represents the formation five TI-constants, xref denotes
the isotropic reference TI-constants expressed in terms of
the Lamé constants λ and µ, the superscript T denotes
transpose of the row vector x containing 5 unknown
TI-constants, and the input data bf at wavenumbers
k1, k2, k3, . . . ki (i > 5). The sensitivity matrix associated
with the formation flexural dispersion is defined by Af (i, 5),
where the number of rows denoted by i must be greater
than 5.

Likewise, another set of equations associated with the
collar flexural dispersion takes the form

Acx = bc, (10)

where the sensitivity matrix associated with the collar mode
is defined by Ac (j, 5), and the index j denotes the number of
input data bc at wavenumbers k1, k2, k3, . . . j (j > 5). Associ-
ated with the collar flexural dispersion.

B. JOINT INVERSION OF FORMATION-FLEXURAL AND
COLLAR-FLEXURAL DISPERSIONS
Sonic logging-while-drilling is far more challenging than
wireline logging where sonic slownesses (inverse of veloc-
ity) are measured after the drill collar has been taken out
of the borehole. Sonic logging-while-drilling measurements
are made in the presence of a drill collar (in the form
of a thick steel pipe) that provides an additional path for
the acoustic energy propagating from the transmitter to
an array of hydrophone receivers. The goal of estimat-
ing formation compressional and shear slownesses becomes
rather challenging because of a strong interference between
the dominant collar and weak formation flexural modes
in a fast formation as depicted in Fig. 2. Therefore, it is
preferable to estimate Transversely-Isotropic (TI) formation
anisotropic constants through joint inversion of the collar
and formation dominated flexural dispersions, which helps to
improve the inversion accuracy and also reduce uncertainty.
For joint inversion, we introduce two inversion algorithms
for comparison: (a) additive regularized Gauss-Newton
inversion method with constraints; and (b) multiplica-
tive regularized Gauss-Newton inversion method with
constraints.

Generally, the sensitivity matrices Af (and Ac) are
ill-conditioned because of widely varying sensitivities to
different TI-constants. Under these circumstances, it is
preferable to solve for the unknown vector x in a least-square
sense by minimizing the norm

∥∥Af x− bf
∥∥2
2. This cost func-

tion can be transformed to minimize
∥∥∥Af x̃− b̃f

∥∥∥2
2
,

where

x̃ = Cpq, and b̃f = b+ Af xref . (11)

Therefore, the modified cost function can be expressed as

f (x̃) =

(
Af x̃− b̃f

)T (
Af x̃− b̃f

)
2

∥∥∥b̃f ∥∥∥2
2

+ γ 2

(
x̃− xref

)T (
x̃− xref

)
2

∥∥xref ∥∥22 , (12)

where the second term is an additive regularization and γ is
the regularization coefficient [31].

Since the sensitivity matrix Af is generally ill-conditioned,
it is preferable to introduce additional constraints on the
vector x̃ to improve the accuracy of the inversion. To this
end, we introduce a transformation pair for x̃ and m as
follows

x̃ = x̃min +
(x̃max − x̃min)

m2 + 1
m2, (13)

m =

(
x̃− x̃min
x̃max − x̃

)1/2

, (14)

where x̃min and x̃max are the lower and upper bounds for x,
respectively. These transformations imply that

x̃ → x̃min, when m → 0, and

x̃ → x̃max, when m → ∓∞. (15)

The cost function can now be written in terms of m as

f (m) =

(
Af x̃− b̃f

)T (
Af x̃− b̃f

)
2

∥∥∥b̃f ∥∥∥2
2

+ γ 2

(
m−mref

)T (
m−mref

)
2

∥∥mref
∥∥2
2

, (16)

where mref can be calculated in terms of xref based on
Eq. (14). Take derivative of cost function f (m) with respect
to m

∂f (m)

∂m
=

(
Af dx̃dm

)T (
Af x̃− b̃f

)
∥∥∥b̃f ∥∥∥2

2

+ γ 2

(
m−mref

)∥∥mref
∥∥2
2

,

(17)

which is a nonlinear equation in m. Based on Gauss-Newton
method, we can iteratively update the solution for m as
follows

