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Abstract— A supervisory monitoring scheme is designed for 

the control of infectious diseases. The design is based on the 

tested accumulated information entropy of the absolute error 

of the model versus the observed data. Such a supervisory loss 

function is minimized at each supervision time-interval 

occurring in-between each two consecutive switching time 

instants. The design method allows to set  through time the 

active model, within a prescribed parallel structure of potential 

models, each with its own coefficient transmission rate. Such 

an active model generates the vaccination and or treatment 

controls to be injected to the monitored population. 

Keywords—infectious disease; entropy; epidemic model; 

supervisory loss funtio; vaccination and treattment controls. 

I.  INTRODUCTION

The controls of epidemic models are typically of 
vaccination and antiviral or antibiotic treatment, [1-6]. The 
first one is applied to the susceptible population while the 
second one is applied to the infectious one. There are also 
other biological problems where the control actions are of 
interest. See, for instance, [7] where the environment 
carrying capacity can be manipulated via appropriately fixing 
variables( such as temperature)  to improve the  production 
efficiency, for instance, in aquaculture or fisheries 
exploitations.  The epidemic models are described by a set of 
parameters which parameterize a differential system. Some 
of those models are related to the kind of illness, for instance, 
influenza while others are related to the population, for 
instance, humans, rabbits etc….  The most relevant illness 
parameter is the so-called coefficient transmission rate which 
depends on each particular kind on disease under study and 
which is typically available from medical data with a certain 
approximation. It can vary according to the environment 
conditions (temperature, humidity, etc) and, in some cases on 
the hygienic conditions of the habitat. It is well- known that 
the coefficient transmission rate can also be time-varying 
accordingly to seasonality concerns. To run with the 
drawbacks of such a seasonality influencing the illness 
transmission power, this paper proposes the design of a finite 

predefined set of running simpler models which are 
described by a system of coupled differential equations. The 
whole set of models is allocated in a parallel disposal so as 
to process the registered data from the disease. Such a whole 
discrete set covers a range of variation of such a coefficient 
transmission rate within known lower-bound and upper-
bound limits which reflect the real variation of the 
transmission coefficient rate.  In that way, each one of the 
models in the parallel disposal has its own transmission 
coefficient rate. A supervisory monitoring algorithm is 
proposed which chooses the, so-called, active model which 
minimizes a loss function built with the accumulated 
information entropy of the absolute error of the data of the 
model related to the measured registered data within each 
supervision interval. A switching rule chooses another active 
model as soon as it is detected that the current active model 
becomes more uncertain than others related to the observed 
data. The active model supplies the controls to be injected to 
the real epidemic process.  

II. SUPERVISORY ALGORITHM

 One considers an epidemic disease with seasonal illness 

coefficient transmission rate ( )  10  ,t  , where 

0 and 
1 are known, which is given by the following 

differential system of n  first-order differential equations: 

( ) ( ) ( )( ) ( ) ( )tuΓtx,t,txΨtx += p ; ( ) 00 xx =  (1) 

where ( ) ntx R is the state-vector and p is the vector of 

parameters containing all other parameters that the 

coefficient transmission rate, like recovery rate mortality 

rate, average survival rate, average expectation of life 

irrespective of the illness etc. In practice, the above 

description could be substituted by a non-parameterized 

description, based on the state measurements through time. 

where ( )tx  is given by provided experimental on-line data

on the subpopulation which in this case, should be 
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discretized with a small sampling period. The state vector 

contains the subpopulations integrated in the model  which 

depend on the type of model itself such as  susceptible (E), 

infectious (I) and recovered (or immune) (R) in the so-called 

SIR models to which it is added, in the so-called SEIR  

models  the exposed subpopulation (E) which are those in 

the first infection stages with no external symptoms. The 

models can also contain a vaccinated subpopulation (V) and 

they can have also several nodes or patches, describing, for 

instance, different environments, in general coupled, each 

having their own set of coupled subpopulations which 

interact with the remaining ones though population fluxes. 

