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Abstract—Italy was the first European country severely hit
by the COVID-19 pandemic. In late February and March 2020,
the number of people requiring hospitalization and mechanical
ventilation has soared, putting a strain on the Italian health
system. In the absence of pharmaceuticals therapies, the govern-
ment implemented a set of mobility restrictions for transmission
containment. Starting from the need of predicting hospitalization
and ICU rates for the Umbria region in Italy, we propose the
application of a computational framework to model the epidemic
and analyze the effects of the imposed lock-down. We calibrate a
compartmental model of COVID-19 clinical progression using a
Bayesian method called Conditional Robust Calibration (CRC)
against the daily epidemiological data. Then, we perform a
robustness analysis on the calibrated model, in order to quantify
the influence of model parameters on the hospital capacity and to
draw possible scenarios of different containment measures. CRC
confirms the hypothesis of underestimation of new positive cases
and highlights how identifying presymptomatic transmission is
crucial for reducing the contagion. Moreover, our results show
the central importance of the lock-down timeliness and intensity,
in order to curb the contagion and avoid a relapse.

Index Terms—Epidemiological model, Bayesian calibration,
Robustness analysis, COVID-19, Italy.

I. INTRODUCTION

THE new severe acute respiratory syndrome-coronavirus

(SARS-CoV-2), the causative agent of COVID-19, was

identified in China in December 2019 and was characterized

as a pandemic virus on March 2020 by the World Health

Organization (WHO) [1]. In Italy, the European country most

affected by COVID-19, a cluster of pneumonia cases was

detected on February 2020 [2]. The levels of spread and

severity caused the implementation of drastic restrictions by

the Italian government, like social distancing and total lock-

down, imposed on 9 March [2]. Given this scenario, there is

the urgent need to represent and predict the evolution of the

outbreak in order to face the emergency and to make informed

decisions.

In this context, mathematical models help to understand the

spread mechanism and the dynamic of the pandemic, providing

estimates of effectiveness of different interventions. [3]–[5].

Since the diffusion of COVID-19 is complex depending on

many parameters and factors, different models are designed

and implemented starting from traditional models used in

the context of epidemiology. Many models are based on

the so called Susceptible-Exposed-Infectious-Removed (SEIR)

model, which divides the population into these four classes. To

describe the outbreak in China, an extended SEIR is used in

[6], while in [7] an estimation of the basic reproduction num-

ber, of the infection mortality and recovery rates is provided

with a Susceptible-Infectious-Recovered-Dead (SIDR) model.

In this work, our attention is focused on the case study of

Italy. To represent the disease evolution in Italy, in [4], the

SIDARTHE model is used to distinguish infected individuals

based on diagnosis while in [3] a metacommunity (SEIR)-

like transmission model is employed to estimate the effects

of restrictions on the human mobility and contacts. Here,

to represent the COVID-19 dynamics in Italy, we use a

compartmental epidemiological model taken from [8] and

presented also in [9], based on the classic SEIR model with

lock-down (L) measures (SEIRL), which takes into account

both asymptomatic and presymptomatic transmission.

This study started from the request to provide estimations

on hospitalization and Intensive Care Unit (ICU) rates for the

Umbria region in Italy, in order to support the Umbria Health

Government in making decisions regarding staff resources and

hospital beds. In this work, we apply the modeling strategy

developed for the Umbria region to estimate model parameters

for Italy. We present the results of the Bayesian method called

Conditional Robust Calibration (CRC) [10]–[12], also applied

to the Umbria region. Then, for Italy, we perform a Conditional

Robustness Analysis (CRA) through our CRA Toolbox, in

order to understand the influence of epidemiological parame-

ters and progressive restriction measures on the hospitalization

capacity and logistics [13], [14]. Our analysis shows how the

combination of model calibration and robustness analysis can

be used as a support to make reliable predictions on the scale

of the outbreak and on the evaluation of the timescale and

impact of interventions.
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II. METHODS

A. Mathematical model

The SEIRL model used in this work, shown in Fig.1,

takes into account different clinical stages of the infection.

