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Abstract— The use of deep learning methods for virus 
identification from digital images is a timely research topic. 
Given an electron microscopy image, virus recognition utilizing 
deep learning approaches is critical at present, because virus 
identification by human experts is relatively slow and time-
consuming. In this project, our objective is to develop deep 
learning methods for automatic virus identification from digital 
images, there are four viral species taken into consideration, 
namely, SARS, MERS, HIV, and COVID-19. In this work, we 
firstly examine virus morphological characteristics and propose 
a novel loss function which aims at virus identification from the 
given electron micrographs. We take into account of attention 
mechanism for virus locating and classification from digital 
images. In order to generate the most reliable estimate of 
bounding boxes and classification for a virus as visual object, we 
train and test five deep learning models: R-CNN, Fast R-CNN, 
Faster R-CNN, YOLO, and SSD, based on our dataset of virus 
electron microscopy. Additionally, we explicate the evaluation 
approaches. The conclusion reveals SSD and Faster R-CNN 
outperform in the virus identification. 

Keywords— classification, localization, CNN, virus, electron 
microscopy images 

I. INTRODUCTION

    Viruses have a variety of shapes, like ball, silk thread, 
bullet, brick, tadpole, etc. [1][2][3] A rich assortment of 
viruses have highly contagious capability and show a 
significant threat to public health. SARS-CoV-2 has seriously 
jeopardized health and safety of our human beings in 2020 
[4][5]. How to automatically and accurately classify viruses 
especially those extremely infectious viruses so as to save 
human labor of medics is a necessity at present.  
    HIV (i.e., human immunodeficiency virus) is a member of 
the genus lentivirus having similar morphological 
characteristics with two species: HIV-1 and HIV-2 [20, 21]. 
SARS (i.e., severe acute respiratory syndrome) is a member 
of coronavirus family and shares morphological similarities 
[22,23], appeared in electron micrograph as pleomorphic 
spherical particles with bulbous surface projections [24]. 
MERS-CoV (i.e., Middle East respiratory syndrome-related 
coronavirus) [25] and MERS, also known as camel flu, are a 
coronavirus species [26]; Severe acute respiratory syndrome 
corona virus 2 (SARS-COV-2), or COVID-19, given the year 
of discovery, is a novel severe coronavirus [27]. Four typical 
proteins are identified as spikes (S), envelope (E), membrane 
(M), and nucleocapsid (N) [28] in COVID-19. 
    In this paper, virus detection utilizing deep learning 
methods is propounded to identify the viruses through using 
electron microscope images. The applications of deep 
learning methods have engendered significant contributions 
[6]. Convolutional neural network (CNN), as one of the deep 
learning methods, produces reliable results in image analysis, 
speech recognition and more than others [7-10]. CNNs 
manifest numerous advanced outcomes in digital image 
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processing, including object recognition, segmentation, 
image super-resolution, object detection, etc. [11-14]. 
Therefore, the goal of this project is to explore and exploit 
virus-oriented computational methods from the viewpoint of 
deep learning.  
    In this paper, digital images having four classes of viruses 
will be taken into consideration: SARS, MERS, HIV, and 
COVID-19. Additionally, for visually detecting the viruses 
by using computer vision and digital image processing, we 
will develop and compare the performance of five deep 
learning models, namely, R-CNN (i.e., region-based CNN), 
Fast R-CNN, Faster R-CNN, YOLO, and SSD (i.e., single 
shot multibox detector), to distinguish viruses from 
microscope images. 
    This paper is organized in the follows. We have our 
literature review in Section II, our methods are depicted in 
Section III. Our experimental results and resultant analysis 
are presented in Section IV. Our conclusion will be drawn in 
Section V. 

