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Abstract—Computer software that parses electronic files is
often vulnerable to maliciously crafted input data. Rather than
relying on developers to implement ad hoc defenses against
such data, the Language-theoretic security (LangSec) philosophy
offers formally correct and verifiable input handling throughout
the software development lifecycle. Whether developing from a
specification or deriving parsers from samples, LangSec parser
developers require wide-reach corpora of their target file format
in order to identify key edge cases or common deviations
from the format’s specification. In this research report, we
provide the details of several methods we have used to gather
approximately 30 million files, extract features and make these
features amenable to search and use in analytics. Additionally,
we provide documentation on opportunities and limitations of
some popular open-source datasets and annotation tools that will
benefit researchers which need to efficiently gather a large file
corpus for the purposes of LangSec parser development.

Index Terms—LangSec, language-theoretic security, file corpus
creation, file forensics, text extraction, parser resources

I. INTRODUCTION

Software that processes electronic files is notoriously vul-

nerable to maliciously crafted input data. Language-theoretic

security (LangSec) is one software development method that

offers assurance of software free from common classes of

vulnerabilities. Whether LangSec parsers are built from formal

specifications or are derived from samples, these parsers

require wide-reach corpora for inference and/or integration

testing throughout the development cycle. In this paper, we

report on work to date in building a wide reach corpus to

support the development of LangSec-based parsers. Specifi-

cally, in the early stages of this work, colleagues are applying

LangSec techniques to build assured parsers for the Portable

Document Format (PDF) file type.

The Portable Document Format – initially released by

Adobe in 1993 – is immensely popular and in use globally in

many applications, and has been the subject of research into
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malware detection [1] [2] [3] since the first virus was discov-

ered in the PDF file type in 2001 (the OUTLOOK.PDFWorm
or Peachy virus) [4]. The file type – which encapsulates text,

fonts, images, vector graphics, and other information needed to

display the document – is prone to manipulation by malicious

actors and inconsistent implementations against the Interna-

tional Organization for Standardization (ISO) specifications

outlined for each version of PDF (e.g. producing valid PDFs

from malformed files) [5]. These challenges and continued

wide-spread use of the file type provide the motivation for an

initial focus on this file format.

We share our findings and report our work to-date in

building a large-scale, wide-reach corpus; further, we discuss

initial steps towards search and analytics on this corpus

to enable research into features of “files in the wild” and

the construction of development corpora for LangSec-based

parsers using the attributes available for each file as filters in

search. We believe that our lessons learned and work to-date

will help address some of the challenges faced by researchers

and parser developers who need to generate their own corpora.

Further, we have plans to release our corpus generation and

annotation tools to the general public to support LangSec-

based parser development.

II. BACKGROUND AND RELATED WORK

Since at least Garfinkel et al.’s seminal work in gathering

and publishing a collection of one million files – GovDocs1

[6] – researchers and parser developers have recognized the

value of publicly available, large scale corpora for developing

and testing file parsers and forensic tools. In the open source

world, for example, at least three Apache Software Foundation

projects (Apache Tika [7], Apache PDFBox [8] and Apache

POI [9]) rely on Garfinkel et al.’s corpus for large scale

regression testing and have extended this corpus to include

a richer set of more diverse and more recent file types [10]

[11]. Additionally, researchers writing digital forensics (DF)

tools have noted the value in curating large-scale corpora for

development of these tools and their ability to enable direct

comparison of different approaches and tools under develop-
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ment, in addition to providing the means for reproducibility

[6] [12] [13].

Forensics tools and LangSec-based parsers are typically

applied to datasets that are large and generated by human

beings [6], and unique challenges exist when developing

large-scale, wide-reaching corpora for digital forensics and

development of LangSec-based parsers. There is a need for

data diversity across file types, their content, and temporal

attributes (date of creation, last modification date, and others)

[12]. Due to the ubiquity of file formats such as PDF – which

themselves contain near limitless combinations of content

(fonts, images, links, etc.) – corpora used for development of

LangSec-based parsers must be as expressive and diverse as

possible in order to ensure coverage of possible stresses and

edge cases presented to parsers. It is not enough to benchmark

parser performance against files from a single creator tool,

source organization or individual, point in time, geographic

location, and so on.