Susceptible individuals (class S) start out in an exposed (class

E) where they develop the infection but do not transmit it. E
individuals enter the presymptomatic class (class PS) since

they may be able to transmit the virus before developing

symptoms. The other classes are: asymptomatic infection

(class A), mild infection (class M ), severe infection (class H ,

hospital stay), critical infection (class ICU ) and recover (R) or

die (class D). The model assumes that only people in a critical

stage die and that all individuals have equal susceptibility to

infection. The total population size N = S+E+PS+A+M+
H+ICU +R+D is supposed to be constant. The dynamical

system is represented by the Ordinary Differential Equations

(ODEs) described in [8] (see Supplementary Materials at

http://gitlab.ict4life.com/chiara.antonini/model covid19).

Model parameters represent the transmission rates at the

different stages of the disease (bi i = e, 0, 1, 2, 3), the

different recovery rates (gi i = 0, 1, 2, 3) and the death rate

(u), the rate of exit from classes E and PS , (ai i = 0, 1, re-

spectively), the progression rate from mild to severe infection

and from severe to critical infection (p1 and p2, respectively) .

These rates can be derived from the following input parameters

according to the formulas in [8] (see Supplementary): Presym-

Period is the length of the infectious phase of incubation

period (IncubPeriod, days), DurMildInf and DurAsym are,

respectively, the average duration of mild and asymptomatic

infections (days). FracSevere, FracCritical and FracAsym are

the average fraction of severe, critical and asymptomatic

infections. DurHosp is the average duration of hospitalizations

for people with severe infection while TimeICUDeath is the

average duration of ICU admission (days) and CFR is the case

fatality rate.

Moreover, the model takes into account the possibility of

an intervention in order to reduce infection transmission. We

introduce two more parameters, s0 and s1, representing the

reduction in transmission from presymptomatic/asymptomatic

infection and mild infection, respectively. The employment

of personal protective equipment (PPE) in hospitals may also

reduce the probability of infection, represented with parameter

s2 . These parameters decrease transmission rate constants as

follows: be = be · s0 , bi = bi · si , i = 0, 1, 2 , b3 = b3 · s2.

B. Data

We perform parameter estimation against hospitalized, ICU

and dead patients (H, ICU, D), which represent the most

reliable measures. Indeed, we suppose that the number of

mild infections is underestimated, due to under registration

and testing only patients with symptoms or pneumonia [3],

[16]. Data are available on the GitHub repository of the Italian

Civil Protection Department [15].

C. Model calibration and conditional robustness analysis

Here, we summarize the main aspects of the methods

used for model calibration and robustness analysis. CRC is

an Approximate Bayesian Computation Sequential Monte

Carlo (ABC-SMC) approach for nonlinear model calibration

that considers the parameter vector as a random variable

[12]. It is an iterative algorithm based on the sampling of

a proposal distribution and on the definition of multiple

objective functions, one for each observable. CRC estimates

the probability density function of parameters conditioned to

the experimental measures and compared to other ABC-SMC

approaches it has a reduced computational cost. After model

calibration, we perform the Conditional Robustness Analysis

(CRA) on model parameters, using the CRA Toolbox [13],

[14]. The CRA measures the influence of parameters on

a specific variable through computation of the Moment

Independent Robustness Indicator (MIRI). Parameters with an

high MIRI value have a significant variation on the selected

output variable, represented through an evaluation function.

Here, we use the CRA to evaluate the impact of model

parameters on the hospitalization capacity, i.e. on H and ICU.

More details of CRC and CRA can be found in [10], [12], [14].