The vector ( ) mtu R  is the control vector. There are 

typically either one control, namely, vaccination on the 

susceptible, or two controls, namely, vaccination on the 

susceptible and (either antiviral or antibiotic) treatment on 

the infectious in the case when there is only one node. Those 

controls might be applied to each subsystem associated to 

one patch if there are several patches integrated in the 

model. The matrix function of dynamics ( ) ( )( )p,t,txΨ  is a 

real nn -matrix for each  time instant + 0Rt . The control 

matrix Γ  has as many columns as controls are applied and 

it typically consists of entries being “o” ( i.e., no control 

applied on the corresponding state component associated to 

one subpopulation) , “-1” if the control leads to a decrease 

of the rate of growing of a subpopulation, for instance, 

vaccination effort on the susceptible) and “+1” if it leads to 

a compensatory increase rate of a subpopulation due to a 

corresponding decrease of another one, for instance, the 

increase in the  recovered in the vaccination case (when the 

susceptible are decreased via vaccination) or again the 

recovered in the treatment case (when the infectious are 

decreased via treatment). For simplicity, it is assumed that 

p  is constant and there are no delays in the dynamics. 

     It is proposed to run a set of 1+Q  approximated models 

of the same dimension, in a parallel disposal for data 

acquisition, each one being  described via a constant 

coefficient transmission rate i ; 1+ Qi  being chosen as: 

( ) ( )( ) ( ) ( )tuΓtx,,txΨtx iiiiii += p ; ( ) 00 xxi = , 1+ Qi  

                                                                                            (2) 

with ( ) n
i tx R ,where 

Q
ii

01

1



−

+=+   ; ( ) Qi  1  ,  
0

1  =  

                                                                                            (3) 

in such way that 
0

1  = and 
1

1  =+Q . The set of models  

are initialized to the initial conditions of the true data.  We 

consider a set of ( )1+Q event errors  1: += QiiEE  of 

the states of the models (27)-(28) with respect to the real 

data, that is,  ( ) ( ) ( )txtxte ii −= ; 1+ Qi . Each event 

iE is integrated by a set of events ijE which are the errors of 

each of its integrating subpopulations with respect to the 

real system, that is,  njEiji = :E ; 1+ Qi . 

Define the instantaneous error entropies of each error event 

by summing up all the component-wise  contributions, that 

is, ( ) ( ) ( )tplntpt,H ij
n
j iji −= =1E ; 1+ Qi ; ijp  being 

the probabilities of the respective subpopulations per model  

,while the corresponding accumulated continuous-time and 

discrete-time entropies on the time interval  )Tt,t +  are 

defined in a natural way from the instantaneous ones, 

respectively,  as follows: 

 

 ( )Tt,t,H ica +E  

      ( ) ( ) ( ) 
+

=
+ −=+−= Tt

t ij
n
j ij

Tt
t i dplnpdjt,H  1E   

                                                                                           (4) 

and 

 ( )=+Tt,t,H ida E  

( ) ( ) ( )  = == ++−=+−   0 10 k ij
n
j ijj i ktplnktpjt,H E    

                                                                                           (5) 

provided that =T  so that  /T=  is the set of 

sampling intervals on T of period   which is a sub-multiple 

of T with T and   being design parameters satisfying these 

constraints. The control efforts are calculated by applying 

on a time interval  )1+it,t the control which has made the 

accumulated entropy of the error on an error event to be 

smallest one among all the error events on a tested previous 

time interval  )t,tt i−  which defines the so-called active 

model on  )1+it,t . It can be pointed out that the use of 

adaptive sampling or non-periodic sampling, in general, can 

improve in certain control problems either the transients by 

reducing, for instance, the overshoots or the numerical 

errors in computational computations as, for instance, the 

initial conditions in observability problems. It can be also 

useful to accommodate different signals integrated in the 

same problems whose natural running sampling periods are 

distinct because of the specific nature of the various 

interacting signals. See, for instance, [8-13] and some of the 

references therein.  To simplify the coming exposition, and 

with no loss in generality, the accumulated discrete-time 

entropy is the particular one used for testing in the sequel. 

Then, the following switching algorithm is proposed to 

select online the active model along the next evaluation time 

period: 

 

Algorithm   

Step 0- Auxiliary design parameters: 

Define the prefixed minimum inter-sample period threshold 

0minT  and   being an auxiliary time interval, 

minT0 , to measure the possible degradation of the 

current active model in operation what foresees a new 

coming switching.  

   

Step 1-Initial control: 

( ) ( )tutu i=  for 0tt = , with 00 =t , for some arbitrary model 

1+Qi and make ( ) 00 = +Zk , the initial active control 

being ( ) 10 += Qia  an the initial running integer for 

switching time instants is 0=k . 