(
Af dx̃dm

)T (
Af dx̃dm

)
∥∥∥b̃f ∥∥∥2

2

+ γ 2 I∥∥mref
∥∥2
2

 1m

= −


(
Af dx̃dm

)T (
Af x̃− b̃f

)
∥∥∥b̃f ∥∥∥2

2

+ γ 2

(
m−mref

)∥∥mref
∥∥2
2

 ,

(18)

where 1m = mn+1 −mn, and I denotes a unit matrix. Once
m is obtained through iterations, x̃ can be calculated from
Eq. (13). The aforementioned workflow can be also applied
to invert either collar-flexural or formation-flexural disper-
sions for a subset of formation TI-anisotropic constants. This
has been demonstrated using synthetic collar-flexural and
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formation-flexural dispersions that are numerically exact and
do not have any errors in them. This illustration serves as a
validation of the proposed inversion algorithm with a proper
choice of regularization coefficient γ as defined in Eq. (12).
Simultaneous inversion of the collar-flexural and forma-

tion flexural dispersions can be carried out using either (a)
Additive, or (b) Multiplicative regularized Gauss-Newton
inversion algorithm with prescribed constraints on the
inverted anisotropic constants [31], [32], [33]. In addition,
there are certain processing parameters, such as regulariza-
tion coefficients must be optimized using synthetic data for a
given class of formation anisotropy.

C. ADDITIVE REGULARIZED GAUSS-NEWTON
ALGORITHM
A joint inversion of the collar-flexural and formation-flexural
dispersions using an additive regularized Gauss-Newton
algorithm is based on minimizing a cost function described
by the following equation

f (m) =

(
Af x̃− b̃f

)T
WT

f W f

(
Af x̃− b̃f

)
2

∥∥∥b̃f ∥∥∥2
2

+

(
Acx̃− b̃c

)T
WT

cW c

(
Acx̃− b̃c

)
2

∥∥∥b̃c∥∥∥2
2

+ γ 2

(
m−mref

)T (
m−mref

)
2

∥∥mref
∥∥2
2

, (19)

where x̃ and m are related to each other through transfor-
mation pairs (13) and (14). Af and Ac are the sensitivity
matrices of the formation and collar flexural modes.W f and
W c, respectively, are the weighting matrices associated with
the formation and collar flexural modes. The third term is for
regularization, and γ is the regularization coefficient. Note
that the weighting matrices W f and W c should be chosen
carefully to balance relative contributions between the flexu-
ral and collar modes to the formation anisotropic constants.

Take derivative of the cost function f (m) with respect tom

∂f (m)
∂m

=

(
Af dx̃dm

)T
WT

f W f

(
Af x̃− b̃f

)
∥∥∥b̃f ∥∥∥2

2

+

(
Ac dx̃dm

)T
WT

cW c

(
Acx̃− b̃c

)
∥∥∥b̃c∥∥∥2

2

+ γ 2

(
m−mref

)∥∥mref
∥∥2
2

, (20)

which is a nonlinear equation inm. To solve form iteratively
using the Gauss-Newton method, we can updatem as follows

(
Af dx̃dm

)T
WT

f W f

(
Af dx̃dm

)
∥∥∥b̃f ∥∥∥2

2

+

(
Ac dx̃dm

)T
WT

cW c

(
Ac dx̃dm

)
∥∥∥b̃c∥∥∥2

2

+ γ 2 I∥∥mref
∥∥2
2

 1m = −

(
∂f (m)

∂m

)
, (21)

where1m = mn+1−mn. Oncem is calculated from Eq. (21),
the inverted x̃ can be calculated from Eq. (13).

Note that following a conventional Gauss-Newton mini-
mization approach, the second derivative of x̃ with respect
m is ignored in (18) and (21).

D. MULTIPLICATIVE REGULARIZED GAUSS-NEWTON
ALGORITHM
The cost function for amultiplicative regularizedGauss-Newton
algorithm can be written as

f (m) =
1
2
f1 (m) f2 (m) f3 (m) , (22)

where

f1 (m) =

(
Af x̃− b̃f

)T
WT

f W f

(
Af x̃− b̃f

)
, (23)

f2 (m) =

(
Acx̃− b̃c

)T
WT

cW c

(
Acx̃− b̃c

)
, (24)

f3 (m) = ηn

((
m−mref

)T (
m−mref

)
+ δ2

)
, (25)

ηn =
(
mn −mref

)T (
mn −mref

)
+ δ2. (26)

f1 (m) and f2 (m), respectively, are the cost functions associ-
ated with the formation-flexural and collar-flexural modes.
f3 (m) is the regularization term. Af and Ac are the sensi-
tivity matrices for the formation-flexural and collar-flexural
dispersions, respectively. W f and W c are the corresponding
weighting matrices. x̃ andm are related to each other through
the transformation pairs in Eqs. (13) and (14). δ is the regu-
larization coefficient and ηn is the normalization coefficient
at n-th iteration. We choose the weighting matrix W c of the
collar-flexural dispersion to be an identity matrix; and the
weighting matrixW f of the formation-flexural dispersion as
∥Ac∥/∥Af ∥ times an identitymatrix. This choice ofweighting
matrices provides balanced contributions from the collar and
formation flexural dispersions to the measured input disper-
sion data.