III. RESULTS

First of all, we calibrate the ODE model using the data from

24 February to 3 May 2020, assuming that the initial day of

virus introduction is 30 days prior to the first ten registered

deaths [16]. We also introduce the following interventions:

21 February 2020, creation of two quarantined red areas

under strict lockdown in Lombardy and Veneto; 24 February

2020, school closure in most regions in the Northern of Italy

(Lombardy, Veneto, Emilia-Romagna, Friuli Venezia Giulia,

Liguria, Piedmont and part of Marche); 5 March 2020, school

closure in the entire country; 8 March 2020, total lock-down

area in the Northern of Italy; 10 March 2020, total lock-down

area extended to all Italian regions. All these containment

measures are implemented in the model through parameter

vector s0 = [s01, s02, s03, s04]. Since the lock-down was im-

posed at a distance of two days in the Northern and remaining

part of Italy, we include both of them in a unique parameter

(s04), considering also the delay in social acceptance of the

restrictive intervention. Parameter s1 represents the reduction

of transmission of mild infected people due to a total ban

on leaving their houses while parameter s2 implements the

employment of PPE in hospitals.

A. CRC results

The parameter vector to estimate for Italy consists of

fifteen model parameters and six intervention parameters, i.e.

p ∈ R
21, while for Umbria, there are only four intervention

parameters to estimate (school closure and total lock-down),

i.e. p ∈ R
19. The tuning parameters of CRC are set as

follows: the number of samples in the parameter space is set

to NS = 105 for each iteration; the number of iterations is
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Fig. 1: Graphic representation of SEIRL model. Clinical stages of infection are: Susceptible (S), Exposed (E), Presymptomatic (PS),
Asymptomatic (A), Recovered (R), Mild infection (M ), Severe infection (H), Critical infection (ICU ) and Dead (D). Control measures:
Lock-down measures (L) and personal protective equipment (PPE).

equal to 8; the number of realizations performed is set to 10,

to ensure reliability of results.

Fig.2 depicts the behavior of output variables for Italy, when

parameters are equal to the mode of the approximate posterior

distribution returned by CRC in one of the final realizations

(see Supplementary). Model simulations are shown together

with the data, proving that CRC achieves consistent results for

all variables. Moreover, we can see that there is a significant

shift between mild infections predicted by the model and the

observed data, because people were tested many days after the

onset of the first symptoms, especially during the most critical

phase of the epidemic.

Using the mode vector, the estimate of the initial reproduc-

tion number R0 is equal to 4.65. We also estimate that contain-

ment measures have progressively reduced the presymptomatic

and asymptomatic transmission by 40% in the first phase up to

90% during the total lockdown. On the other hand, quarantine

and isolation of mild infected and wearing PPE have taken to a

reduction in transmission of about 85% and 80%, respectively.

As shown in Supplementary, the presymptomatic transmission

rate is estimated much higher with respect to all the other

rates, meaning that people in the presymptomatic phase play

a central role in the COVID-19 spread.

Fig. 3 shows the result of the application of CRC to the

Umbria region. Also in this example, the method is successful

in replying the behavior of H, ICU and D while we notice the

same shift as before for mild infected people. This mismatch

finds a complete confirmation in Fig. 4 where the model

prediction of new positive cases is in agreement with the data

of the Istituto Superiore di Sanità (ISS). Indeed, the peak of

new cases predicted by the model and the peak of symptom

onset registered by the ISS are both around mid-March. The

estimate of R0 for Umbria region is equal to 5. CRC estimates

similar values for process parameters for both Umbria and

Italy (see Supplementary).

As regards the computational cost, CRC takes around 1

hour to complete ten realizations of one iteration. All the

simulations are performed using Matlab (R2019a) on a Intel

Core i7-4700HQ CPU, 2.40GHz 8, 16-GB memory, Ubuntu

18.04 LTS (64 bit).

B. CRA results

After model calibration, we run the CRA algorithm on the

Italy case, through the CRA Toolbox software [14], in order

to identify those model parameters that influence most the

healthcare capacity. For this purpose, we choose as evaluation

function the area under the curve of H. The lower and upper

boundaries of the sampling intervals for the parameter space

are fixed equal to the lower and upper 90 percentile of the final

pdf estimated by CRC (see Supplementary). We perturb the

parameter space with Linear LHS generating 104 samples and

we set equal to 1000 the dimension of the upper and lower tail

of the evaluation function pdf, in order to guarantee a stable

estimation of the conditional parameter pdfs [13]. We perform

10 realizations of the entire procedure to ensure invariance and

stability of results.