II. LITERATYRE REVIUEW

    Virus detection from digital images is one of the subjects 
of visual object detection and recognition in computer vision 
and digital image processing [15]. This paper will fulfil the 
comparisons of our experimental results related to object 
detection. The focus of this paper is on four viruses: HIV, 
SARS, MERS, and COVID-19. The morphological 
characteristics of these four viruses are manifested as 
spherical shape and scattered like “white dots” for spike 
protein projections [16-19].  
    In order to select the training model, R-CNN network 
utilizes image regions of interest (ROI) in an agnostic manner 
by utilizing a selective search [29,30]. ROIs appear in 
semantic color, shading, texture, morphological 
characteristics, scale, etc., selective search approaches solve 
this issue by using hierarchical grouping [31-33]. Fast R-
CNN is an improvement of R-CNN achieved with higher 
computational speed as well as prediction accuracy [34-37]. 
In order to accommodate Fast R-CNN for virus recognition 
and locating, numerous amendments were conducted to the 
internal structure of Fast R-CNN. Faster R-CNN is a further 
improvement of R-CNN to get faster computation and higher 
prediction accuracy [38]. A region proposal network (RPN) 
was proposed in combination with Fast R-CNN and 
incorporates attention mechanisms [39,40].  
    YOLO (You Only Look Once), a novel CNN structure, has 
achieved fast computations as well as distinguished 
prediction accuracy [41,42]. Numerous versions of YOLO 
model were updated to gratify more for the field of virus 
classification and locating in electron microscopy images. A 
research study [43] aptly demonstrated excellent prediction 
accuracy for SSD in comparison with others, YOLO was 
applied to deliver more reliable result with digital images 



having minor sizes (i.e., low resolution with reduced visual 
information) [44-46]. Consequently, the performance of 
identifying viruses from microscope images was compared 
with deep learning models like R-CNN, Fast R-CNN, Faster 
R-CNN, YOLO, and SDD. 

III. OUR METHODS 
    In this paper, original images and the preprocessed images 
are picked up for conducting our experiments. There are 6,000 
electron microscopy images approximately which are equally 
split into four classes: SARS, MESR, HIV, and COVID-19. 
Each image has at least one region of interest (i.e., one 
bounding box contains one virus) which encapsulates visual 
objects with the same class, the predictive models referenced 
in this research support multiclass prediction for a given 
image. The data preprocessing methods in this research work 
are based on image augmentation as well as image quality 
enhancement. 

A. Data Processing 
    The data preprocessing transformations are presented as 
the follows: Image denoising, image brightness adjustment, 
image contrast enhancement, image sharpening, image 
rotation, image random region removal, Jaccard index crop, 
image resizing, etc. 
    Provided the preprocessing for an input image, the first 
four steps are commenced for the betterment of image quality 
by using image enhancement, the electron microscopy 
images are likely noisy, followed by three image processing 
ways that aim to augment the source images by adding noises 
in order to improve the robustness of predictive model. The 
end of this preprocessing is to resize the images, that means, 
a predictive model requires multiple sizes of inputs. 
    The result of our image enhancement is shown in Fig. 1. 
The most significant operation is image denoising. Image 
contrast enhancement is apparent that the virus regions are 
seen with obvious increasement in luminance; in the 
histogram, the number of absolute white pixels surges 
dramatically. The contours of all virus regions are clear after 
sharpening, despite of being less visually observed. 

(a) (b) 

Fig. 1. An example of our data enhancement (a) before and (b) after 

B. Prior Knowledge of Virus Morphology   
    In this paper, we put forward a novel R-CNN model, 
specifically designed for the recognition of four virus species, 
which includes well-known morphological attributes, e.g., 
spherical shape and virus regions surrounded by spike protein 
projections of coronavirus. In addition, it is noticeable that 
foreign objects might disturb the visual information of 
viruses, e.g., air bubbles.  
   In this project, we develop a mechanism that takes into 
account the visual data by adding an extra loss term to R-