The derivative of cost function f (m) with respect tom can
be expressed as

g (m) =
∂f (m)
∂m

= g0 + f1(m)f2(m)ηn
(
m−mref

)
, (27)

where

g0 = f2 (m)
(
JTf W

T
f W f

(
Af x̃− b̃f

))
+ f1 (m)

(
JTcW

T
cW c

(
Acx̃− b̃c

))
. (28)
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Therefore, the Hessian matrix H(m) takes the form

H (m) =
∂g (m)

∂m
≈ f2 (m) JTf W

T
f W f J f + f1 (m) JTcW

T
cW cJc

+ f1 (m) f2 (m) ηnI + 2ηn
(
m−mref

)T g0I, (29)

where J f and Jc are the Jacobian matrices for the
formation-flexural and collar-flexural dispersions, respec-
tively. They are described as shown below

J f = Af
dx̃
dm

, Jc = Ac
dx̃
dm

. (30)

Based on a conventional Gauss-Newton iterative method,
we can iteratively update m as follows

H (m) 1m = −g (m) , (31)

where1m = mn+1−mn. Oncem is calculated from Eq. (31),
the inverted x̃ can be calculated from Eq. (13).

E. SELECTION OF REGULARIZATION COEFFICIENTS
Generally, the collar-flexural and formation flexural disper-
sion sensitivity matrices are ill-conditioned and the measured
dispersions from the field data also have some errors in them.
Under these circumstances, constrained inversion algorithms
with properly chosen regularization coefficients provide reli-
able estimates of a sub-set of TI-constants with adequate
sensitivities to measured dispersions.

Since the regularization coefficient depends on the degree
of ill-conditioning of the sensitivity matrices, it is suggested
to optimally select the reference EIH formation parameters
(by varying the reference shear velocity to within 1 to 5%
of the measured shear velocity) that results in the lowest
condition number of the sensitivity matrices Af and Ac. Next
we start with an initial estimate of regularization coefficient
as 0.25 that corresponds to an expected Gaussian noise of
about 2 to 3% in the input (synthetic) dispersion. Smaller
amounts of uncertainties in the input dispersion result in
smaller values of regularization constant. For example,
Gaussian noise level of about 0.5% results in an optimal
regularization constant of 0.05. Continue to iteratively reduce
the regularization coefficient to monitor the data misfit
in terms of Relative Residual Errors between the recon-
structed and input dispersions. Input dispersions are obtained
from a root-finding mode-search routine for a concentrically
placed drill collar in a liquid-filled borehole surrounded by a
TI-formation with vertical axis of symmetry.

Another approach would be to vary the regularization coef-
ficient on an empirical basis until the data misfit errors are
reduced to an acceptable value.

Once a regularization coefficient has been determined for
a given formation lithology, and expected amount of errors
in the input (or measured) dispersions, this regularization
coefficient can be fixed for other depths in the same lithology
interval.

In summary, the procedure to estimate formation
TI-anisotropy constants consists of the following steps:

1. Use the formation dipole shear velocity within 1 to 5%
from the low-frequency asymptote of borehole flexu-
ral dispersions together with the measured formation
compressional velocity and bulk density to generate a
reference dipole flexural dispersion for an assumed EIH
formation. Insofar as the formation bulk density as a
function of depth is obtained from a neutron-density
tool under in-situ conditions, there is no need to con-
sider density perturbations from a chosen EIH reference
state in (1).

2. Calculate wavenumber (or frequency) dependent sen-
sitivities of the borehole flexural dispersions in the
presence of a concentrically placed drill collar to the
formation five TI-constants using a volumetric integral
equation. The selection of shear velocity for the EIH
formation can be optimized to obtain a low condition
number of the flexural sensitivity matrix to facilitate
improved accuracy of the inversion algorithm.

3. Invert differences between the measured and reference
flexural dispersions over a chosen bandwidth for a sub-
set of TI-constants that exhibit adequate sensitivities to
measured dispersions.

4. Constrained inversion of flexural dispersions requires
optimal selection of processing parameters based on
synthetic data for a given class of formation anisotropy.
A proper selection of frequency band for the inver-
sion algorithm is an important input. The bandwidth
selection is based on two factors: First, the usable band-
widths are strongly dependent on the LWD tool design,
transmitter bandwidth, borehole mud, and formation
lithology. Second, we select those bandwidths that
exhibit larger sensitivities of measured dispersions to
changes in the 5 TI-constants. As expected, bandwidths
showing smaller sensitivities of input dispersions to
changes in some of the TI-constants do cause larger
variance in those inverted constants.

5. Terminate the iterative inversion process when the suc-
cessive differences between the measured and predicted
flexural dispersions using the inverted TI-constants
become less than a chosen threshold.