There are also challenges in gathering files for and hosting

multi-terabyte corpora for use by the research community.

While cloud-based solutions are now available for corpora

generation (file gathering or crawling) and both access to

internet and connection speeds have improved dramatically,

downloading multi-terabyte corpora in bulk is still not practical

and may not be feasible, depending on the resources of the

researcher(s). In addition, it is arguable that – at least from

the perspective of generating corpora – that Jevon’s paradox

may be applicable in this environment [14], in that the scale

and diversity of generating corpora is only limited by its cost

computationally and financially. In other words, the growth in

scale and diversity of corpora is a function of the efficiency in

which a resource is used (in this case, computational resources

for gathering and annotating files). Filtering and search tools

are needed in order to locate specific files of interest.

As such, a parallel effort is being undertaken to facili-

tate search and descriptive analytics on extracted features in

conjunction with gathering the corpus. Our model for this

is VirusTotal [15], which allows users to search by a rich

set of features [16]. VirusTotal offers a useful ontology as

a basis for file types and features that should be supported

in an analytics and retrieval system. In practice, however,

researchers and parser developers require far more features to

target specific aspects of the file format of interest - features

that not only provide information about the characteristics of

the files themselves but also the structure of their content.

Further research and development effort is required to identify

and provide features of interest to the LangSec community

(like those features provided by VirusTotal) to enable search

and analytics on file corpora and provide the ability to locate

(and subset from a corpus) specific files of interest for research

or development of secure parsers.

Corpus-Generation Architecture Overview

For the present purpose of developing a corpus for use by

LangSec parser developers, we developed the pipeline shown

in Figure 1. Various data sources that have been identified are

piped into pre-processing blocks, which then store the files

in an Amazon Web Services (AWS) S3 bucket. The key data

source—Common Crawl—and the associated pre-processing

steps will be further discussed in Section III.

These pre-processed PDF files are then sent from the AWS

S3 bucket to several feature-extraction tools ranging from PDF

parsers to anti-virus software, of which Apache Tika and Clam

Anti-Virus are detailed in Section IV. The combination of

tools will ideally generate a set of features that sufficiently

characterize the content, structure, and malicious/adversarial

nature of a given file. However, in the event that more features

are required, the modular nature of this architecture allows for

additional tools to be incorporated in the feature extraction

step. For example, one could include a plethora of different

anti-virus software to further explore the correlation between

file content/structure and false positives.

Previous work has shown that providing files as stand-alone

corpora significantly simplifies the level of effort needed in

meta-data and text extraction [6], which is also applicable to

the development of LangSec-based parsers. In our pipeline,

features provided from feature-extraction tools are merged

into Amazon’s Athena database, which serves as the back-

end to store features which are then merged and indexed

into an Elasticsearch service. In conjunction with Kibana,

the Elasticsearch Application Program Interface (API) enables

researchers and developers to perform data analytics and visu-

alization. Functionality is also in development to enable users

to download subsets of the corpus that can be based on both

simple and complex filters. Preliminary results performed on

a subset of 20,000 PDF files using this pipeline are discussed

in Section V.

III. GATHERING FILES

In the following sections, we describe three methods for

gathering files: a) using Common Crawl data, b) focused,

intelligent, link-based crawling with Sparkler, and c) custom

API usage and/or scraping for high-value sites that may not

have the traditional link structure required for link-based

crawlers.

A. Common Crawl

Crawling the web is notoriously challenging and resource

intensive [17]. However, the web offers a tremendous amount

of real world, wide-reach data. The Common Crawl project

[18] offers researchers one option for working with large

amounts of “pre-crawled” data. In the next section, we offer

an introduction to Common Crawl and then a brief description

of how we gathered nearly 30 million PDFs from Common

Crawl.