CNN. For example, if the predictor detects that an object is 
encapsulated in a bounding box without observing the main 
object surrounded by minor spherical objects, whilst 
predicting the object as a species of coronavirus, there is an 
extra loss to reflect this error. In this project, there are a 
number of recognizable morphological features of virus 
being identified and summarized to a comprehensive loss 
term. 
   This work has the mechanisms for object detection based 
on visual features of corona virus. The first one is primitively 
to identify the main body of the clipped image region (i.e., 
the largest region by taking use of white pixels) and the 
surrounding scattered white dots (ie.e., spike protein 
projections). The number of white dots is the metric that 
measures whether the enclosed object is a corona virus or not. 
The finding of isolated “white dots” is a typical issue for 
counting the number of connected components [47], which is 
resolved by using either depth first search (DFS) or breadth 
frist search (BFS).  
    There are a number of corona virus electron micrographs 
for inappropriately processed images, e.g., denoised images 
with a minor number of white dots, given the count 𝑐  of 
𝑎𝑟𝑒𝑎𝑃𝑟𝑜𝑗, a loss term 𝐿! is  

𝐿!(𝑐) = ,
2, 										𝑐 = 0
!
"
, 0 < 𝑐 < 5
0, 										𝑐 ≥ 5

.                                         (1) 

   The second metric is the geometrical location of the white 
dots associated to the main body. All white-pixel areas are 
treated as polygons, whose centroids are calculated. 
Euclidean distances between the centroids to the main 
centroid are calculated. The centroid is the arithmetic mean 
of all points within this polygon [48]. 
  

 

Fig. 2. A region of interest from a coronavirus electron micrograph with a 
circular enclosure  

    Pertaining to the Euclidean distance,	the standard deviation 
𝜎 is computed as a heuristic to judge how the surrounding 
white dots are distributed. The greater 𝜎 is, the less likely 
white dots are surround main body. The second loss term is 
expressed as      

𝐿#(𝜎) = 𝑘𝜎$																												(2)	

where we take use of a cubic power to amplify penalty so as 
to enlarge 𝜎 and 𝑘 for controlling this loss term.  

    The third metric is a similarity. Given the centroid of a 
virus shape, a circle expands from the centroid point till the 



contour of this virus is enclosed completely. The loss term is 
the ratio of two areas: 	𝑚𝑎𝑖𝑛𝐵𝑜𝑑𝑦 and 𝑐𝑖𝑟𝑐𝑙𝑒𝐴𝑟𝑒𝑎, as 𝑟 =
𝑚𝑎𝑖𝑛𝐵𝑜𝑑𝑦/𝑐𝑖𝑟𝑐𝑙𝑒𝐴𝑟𝑒𝑎. Weight 𝑘 and nonlinearity penalty 
item with a cubic power function are applied 

𝐿$(𝑟) = 𝑘 @1 − !
%
C
$
.																										(3)	

    However, the shape of a given virus is unlikely of a perfect 
circle in an electron microscopy image, there should be no 
penalty on a roughly round object. Thus, based on sampled 
virus images, a threshold 𝑟 is set to relieve penalty for normal 
roughly round objects,  

𝐿$(𝑟) = E𝐿$(𝑟), 𝑟 ≥ 0.3
0, 𝑟 < 0.3.                          (4) 

   The fourth loss term is the ratio between width 𝑤  and 
height ℎ . Considered virus regions are roughly spherical, 
which usually turn up in electron microscopy images with a 
shape of a circle (contour), the bounding box should be a 
square rather than a rectangle. Hence, the loss term is 
expressed as 

𝐿&(𝑤, ℎ) = 𝑘 H
'!(!"')'!(

"
!'

#
I,                        (5) 

where 𝑘  is a scalar that controls the importance of the 
penalty. Akin to the third loss term that there barely exists a 
perfect spherical virus particle, the penalty on normal 
approximately round objects should be avoided. Given this 
consideration,  

𝐿&(𝑤, ℎ) =

⎩
⎨

⎧𝐿&(𝑤, ℎ), M1 −
*
+
M ≥ 0.2

𝐿&(𝑤, ℎ), M1 −
+
*
M ≥ 0.2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

.                   (6) 

    We summarize all aforementioned loss terms with weight 
𝑤, a loss term 𝐿",%,-./ (•) related to our prior knowledge is 
derived from 

𝐿",%,-./(𝑦0, 𝑦, 𝑡	0) = 𝑤!𝐿! +𝑤#𝐿# +𝑤$𝐿$ +𝑤&𝐿&         (7)             

where 𝑦0  and 𝑦  are predicted object class and 𝑡′  is the 
predicted bounding box that gives information in terms of the 
shape and anchor of a rectangular region in the image. 