III. ILLUSTRATIVE EXAMPLES WITH SYNTHETIC DATA
Synthetic collar and borehole guided modal dispersions can
be generated by a root finding mode-search routine for a
concentrically placed cylindrical layers in a liquid-filled bore-
hole surrounded by an EIH formation [28], [29]. Elastic
parameters for an EIH formation are defined by the measured
formation bulk density, compressional headwave velocity,
and shear velocity selected to be within 1 to 5% different
than the formation shear velocity. These properties for an EIH
formation ensure that actual anisotropic constants are pertur-
bations from those assumed in the chosen EIH formation.

Fig. 1(a) shows schematic of a drill pipe concentrically
placed in a liquid-filled borehole surrounded by an EIH for-
mation. Note that the drill pipe inner and outer radii denoted
by a and b, respectively; and its elastic properties can be
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FIGURE 1. (a) Schematic diagram of a drill-collar concentrically
places in a liquid-filled borehole surrounded by a formation.
(b) Schematic diagram of the collar- flexural (upper red curve)
and formation-flexural (lower green curve) dispersions in a
FAST formation. Horizontal lines labeled L and S denote the
borehole liquid compressional and formation shear
slownesses, respectively.

selected to represent the entire LWD tool effects on the
guided elastic wave propagation in a liquid-filled borehole of
radius c.

A dipole source placed on the borehole axis gener-
ates both collar and formation dominated flexural modes.
The composite structure of a drill-collar in a liquid-filled
borehole can be analyzed in terms of two independent
structures consisting of a drill-collar immersed in an infi-
nite liquid, and a liquid-filled borehole surrounded by a
formation. Curve 1a in Fig. 1(b) shows schematic of a
collar-flexural dispersive mode supported by a drill-collar
immersed in an infinite-liquid. Similarly, curve 2a depicts
schematic of a formation-flexural dispersive mode asso-
ciated with a liquid-filled borehole surrounded by a fast
formation in the absence of any drill-collar. A crossing
signature between these two dispersive modes implies a
strong interference between the two modes in a composite
structure of a drill-collar in a liquid-filled borehole. Curves
labeled 1 and 2 in Fig. 1(b) denote the collar-flexural and
formation-flexural dispersive modes, respectively, associated
with the composite structure.

Guided flexural mode dispersions for (1) a steel pipe
in an infinite liquid (in the absence of any formation);
(2) a liquid-filled borehole surrounded by a formation (in the
absence of a steel pipe); and (3) a steel pipe concentrically
placed in a liquid-filled borehole surrounded by an isotropic
formation have been calculated by a root-finding mode-
search routine [9]. An overlay of collar-flexural dispersion for
the case (1), and the formation-flexural dispersion for the case
(2) associated with fast formations shows a crossing signature
implying a strong interaction between these two modes for
the case (3). These results for fast formations are summarized
in Fig. 1(b). A strong interaction between the drill-collar
and formation-flexural modes causes two coherent arrivals
to be present over a wide frequency band in the processing
window. It becomes necessary to use amodel- based inversion
algorithm to properly invert either of the two borehole guided
dispersive modes for the formation anisotropic constants.
Inversion of formation-flexural dispersion for TI-constants

in fast formations

A dipole transmitter in a LWD sonic tool generates flexural
waveforms that can be recorded by an array of receivers.
These waveforms can be processed by a modified matrix
pencil algorithm to identify both the formation-flexural and
collar-flexural modes [25]. Both of these dispersive modes
exhibit frequency-dependent sensitivities to a subset of
TI-constants, C44 (=C55), C66, and C13 (=C23).

We describe results from a constrained inversion of
formation-flexural dispersion for a sub-set of TI-constants
of a fast formation. Synthetic flexural dispersion has been
obtained for an inner pipe radius a = 3.5 cm; outer pipe
radius b = 5.77 cm concentrically placed in a borehole of
radius c = 10.16 cm. The inner and outer drill-pipe radii
may need to be optimized to make sure that the measured and
predicted collar-flexural dispersions agree with each other
in a chosen isotropic interval of the formation. These small
perturbations in drill-pipe radii are required to account for
the effects of tool-guts on the propagation of guided modes
in the liquid-filled borehole. The inner and outer annuli of the
drill-pipe is filled with water of mass density of 1 g/cc; and
compressional velocity of 1500 m/s. Material parameters for
the steel drill-pipe are defined by its mass density of 7.9 g/cc;
compressional and shear velocities of 5800m/s and 3100m/s,
respectively. Anisotropic constants of a fast TI-formation are
summarized in Table 1; and its mass density is 2.35 g/cc.

TABLE 1. TI-constants of Bakken shale formation with
X3-symmetry axis.

Since both the formation-flexural and collar-flexural dis-
persions have sensitivities to changes in the formation
TI-constants, either one of them can be inverted to estimate a
subset of TI-constants.