Through the CRA, we analyze two different temporal sce-

narios: a short one from the end of January until mid-May and

a longer one until the end of October. In the second case, we

add two more intervention parameters for asymptomatic and

presymptomatic transmission, i.e. s05 and s06, in order to take

into account the progressive lock-down release implemented

by the Italian government in May. In more detail, from

May 4 some businesses were allowed to reopen while from

May 18 lock-down measures were almost completely lifted,

maintaining only social distancing, mandatory PPE in closed

places and ban of most public events. Because these two

parameters are not estimated, their range of variation is set

to [0.1-0.9]. Since there is a pretty long delay between the

implementation of social distancing measures and the decline

or rise in cases and deaths, depending on whether these
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Fig. 2: Italy case. Time behavior of state variables when the parameter vector is equal to the final mode vector computed by CRC (black
line); dots represent the data [15]. Data and simulations are in log-scale, normalized over the whole Italian population (∼ 60 million) and
multiplied by 105. The colored area reproduces the variation of the temporal behavior when parameters vary between the 60, 70 and 90
confidence intervals of their corresponding conditional pdfs (see Supplementary). Time starts from 27 January 2020.

Fig. 3: Umbria case. Time behavior of state variables when the parameter vector is equal to the final mode vector computed by CRC (black
line); dots represent the data [15]. Data and simulations are in log-scale, normalized over the whole population of the region (∼ 882000)
and multiplied by 105. The colored area reproduces the variation of the temporal behavior when parameters vary between the 60, 70 and
90 confidence intervals of their corresponding conditional pdfs (see Supplementary). Time starts from 21 February 2020.
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Fig. 4: Comparison of new positives cases for Umbria. (a) Epidemic curve estimated by the model in comparison with the observed data
of the Italian Civil Protection Department [15]. (b) Epidemic curve based on date of sample and symptom onset estimated by the ISS.

measures are enforced or lifted, we are just starting to see

the outcome of these government actions [9]. Through a wide

perturbation of parameters s05 and s06, we seek to understand

the impact of these interventions in the present and future

months, when a possible second wave of COVID-19 cases

may occur.

Fig. 5 shows MIRI values returned by the CRA in the two

different scenarios while in Supplementary the corresponding

parameter pdfs are reported. In the first example, MIRIs are

strongly influenced by presymptomatic transmission through

parameters be and PresymPeriod. MIRIs highlight also the

importance of parameter s02, which represents the school

closure in the Northern Italian regions about one month after

the starting of the epidemic. As regards the second example,

the most relevant parameter is s06 which can determine or

not a relapse of the disease. Indeed, by looking at the pdf in

Supplementary, we can see that a value above ∼ 0.25 may

cause the epidemic to start again with full intensity. In Fig. 6,

three different scenarios are presented, varying the strength of

the restrictive measure release.

The computational cost of the CRA Toolbox is lower than

that of CRC, since the CRA runs ten realizations in around 10

minutes with the same computational power used for CRC.
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Fig. 5: Boxplot of the 10 realizations of the MIRIs in output from the CRA for all model parameters.
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(b) s05 and s06 are set to 0.15 and 0.25.
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(c) s05 and s06 are set to 0.25 and 0.5.

Fig. 6: Predictions of H and ICU time behavior by varying intervention parameters s05 and s06.

IV. DISCUSSION

In this study, we successfully calibrate a SEIRL model of

the COVID-19 dynamic against data for Italy and Umbria

region, using the Bayesian method CRC.

First of all, our analysis shows the crucial role played

by presymptomatic individuals in transmitting the infection.