C. Attention Mechanism 
    A typical attention unit learns three weight matrices: Query 
weight 𝑊2, key weight 𝑊3 , and value weight 𝑊/. For every 
input token 𝑥4 , there are 𝑞4 = 𝑥4𝑊2 , 𝑘4 = 𝑥4𝑊3 , 𝑞4 = 𝑣4𝑊/ 
for query and key value 𝑥4. Attention weight 𝑎45 from token 
𝑥4 to token 𝑥5 is the dot product of 𝑞4 and 𝑘5. We denote 𝑑6 
as the number of dimension of 𝑞4 , and 𝑎45/V𝑑6  is the 
normalized attention weight. Thus, we define 𝑄 =
{𝑞!, 𝑞#, … , 𝑞-}, 𝐾 = {𝑘!, 𝑘#, … , 𝑘-}, 𝑉 = {𝑣!, 𝑣#, … , 𝑣-}, the 
attention layer is represented as  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ^23
#

78$
_ 𝑉              (8) 

where softmax(·) is the softmax function.  
   Given the example of an electron microscopy image of four 
corona virus regions, in order to train an attention layer, the 

label for each pixel and the surroundings of the pixel are 
shown in Figure 3. Regions of interest are labelled in white 
while backgrounds or the irrelevant are black. The desired 
output from the attention mechanism is the regions of interest. 
In practice, the attention mechanism cannot ensure to always 
find the optimal virus regions. Instead, in this experiment, 
soft mask is selected to filter out irrelevant regions in the 
source image [47,48]. 
 

   
            (a)                                        (b)                             (c) 

Fig. 3. An electron microscopy image (a) with four corona virus regions, 
their masks (b) and the soft masked image (c) by utilizing attention 
mechanism  

    The proposed attention mechanism in this project is a 
simple self-attention network [49,50]. The network is 
regarded as a simple encoder-decoder network that only 
imports the source images, so that irrelevant regions are 
filtered out while the regions of interest are highlighted or 
preserved for visual feature extraction [49]. 

D. Evaluation Methods 
 
    In this paper, mAP, namely, mean average precision, is 
selected for evaluating multiple classifiers. Given a 
precision-recall curve, by incrementing a true-false threshold, 
mAP is found by using average precision. Weights are 
assigned to the samples of different labels so that imbalance 
samples with respect to all labels have defined proper weights 
(this operation is referred as “macro mode”).   

𝑚𝐴𝑃 = !
2
∑ 𝐴𝑣𝑒𝑃(𝑞)2 																											(9)	

where 𝑄 is the number of queries related to average precision 
score. 
    Recall is chosen to measure sensitivity of the 
classifications that a relevant record is retrieved from a set of 
queries. Similar to precision, we define a query set 𝑄 =
{𝑞!, 𝑞#, … , 𝑞-} and a relevant record set 𝑅 = {𝑟!, 𝑟#, … , 𝑟9}, 
the computation is given as 

𝑅𝑒𝑐𝑎𝑙𝑙 = ",:-;(=∩2)
",:-;(=)

.																												(10)	
    F1 score is given by eq. (10) 

𝐹! = 2 ∙ @%A"4B4,-∙=A".DD
@%A"4B4,-)=A".DD

,																									(11)	
where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  and 𝑅𝑒𝑐𝑎𝑙𝑙  are derived from the 
aforementioned equations. F1 score is summarized as the 
harmonic mean of precision and recall [50], which is selected 
along with precision and recall to evaluate classification 
performances of the developed classifiers. 
    In order to compare different methods fairly, in this 
project, IOU is utilized to evaluate the proposed bounding 
boxes against the ground truth of bounding boxes. A 
proposed bounding box compares with all ground truth, the 
highest IOU percentage is selected as the IOU of the 
bounding box. The mean percentage of all bounding boxes 
produced by a regressor is regarded as the benchmark of 
bounding boxes. A bounding box only takes into account the 
overlapping areas; thus, any classification error is not 
reflected. Algorithm (1) shows this evaluation process. 
 