FIGURE 2. (a) The discrete ∗ markers from about 3 to 4.5 kHz
denote input data for formation-flexural dispersive mode. The
EIH reference formation flexural dispersion (shown by the blue
curve) is for an EIH formation with its elastic parameters close
to the in-situ formation state. The dashed-red curve is the
reconstructed formation-flexural dispersion using the inverted
TI-constants. (b) Formation-flexural dispersion sensitivity
to 1 GPa change in the 5 TI-constants of the surrounding
Bakken shale formation. These sensitivity curves are calculated
referred to a chosen EIH reference state of the formation.
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The discrete ∗ markers from about 3 to 4.5 kHz in
Fig. 2(a) represent a bandlimited formation-flexural dis-
persive mode used as input to the inversion algorithm for
estimating a subset of formation TI-constants. The blue
curve in Fig. 2(a) shows a reference EIH formation-flexural
dispersion. Referred to this EIH formation as a reference
state, sensitivities of the formation flexural dispersions to
the formation 5 TI-constants are determined from Eq. 3.
Fig. 2(b) displays fractional changes in the flexural wave
velocities caused by 1 GPa changes in the 5 TI-constants
as a function of frequency. Observe that formation-flexural
dispersion sensitivities to formation TI-constants are rela-
tively larger at lower frequencies. Clearly, formation-flexural
dispersion shows largest sensitivity to changes in the for-
mation axial shear modulus C44, followed by changes in
the cross-sectional shear modulus C66 and an off-diagonal
elastic constant C13. Note that formation-flexural dispersion
sensitivities to the compressional moduli C11 and C33 are
rather small, and therefore, not good candidates for inversion.
Nevertheless, the axial compressional modulus C33 can be
reliably obtained from the refracted compressional headwave
velocity.

The inverted constants obtained from the formation-
flexural dispersion are C66 = 15.6 GPa; C44 = 10.6 GPa;
C13 = 8.88 GPa; C33 = 35.7 GPa. Refracted compres-
sional headwave velocity yields the compressional modulus
C33 = 36.5 GPa. To validate the proposed inversion
algorithm, the reconstructed formation-flexural dispersion
using the inverted TI-constants is displayed by the dashed red
curve in Fig. 2(b). Good agreement between the reconstructed
and input (or measured) dispersions demonstrates the accu-
racy of the inversion algorithm with the numerically exact
input dispersion.
Inversion of collar-flexural dispersion for TI-constants of

fast formations
Similar to the case of inverting the formation-flexural dis-

persion, calculate a reference collar-flexural dispersion for
a selected EIH formation. Fig. 3(a) depicts the reference
collar-flexural dispersion shown by the blue curve. Input
to the inversion algorithm is a bandlimited collar-flexural
dispersion from about 4 to 6 kHz shown by discrete ∗ mark-
ers. Fig. 3(b) displays frequency-dependent collar-flexural
dispersion sensitivities to the 5 TI-constants. Notice that
collar-flexural sensitivities to formation TI-constants are
larger at higher frequencies. Observe that collar-flexural dis-
persion sensitivities to the two compressional moduli C11
and C33 are somewhat different, and not negligibly small.
As such, it is possible to invert for the 5 TI-constants using
a constrained inversion algorithm as described earlier by
Equations (10)-(18).

The inverted constants are C66 = 15.7 GPa; C55 =

9.9 GPa; C13 = 8.52 GPa; C33 = 37.3 GPa. Regularization
coefficient γ = 0.00035. Inverted TI-constants are remark-
ably accurate when the input dispersion is obtained from
the synthetic data shown by discrete ∗ markers in Fig. 3(a),
with no added noise. Good agreement between the inverted

FIGURE 3. (a) The discrete ∗ markers represent input dispersion
data for collar-flexural dispersive mode. The EIH reference is
from an equivalent isotropic homogeneous formation with its
elastic properties close to the in-situ formation state.
(b) Collar-flexural dispersion sensitivity to 1 GPa change in
the 5 TI-constants of the surrounding Bakken shale. Notice
large sensitivities at higher frequencies.

(dashed red curve) and input (discrete ∗ markers) formation
TI-constants as shown in Fig. 3(a), validates the accuracy
and reliability of the proposed inversion algorithm. As noted
earlier, the compressional modulusC33 = 37.3 GPa, is readily
obtained from the compressional headwave velocity.
Joint inversion of formation-flexural and collar-flexural

dispersions for TI-constants
Generally, both formation-flexural and collar-flexural dis-

persions obtained from field data have certain errors caused
by the processing of dipole flexural waveforms obtained from
a LWD sonic tool. Under these circumstances, inverting a
formation-flexural or collar-flexural dispersions separately
introduces larger uncertainties in the inverted constants.
Therefore, it is desirable to implement a joint inversion of
formation-flexural and collar-flexural dispersions for obtain-
ing a subset of formation TI-constants. A joint inversion
of two dispersions improves the reliability and accuracy of
inverted TI-constants.