Indeed, the presymptomatic transmission rate be is estimated

much higher with respect to all the other transmission pa-

rameters (see Supplementary), meaning that infected people

at this stage of disease notably speeds up the contagion. The

other parameter related to presymptomatic transmission is the

duration of the presymptomatic period. Given an incubation

period of about 5 days estimated by CRC, in accordance

with [17], the presymptomatic phase lasts about 3 days,

during which infected people may transmit the virus without

having symptoms. Moreover, the CRA reveals that these two

parameters must be put under control in order to contain the

number of hospitalizations. While PresymPeriod cannot be

reduced, parameter be can be mitigated through face masks,

higher hygiene standards and social distancing. According to

the conditional pdf of be (see Supplementary), the number of

hospitalized and ICU patients can be limited trying to keep

be under 1.05. This result also highlights the urgent need of a

policy of population-wide testing and contact tracing in order

to detect and isolate presymptomatic cases as soon as possible.

Containment measures such as swab testing and centralized

quarantines are essential also for confining asymptomatic peo-

ple, estimated at about 31% of the total infections in Italy (29%

in Umbria) by our calibration procedure, consistent with [17],

[18]. However, estimating asymptomatic infections is a very

challenging task, since it may include also presymptomatic

cases who will develop symptoms later [19].

The time behavior of mild infections predicted by our model

is in agreement with [17], where it is stated that the median

time between onset of symptoms and positive diagnosis ranges

between 2 and 6 days. Moreover, CRC estimates a slightly

higher number of people with mild symptoms, confirming the

fact that released data are strongly dependent on the testing

capacity of each Italian region, which was not always able

to increase at a similar rate as the epidemic spread and was

sometimes impaired by the lack of kits and reagents [3]. In

addition, the model correctly predicts the peak of the curve

of new positive cases in accordance with ISS data for Umbria

region. If the model is correctly specified, then the difference

between observed and model based incidence of SARS-CoV-

2 infections represents the estimate of undiagnosed and unre-

ported cases.

Then, the CRA applied to Italy reveals the extreme impor-

tance of the lock-down timeliness, through the higher value of

parameter s02 compared to the other intervention parameters.

Acting about one month after the start of the epidemic, trying

to reduce transmission of at least 50%, is determinant for
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avoiding the overload of the health system’s capacity while a

too early lock-down would only postpone the outbreak but not

its strength [20]. While these restrictions were adopted at the

end of February, we started seeing their effectiveness around

April due to clinical and epidemiological characteristics of

COVID-19 [9]. Indeed, both the natural progression of the

disease and the residual transmission during the lock-down

phase, such as household transmission, may generate long

delays between the beginning of restriction measures and the

observation of their efficacy. This tardiness may impair the

analysis of the influence of each containment measure, when

they are implemented within a few days between each other.

Thus, also the institution of two red areas in Lombardy and

Veneto, corresponding to parameter s01, is incisive for reduc-

ing the number of hospitalized people. However, its effect is

hidden by the successive restrictive measure (parameter s02),

since they occur at a distance of three days one from the other.

Through the CRA, we are also able to make some predictions

about the future evolution of the epidemic, depending on the

adoption of different distancing measures. We predict that

loosing the lock-down significantly may cause a second wave

of COVID-19 spread in the next autumn. However, these long-

term predictions are strongly correlated to people’s behavior

in private and work life and to their contact rates.

Finally, this study has some limitations that, however, do not

compromise our main conclusions. The model does not take

into account the seasonality in transmission rates, as occurs

with other respiratory diseases such as influenza. Furthermore,

it must be noted that the Italian health system is highly decen-

tralized, since most administrative and organizational decisions

are taken at a regional level [21]. During the pandemic, the

cross-regional movement was almost completely prohibited

and, thus, a natural future development of this work would

be to study each Italian region separately using the same

framework, following the example of the Umbria region.

V. CONCLUSION

We presented the application of a new framework, based on

the calibration method CRC and on the CRA algorithm, to a

SEIRL model using COVID-19 contagion data for Umbria

and Italy. CRC allow us to estimate both epidemiological

parameters and the effect of progressive restriction measures

imposed to the Italian population. Then, robustness analysis

evaluates how much each of the model parameters influences

the hospital demand.
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