 
    In this project, the losses of all predictive models are 
summed to evaluate the performance of the global model. In 
addition, the loss reflects the contribution of the prior 
morphological knowledge. In order to illustrate the training 
loss changes while gradients are gradually vanishing during 
the training, the losses are transformed in logarithm to 
indicate this trend. 

IV. EXPERIMENTAL RESULTS AND RESULTANT ANALYIS 
    Our experiment employs R-CNNs to classify the type of 
viruses. Our predictive models and corresponding mAPs for 
the four virus species are shown in Table I. Despite mAPs are 
closer, the mAP of HIV virus detection is slightly higher than 
that of other four virus species. It should be noted that all 
predictive models illustrate mAPs up to 93%. Faster R-CNN 
performs better than its predecessors. 
   In this project, the pretrained results are displayed in mAP 
for each object class. All base networks show mAPs up to 
91%. The results are resembled to that of classifiers, HIV 
virus detection is relatively higher than other base networks. 
The details are demonstrated in Table II. 
   The means of IOUs and MSE for bounding box areas are 
calculated for evaluating the performances of the predictive 
models. SSD is the most beneficial regarding the mean of 
IOUs, while Faster R-CNN has the most mediocre 𝑀𝑆𝐸E-8. 
There is an inconspicuous discrepancy regarding both mean 
of IOUs and MSE of bounding boxes.  

TABLE I.  A SUMMARY OF CLASSIFICATION RESULTS (MAP) PER 
CLASSIFIER PER CLASS 

 SARS MERS COVID-19 HIV 
R-CNN 93.32 % 93.45 % 93.21 % 94.32 % 
Fast R-
CNN 

93.41 % 93.31 % 93.37 % 94.71 % 

Faster R-
CNN 

94.11 % 94.63 % 94.45 % 95.43 % 

SSD 94.08 % 94.58 % 94.27 % 95.18 % 
YOLO 93.92 % 94.93 % 94.32 % 95.01 % 

 

TABLE II.  A SUMMARY OF CLASSIFICATION RESULTS (MAP) FOR THE 
FIVE BASE NETWORKS 

 SARS MERS COVID-19 HIV 
VGG11 92.94 % 92.95 % 92.38 % 93.47 % 
VGG16 93.12 % 93.51 % 93.14 % 93.94 % 
GoogLeNet 93.51 % 93.33 % 93.72 % 93.96 % 
ResNet152 93.62 % 93.15 % 93.78 % 93.69 % 
AlexNet 92.22 % 92.38 % 92.25 % 92.71 % 

 

TABLE III.  THE MEANS OF IOUS FOR VARIOUS PREDICTIVE MODELS 

 Means 𝑴𝑺𝐄𝐬 
R-CNN 83.54 % 0.141 
Fast R-CNN 84.91 % 0.134 
Faster R-CNN 84.26 % 0.133 
SSD 85.38 % 0.135 
YOLO 83.83 % 0.138 

 

TABLE IV.  THE LOSSES (´100) AGAINST THE PRIOR KNOWLEDGE 

 SARS MERS COVID-19 HIV 
R-CNN 0.381 0.382 0.380 0.342 
Fast R-
CNN 

0.421 0.423 0.421 0.431 

Faster R-
CNN 

0.410 0.409 0.410 0.473 

SSD 0.395 0.397 0.394 0.352 
YOLO 0.432 0.431 0.433 0.409 

 