Below is a summary of joint inversion workflows for the
additive and multiplicative algorithms:

1. Select an Equivalent-Isotropic andHomogeneous (EIH)
formation close to the in-situ anisotropic formation
properties.

2. Calculate both the collar-flexural and formation-
flexural dispersion sensitivities to the 5 TI-constants
referred to the selected EIH formation reference state.

3. Additive Gauss-Newton inversion algorithm: Optimally
select the regularization coefficient γ by minimizing
differences between the inverted and input TI-constants
used to generate synthetic dispersions. Choice of the
regularization coefficient γ depends on the condition
numbers of dispersion sensitivity matrices and expected
uncertainties in the input dispersion data.

4. Multiplicative Gauss-Newton inversion algorithm:
Select relative weighting matrices W f and W c to
balance contributions between the formation-flexural
and collar-flexural dispersions to estimate formation
anisotropic constants. In addition, the regularization
coefficient δ and normalization coefficient ηn at n-th
iteration need to be optimally selected to minimize
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differences between the inverted and input TI-constants
used to generate synthetic dispersions with added noise.
Selection of the regularization coefficient depends on
the dispersion sensitivity matrices and expected uncer-
tainties in the input dispersion data.

5. Select different bandwidths for formation-flexural and
collar-flexural dispersions that show largest sensitivities
to some of the formation TI-constants.

6. Jointly invert differences between the measured and
chosen EIH reference dispersions for a subset of
TI-constants with larger sensitivities.

7. Accuracy of inverted TI-constants depends on the con-
dition numbers of sensitivity matrices and accuracy of
measured dispersions.

It is clear from Fig. 2(b), that the formation flexural mode
has larger sensitivity at low frequency band (3∼4.5 kHz).
In contrast, Fig. 3(b) shows that the collar flexural mode has
larger sensitivity at high frequency band (4∼6 kHz).

With a proper choice of input dispersion data, inverted
TI-constants from additive joint inversion of formation-
flexural and collar-flexural dispersions are C66 = 14.5 GPa;
C55 = 10.7 GPa; C13 = 8.2 GPa; C33 = 37.3 GPa;
C11 = 40.9 GPa. Results are for a bandlimited input dis-
persion with 0.5% Gaussian noise added to the synthetic
dispersion. Residual relative errors between the inverted and
input formation-flexural and collar-flexural dispersions are
0.011 (with 28 measurements), and 0.033 (with 19 measure-
ments), respectively. Regularization coefficient γ = 0.05.
Using the same choice of bandlimited input disper-

sion data as in the additive joint inversion algorithm and
adding 1% Gaussian noise to the synthetic dispersion,
inverted TI-constants from multiplicative joint inversion of
formation-flexural and collar-flexural dispersions are C66 =

15.5 GPa;C55 = 10.5 GPa;C13 = 10.1 GPa;C33 = 33.6 GPa;
C11 = 41.1 GPa. Both residual relative errors between
the inverted and input formation-flexural and collar-flexural
dispersions are 0.025 (with 28 measurements), and 0.056
(with 19 measurements), respectively. Regularization coeffi-
cient δ = 0.0195.
The blue curve in Fig. 4(a) shows reference formation-

flexural dispersion for an EIH formation with its elastic
properties selected close to the in-situ formation state.
Black ∗ markers denote the input dispersion data from about
3 to 4.5 kHz, with 0.5%Gaussian noise added to the synthetic
dispersion, and the black curve displays the reconstructed dis-
persion using inverted constants obtained from the additive
joint inversion algorithm. Red ∗ markers represent the input
dispersion data with 1%Gaussian noise added to the synthetic
dispersion, and the dashed-red curve depicts the recon-
structed dispersion using the inverted constants obtained from
themultiplicative joint inversion algorithm. Fig. 4(b) summa-
rizes results from the inversion of collar-flexural dispersion
with a proper selection of input bandlimited dispersion from
about 4 to 6 kHz. The notation is same as in Fig. 4(a).
Good agreements between the reconstructed and input

(measured) dispersions indicate the reliability of the proposed

FIGURE 4. (a) The blue curve denotes reference
formation-flexural dispersion for an EIH formation with its
elastic properties selected close to the in-situ formation state.
Black ∗ markers show input dispersion data with 0.5%
Gaussian noise added to the synthetic dispersion, and
reconstructed dispersion using inverted constants shown by
black curve obtained from the additive inversion algorithm. Red
∗ markers denote corresponding inputs to the multiplicative
inversion algorithm with 1% Gaussian noise added to the
synthetic dispersion, and reconstructed dispersion shown by
the dashed-red curve. (b) Results are from the inversion of
collar-flexural dispersion. The notation is same as in Fig. 4(a).

additive and multiplicative inversion algorithms in the pres-
ence of added Gaussian noise to the input dispersion data.
Inversion of collar-flexural dispersion for TI-constants of

slow formations
Most of the flexural wave energy generated by a dipole

transmitter is confined to the collar-flexural mode in slow
formations. Generally, the collar-flexural mode exhibits sig-
nificantly reduced sensitivity to formation TI-constants in
slow formations than those in fast formations. In addition,
it is rather difficult to measure formation-flexural dispersive
mode in slow formations because of a rather weak coupling
of the flexural waves generated by a dipole transmitter to this
dispersive mode.