 

 

 



Step 2- Eventually switched control: 

( ) ( )  )( )  )( )








==
+

t,t,Hmint,t,Htutu kjda
Qj

kidai EE
11

: ; 

 )kkk Tt,tt +  

                                    

 )( )
( )

 )( )














++

+
 kkjda

Qij
kkida t,t,Hmint,t,H EE

11

                                                                                            (6) 

such that 

                 -   current active model: ( ) 1+= Qita ; 

 )1+ kk t,tt  is the active model in the set of ( )1+Q  

models which generates the control on  )1+kk t,t , 

                 -  next active model: ( ) ( ) 1+= Qijta  , 

such that 

 

 ( )  ( ) −− ++
+

++ 11
11

11 kkda
Q

kkjda t,t,Hmint,t,H 


EE  

is the next active model to be in operation at  the next 

switching time instant 1+= ktt .  

- The switching time instants ( ) kkkkk Ttttt +== ++ 11 and 

the inter-switching time periods 

( ) minkkk TtTT = for + 0Zj depend on the set of 

preceding sampling instants 

 ( ) ( ) ( ) ...,tt,,tt,tt,t kk 112010 0 −=  . 

- The control law (6) is calculated by computing the 

accumulated discrete- time entropies  with the following 

probabilistic rule: 

( )
( ) ( )

( ) +

+
−=+

=
n
j ij

ijij
ij

kte

ktetk
ktp

1

1




 ; 1+ Qi , nj , 

 0 /Tk , + 0Rt                                                (7) 

with ( ) ( )( )tk,tk ijij 0  ; 1+ Qi , nj , and 

( ) ( ) ( )txtxte jijij −= ; 1+ Qi , nj , + 0Rt  

 

Step 3-Updating the activation of the next active control 

and inter-switching time interval:  

Do 1+ kk  with kkk Ttt ++1 being the next controller 

switching time instant to the next active  model 

( ) 11 ++ Qta k , re-initialize all the models to the measured 

data, that is, ( ) ( )11 ++ = kki txtx  ; 1+ Qi and Go to Step 2. 

 

Remarks. 1. Note that the initial control runs on a time 

interval lasting at least the designed time interval length 

minT . In the case of availability of some “a priori” 

knowledge about the adequacy of the various models to the 

epidemic process in the initial stage of the disease, this 

knowledge can be used to overcome the arbitrariness in the 

selection of the initial controller. 

2. Note also that if
( )

( )



jte

jte
k

ij

n
j ij

ij
+

 +


=1
 ; 1+Qi , 

nj , + 0Rt then the global probability of the summed 

out partial probabilities of the error event iE  cannot be 

inflated (that is, exceeding unity)  but it can be deflated (that 

is, being less than unity). This is due to the fact that they are 

estimated from measured errors related to the true available 

data. If ( ) 1−= ntkij ; 1+Qi , nj , + 0Rt  then such 

a global probability is neither inflated nor deflated for all 

time. 

( ) ( )
( )

( )( ) 















+

+
−−=+





=

==
n
j ij

ijn
j

n
j ij

jte

jte
njtp

1

11 11




 ; 

1+ Qi , + 0Rt . Note also that the fact that ( )tkij  can 

be time-varying so that the probabilities have a margin for 

experimental design adjustment relies with the problem 

statement of probabilities subject to possible errors in the 

theoretical statements of the above sections. 

III. EXAMPLE 

    This section contains a simulation example illustrating the 

application of the proposed Entropy paradigm to the  

parallel structure of the multi-model epidemic system. Thus, 

the behavior of the supervisory algorithm will be shown in 

this section through numerical examples in open and closed-

loop operation. The accurate model considered as the one 

generating the actual or true data is the SEIR (susceptible- 

exposed-infectious- recovered - or immune-) one described 

in with vaccination:  

)t(V)t(R)()t(I
dt

dR

)t(I)()t(E
dt

dI

)t(E)()t(I)t(S)t(
dt

dE

)t(V)t(R)t(S)t(I)t(S)t(
dt

dS

++−=

+−=

+−=

−+−−=









 

where 02.=  years -1  is the growth and death rate of the 

population, 01.=  years -1 , 10.=  days -1 , 020.=  

days -1 are the instantaneous per capita rates of leaving the 

exposed, infected and recovered stages, respectively, and 

)t(V  denotes the vaccination. This model fits in the parallel 

structure given by where )t(V)t(u =  acts as the control 

command. The initial conditions are given by 

100000 .)(R)(I)(E)(S ==== . All the parameters are 

assumed to be constant except )t( , the disease 

transmission coefficient, which describes the seasonality in 

the infection rate and is given by the widely accepted 

Dietz’s model, ( ))tcos(b)t(  210 +=  with 260 .=  and 

60.b = . The function b(t )  describes annual seasonality in 

this example. Figure 1 shows the behavior of this system in 

the absence of any external action (i.e. in open loop). As it 

can be observed in Figure 1, the disease is persistent since 

the infectious do not converge to a zero steady-state value 

asymptotically. This situation will be tackled more 

efficiently by means of the vaccination function in order to 

generate a closed-loop system whose infectious tend to zero.  
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Figure 1. Dynamics of the seasonal epidemics. 