TABLE V.  THE RESULTS BY UTILIZING VARIOUS UPDATING SCHEMES, 
MEASURED BY USING TOTAL LOSS  

 Constant Step-
based 
decay 

Time-
based 
decay 

Exponential 
decay 

R-CNN 0.052 0.040 0.041 0.047 
Fast R-
CNN 

0.035 0.029 0.027 0.028 

Faster R-
CNN 

0.037 0.030 0.029 0.031 

SSD 0.036 0.028 0.029 0.031 
YOLO 0.038 0.029 0.027 0.032 

 
    In this project, the particular loss reflects the error 𝐿",%,-./ 
against the defined prior knowledge which is recorded per 
classifier per class. Given the minor weight on 𝐿",%,-./, the 
loss for 𝐿",%,-./ is multiplied by 100.0 for display. The total 
loss obtained through different learning rates are recorded in 
Table V, arranged by per method per classifier. The losses are 
verified by using validation dataset. R-CNN eyes that the 
greatest errors regardless of the choice of training rate 
schemes, in contrast to that of other predictive models with 
observable improvements in terms of loss values by using all 
kinds of learning rate schemes. Between different updating 
scheme of learning rates, the constant is the least favorable 
with greater loss values than the rest of schemes. There is not 
significant superiority of any particular schemes among the 
rest three (step-based decay, time-based decay, and 
exponential decay). 
    Figure 4 shows various results of virus detection in digital 
images. Figure 4(a) is a MERS image where three MERS 
virus regions are presented but only two are detected. The 
third object is low in illumination and the morphological 
features are vague. Figure 4(b) shows that the bounding boxes 
of ground truth should have been assigned with SARS labels. 
It is noticeable that the bounding boxes for the virus contain 
relatively large irrelevant areas that lead to wrong recognition 
by utilizing the detector while considering more significant 
areas as regions of interest. Figure 4(c) is shown for HIV 
virus detection. For HIV virus regions in this image, the 
confidence score is showcased and the proposed bounding 
boxes tightly surround the virus. Through reviewing the 
image samples, there is not suspiciously long rectangular 
bounding box, which is a strong indicator of the prior 



knowledge being successful. However, this may play a role 
in the failure of detecting virus regions with irregular shapes. 

  

  
 

                       (a) MERS                                    (b) SARS  

  
                           (c) HIV                                        (d) COVID-19 

Fig. 4. Various results of viruses detection from digital images 

   Spike proteins are crucial morphological features for virus 
electron micrography classification and undistinguished 
spikes for resemblances to background noises. For 
highlighting the spike protein regarding more reliable 
prediction performance, in this project, we brought in 
numerous image-processing methods for data augmentation.   
    SARS and COVID-19 are both appeared with spike 
proteins that provide the power of being highly contagious. 
The two types of viruses are from the identical species 
(corona viruses), thus share a degree of similarity in 
morphology. Therefore, the classification results are less 
satisfactory based on HIV as it has little similarities with 
other two. The strong similarities to corona visual features are 
found in MERS as well. 
    In this paper, we notice the similar prediction capability of 
the three classifiers from the R-CNN family. Amongst the 
results, R-CNN, Fast R-CNN, and Faster R-CNN have a 
similar performance. The proposed Faster R-CNN does not 
display accuracy with a considerable gap than the other two. 
This may be due to the inadequate source images for our 
model training. If this experiment could assemble more high-
definition images, there exists a substantial possibility of 
having more accurate prediction, the three predictors would 
differentiate themselves by using the same evaluation 
metrics. 

V. CONCLUSION 
    Owing to virus morphology, in this paper, we propose a 
novel loss term to reflect our predictions. The loss function 
mainly focuses on surrounding protein projections appeared 
in electron microscopy images as “white dots” weigh roughly 
spherical physical shape, which turns up in electron 
microscopy images as an approximately round polygon. The 
bounding box is taken into account which is constrained by 
an aspect ratio. However, the loss term is not heavily 
weighted. Consequently, a predictive model effectively 
manages the classification and regression of bounding boxes. 

    In this paper, we manipulate a total of five deep learning 
models: R-CNN, Fast R-CNN, Faster R-CNN, SSD, and 
YOLO. Amongst them, Faster R-CNN and SSD contributed 
to the most reliable results in terms of classification and 
bounding box regression. However, different models 
demonstrate various performance, there is not a particular 
network outperformed across all evaluation metrics. In this 
project, we evaluate the training processes of various 
networks by measuring loss convergence, all networks 
demonstrate the strong trend of convergence. 
    Our future work includes extensive considerations of virus 
placements so that deep learning models can recognize 
viruses amongst complex foreign objects [51]. We will 
propose a virus detection algorithm that distinguishes desired 
virus from image regions having noises. Thus, a large 
collection of electron microscopy images is expected [52]. 
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