Therefore, it is imperative to develop an inversion
algorithm for estimating a subset of slow formation
TI-constants using only the collar-flexural mode dispersion
with adequate sensitivity to at least some of the constants.
Fig. 5(a) displays a typical collar flexural dispersion (red
curve labeled 1) obtained from the LWD sonic tool data. The
collar flexural dispersion (dashed red curve labeled 1a) is
for a drill pipe in an infinite-liquid; and formation flexural
dispersion (dashed-green curve labeled 2a) in the absence of
any LWD tool in a liquid-filled borehole surrounded by slow
formations.

As an illustrative example, we describe inversion results for
a slow Austin chalk formation using synthetic collar-flexural
dispersions without any noise, and with 0.5% Gaussian
noise added to the synthetic dispersion. Table 2 contains
the 5 TI-constants of the slow Austin chalk formation with
mass density of 2.2 g/cc.

Fig. 5(b) depicts fractional changes in the collar-formation
flexural wave velocity as a function of frequency caused
by 1 GPa changes in the 5 TI-constants. The new inversion
algorithm inverts the collar-formation flexural dispersion (red
curve labeled 1) for a subset of TI-anisotropic constants
(C55, C66, and C13) by a proper selection of the bandwidth
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TABLE 2. TI-constants of Austin chalk formation with
X3-symmetry axis.

FIGURE 5. (a) Schematic diagram of the collar flexural
dispersion shown by the red curve. The dashed red curve
labeled 1a denotes the collar-flexural dispersive mode for a
drill-collar immersed in an infinite liquid; and the dashed-green
curve labeled 2a represents the formation-flexural dispersion in
the absence of any tool in a borehole surrounded by a SLOW
formation. Horizontal dashed lines labeled S and L denote the
formation shear and borehole liquid compressional
slownesses, respectively. (b) Collar-formation flexural
dispersion sensitivity to 1 GPa change in the 5 TI-constants of
the surrounding Austin chalk formation.

with relatively higher sensitivities to the three constants at
higher frequencies, and adequate excitation levels. Notice
that dispersion sensitivities to changes in the compressional
moduli C11 and C33 are relatively smaller than those for the
other three TI-constants. Therefore, it is not desirable to invert
for these two compressional moduli in slow formations.

The discrete markers ∗ in Fig. 6(a) denote synthetically
generated collar-flexural dispersion from about 3 to 5 kHz.
This dispersion data serves as input to the constrained inver-
sion algorithm with optimally selected processing parame-
ters. Inverted TI-constants for this example are summarized
in Table 3. When the input dispersion data is numerically
exact with no added noise, very good agreement between the
inverted and input TI-constants validates the accuracy and
reliability of the proposed algorithm.

TABLE 3. Inverted TI-constants of Austin chalk formation with
X3-symmetry axis using synthetic collar flexural dispersion
without any Gaussian noise added to the input data.

Fig. 6(b) displays results for the inverted TI-constants
using synthetic collar-flexural dispersion with 0.5%Gaussian
noise added to the input dispersion data. The discrete markers
∗ in Fig. 6(b) represent the input dispersion data with added
Gaussian noise. Constrained inversion processing parameters
are optimized by minimizing relative residual errors between

FIGURE 6. (a) Input collar-flexural dispersion data shown by
discrete markers for collar-flexural dispersion without any noise
added to the synthetic dispersion. The reference dispersion
(blue curve) is for an EIH formation with its elastic properties
selected close to the in-situ formation state. Dashed red curve
displays reconstructed collar-flexural dispersion using inverted
TI-constants. (b) Input collar-flexural flexural dispersion data
shown by discrete ∗ markers for collar-flexural mode with 0.5%
Gaussian noise added to the synthetic dispersion. The
reference dispersion (blue) is for an EIH formation with its
elastic properties close to the in-situ formation state. Dashed
red curve depicts reconstructed collar-flexural dispersion using
inverted TI-constants.