This accurate time-varying model is described by a 

number of simplified time-invariant models running in 

parallel with the same constant parameter values and fixed 

values of b . In this example. There are nine models in 

parallel, that is  9=Q , so that 10 models will be running in 

parallel. Now, a vaccination control is employed to avoid the 

persistency of the disease though time. To this end, the 

following state-feedback type vaccination law is used: 

)t(IK)t(SK)t(V activeIactiveS +=  

with 10.KS =  and 010.K I =  being the state-feedback 

control gains and )t(Sactive , )t(Iactive  the state 

components of the corresponding active model according to 

the supervisory algorithm. Along this section,  5=T  days 

and 815.kij = . It can be seen that both control commands 

are very similar with only some peaks associated with the 

switching process making the difference between one and 

another. It can be concluded that the proposed approach has 

been shown to be a powerful tool to model the complex 

time-varying system.  
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Figure 2. Evolution of the closed-loop system when 

vaccination is applied and the algorithm is used.  
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Figure 3. Active model when Algorithm 1 is employed. 

 

ACKNOWLEDGEMENTS 

      The authors are grateful to the Spanish Government for 

Grant RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE) 

and to the Basque Government for Grant IT1207-19.  

REFERENCES 

 [1]  E.Y. Erten, J.T. Lizier, M. Piraveenan and M. Prokopenko,  

“Criticality and information dynamics in epidemiological models”, 

Entropy, Vol. 2017, No. 19, article ID 194, pp. 1-11, 2017. 

[2]   M. De la Sen, “On the approximated reachability of a class of time-

varying systems based on their linearized behaviour about the 

equilibria: Applications to epidemic models”, Entropy, Vol. 2019, 

No. 21, Article ID 1045, pp. 1-31, 2019. 

[3]  R. Nistal, M. De la Sen, S. Alonso-Quesada and A. Ibeas, International 

Journal of Innovative Computing, Information and Control, Vol. 15, 

No. 6, pp. 2053-2067, 2019. 

[4]  Y. Nakata and T. Kuniya, “Global dynamics of a class of SEIRS 

epidemic models in a periodic environment”, Journal of 

Mathematical Analysis and Applications, vol. 363, pp. 230-237, 2010. 

[5]   L. Meyers, “Contact network epidemiology: bond percolation applied 

to infectious disease prediction and control”, Bull. Am. Math. Society, 

Vol. 44, No. 1, pp. 63-86, 2007. 

[6]   Q. Cui, Z. Qiu, W. Liu and Z. Hu. “Complex dynamics of an SIR 

epidemic model with nonlinear saturated incidence and recovery 

rate”, Entropy, Vol. 2017, No. 19, Article ID 305, pp. 1-16, 2017. 

[7]    M. De la Sen and S. Alonso-Quesada, “Model-matching based control 

for the Beverton-Holt equation in ecology”, Discrete Dynamics in 

Nature and Society, Vol. 2008, Article number 793512, 2008. 

[8]    M. Delasen, “Multirate hybrid adaptive-control”, IEEE Transactions 

on Automatic Control, Vol. 31, No. 6, pp.582-586, 1986. 

[9]    M. Delasen, “A method for improving the adaptation transient using 

adaptive sampling”, International Journal of Control, Vol. 40, No. 4, 

pp.639-665, 1984. 

[10] M. Delasen, “Application of the non-periodic sampling to the 

identifiability and model-matching problems in dynamic systems”, 

International Journal of Systems Science, Vol. 14, No. 4, pp.367-383, 

1983. 

[11] T.C. Hsia, “Comparison of adaptive sampling control laws”, IEEE 

Transactions on Automatic Control, Vol. AC17, No. 6, pp . 830-831, 

1972. 

[12] T.C. Hsia, “Analytic design of adaptive sampling control laws in 

sampled-data systems”, IEEE Transactions on Automatic Control, 

Vol. AC19, No. 1,  pp.  39-42, 1974. 

[13] E. Nagy, “Variable sampling interval linear stochastic control”, 

Proceedings of the 2000 American Control Conference, Vol. 1-6, pp. 

2780-2781, 2000. 

 

 
 

 