TABLE 4. Inverted TI-constants of Austin chalk formation with
X3-symmetry axis using synthetic collar flexural dispersion
with 0.5% Gaussian noise added to the input dispersion.

the reconstructed and synthetically generated input disper-
sions with added noise. Results for the inverted TI-constants
from the constrained inversion algorithm are summarized in
Table 4 (Regularization coefficient γ = 0.02). Differences
between the inverted and input constants are shown in brack-
ets. Accuracy of inverted TI-constants C44 and C66 are quite
good. However, inverted C13 exhibits a large variance of up
to 25%.

The dashed-red curve in Fig. 6(b) represents reconstructed
collar-flexural dispersive mode using inverted TI-constants
for this example. Good agreement has been obtained between
the reconstructed and input dispersions with added noise.
However, larger errors greater than 1% in the measured
collar-flexural dispersion degrades reliable estimates of
inverted TI-constants in slow formations.

IV. DISCUSSION
The proposed workflow yields a sub-set of TI-constants
(C55, C66, and C13) from a joint inversion of collar and for-
mation flexural dispersions measured in fast TI-formations.
The remaining two compressionalmoduli C11 andC33 exhibit
relatively large errors, because of their rather small sensitivi-
ties to flexural dispersions. However, the axial compressional
modulus C33 is, generally, obtained from the transit time of
compressional headwaves generated by a monopole source.
Estimates of these four TI-elastic constants as a function
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of depth can then be used for geomechanical analysis of
formations for maintaining wellbore stability during drilling,
completion, and production of hydrocarbons.

Some challenges in a successful implementation of con-
strained inversion with an optimal choice of regularization
coefficients include a proper selection of the reference EIH
formation that yields flexural sensitivity matrix with low
condition numbers; and optimal estimations of regularity
coefficients based on expected noise in the measured disper-
sions. Higher values of regularity coefficients are needed to
handle higher levels of noise in measured dispersions. Com-
parisons of the input and reconstructed dispersions (using
inverted constants) have been done in terms of Relative
Residual Errors (RRE). This amounts to show validity of the
inverted results over the measurable bandwidth of input data.
Optimal estimates of regularity coefficients are obtained by
varying these coefficients from about 0.25 (in the presence
of dispersion noise) to about 0.0005 (in the noise-free disper-
sion) until the data misfit or RRE is below a chosen threshold.

Generally, it is difficult to measure formation flexural dis-
persion in slow TI-formations. Most of the dipole transmitter
energy is coupled to the propagating collar flexural mode.
Consequently, the proposed workflow inverts the measured
collar flexural dispersion for a subset of TI-constants (C33,
C55, C66, and C13). Addition of Gaussian noise to the input
(measured) dispersion degrades the accuracy of inverted con-
stants. Higher accuracy in the inverted constants is obtained
when the input dispersion is accurate and almost noise-free.

The feasibility of the proposed algorithm has been demon-
strated using synthetic collar and formation flexural disper-
sion data, as well as with Gaussian noise added to these
dispersions. Adding Gaussian noise to the input dispersion
provides insight into the degradation of inverted quantities
that might be reflected in the field data.

V. CONCLUSION
Formation anisotropic constants provide valuable informa-
tion related to rock lithology, in-situ rock stresses, strengths,
and natural or drilling-induced fractures. However, a proper
interpretation of sonic-derived anisotropic constants must
be carried out in conjunction with rock lithology deter-
mined from resistivity image logs and volumetric analysis
of mineralogy [9], [10]. For instance, relative magnitudes
of anisotropic constants are related to magnitudes of rock
stresses only when the logged interval corresponds to clas-
tic sandstones and carbonates. In contrast, certain relations
among TI-constants estimated in a shale interval are indi-
cators of microlayerings or thin laminations that are also
observed in a resistivity image logs. Certain variations with
depth in the rock stiffnesses or compliances from those in a
TI-shale formation are indicators of existing natural fractures
oriented either in the axial or cross-sectional planes of the
borehole.

It has been demonstrated that the entire LWD tool can
be modeled in terms of an equivalent drill pipe (or col-
lar) with optimally selected inner and outer diameters, and

appropriate elastic properties of pipe material. Under these
circumstances, borehole elastic waves propagate as both drill
collar and formation modes. It is then possible to identify
these two traveling modes with their velocities exhibiting
different frequency-dependent sensitivities to formation elas-
tic properties. Constrained inversion algorithms have been
developed to analyze the drill-collar or formation flexural
modes separately or jointly, to estimate formation anisotropic
constants. We highlight advantages of different choices in
conjunction with frequency-dependent sensitivities to dif-
ferent formation TI-anisotropic constants. These inversion
algorithms have been validated using synthetic data obtained
for both fast and slow anisotropic formations in the presence
of a generic LWD sonic tool. Hence, the proposed tech-
niques provide novel workflows to invert collar-flexural and
formation-flexural dispersive modes to estimate a sub-set of
formation TI-constants.
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