1) Common Crawl Basics: The Common Crawl project

runs a monthly crawl across a large amount of the internet.

The December 2019 crawl contained 2.45 billion URLs,

comprising 234 terabytes (TB) of uncompressed content. For

each crawl, the project offers four types of data [19] and [20]:

1) WARC – WebARChive format. This is a standardized

format that for web archiving that includes the HTTP
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Fig. 1. Data pipeline for corpus generation illustrating file-gathering, preprocessing, storage, feature extraction, and subsequent deployment and analysis.

response status and headers (see Fig. 2 below), other

provenance metadata and the raw bytes retrieved for a

given URL (50 TB compressed)

2) WAT – Metadata files about the crawl (17.6 TB com-

pressed)

3) WET – Text extracted from HTML, XHTML and text

files (8 TB compressed)

4) URL Index Files – metadata for each URL including

HTTP response status code, HTTP header content-type,

detected content-type, detected language, whether the

content was truncated

Fig. 2. An example of HTTP headers stored in a WARC file

Not surprisingly, the majority of retrieved files were HTML

or XHTML. In Figure 3 and Table I, we report the top 10 most

common file types in the December 2019 crawl as detected by

Apache Tika.

Amazon hosts the data in AWS Public Data Sets, and

researchers can process the files on AWS or download all

the files or specific files from the web for local processing.

Common Crawl publishes indices of the content to enable

selection and extraction of specific files by original URL,

detected file type, detected language or several other features.

When working with data from Common Crawl, the team

noticed one major limitation and three areas that required

consideration and/or further processing.

MIME Number of Files
text/html 1,602,196,927

application/xhtml+xml 376,252,298
text/plain 50,931,060

application/octet-stream 23,184,879
UNKNOWN* 11,110,346

message/rfc822 2,680,373
application/atom+xml 2,660,439

image/jpeg 2,350,339
application/rss+xml 2,301,081

application/pdf 2,030,356

TABLE I
TOP 10 FILE TYPES IN THE DECEMBER 2019 CRAWL

The major limitation that the team noticed is that Common

Crawl does not crawl the entire web nor even entire sites.

As one example, we compared the number of pages returned

by Google and Bing for the ’jpl.nasa.gov’ domain, and we

compared that with the number of documents in the Common

Crawl index for the December 2019 crawl (II). The first three

data rows represent the total number of files. The second three

report the number of PDFs found on the site.

Search Engine Condition Number of Files
Google site:jpl.nasa.gov 1.2 million
Bing site:jpl.nasa.gov 1.8 million

Common Crawl *.jpl.nasa.gov 128,406
Google site:jpl.nasa.gov filetype:pdf 50,700
Bing site:jpl.nasa.gov filetype:pdf 64,300

Common Crawl *.jpl.nasa.gov mime= pdf 7

TABLE II
NUMBER OF PAGES BY SEARCH ENGINE AND FILE TYPE FOR

’JPL.NASA.GOV’

While the cause of this incomplete crawl is not clear, the

team suspects that the cause may be that the ’jpl.nasa.gov’
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Fig. 3. Number of files by MIME type

site relies heavily on javascript and a crawler would need to

render the javascript to extract all the links (with, e.g. headless

chrome). If a crawler is only crawling links within HTML for

this site (and others that rely heavily on javascript), the crawler

will only be able to reach a small portion of any website.

While working with Common Crawl data, our team identi-

fied areas for further processing:

1) Common Crawl truncates files at 1 MB. If researchers

require intact files, they must re-pull truncated files from

the original websites. In the December, 2019 crawl,

nearly 430,000 PDFs (22%) were truncated.

2) For rarer file types, one must gather files from across

different crawls. The earlier crawls do not include the

results of automatic file type detection, which means

users have three options to select files by type:

a) process all the data and run automatic file type

detection on every file

b) rely on the HTTP content-type header information

c) rely on the file extension as represented in the URL

3) The datasets are large, and even the indices are large

– the compressed index for the December 2019 crawl

requires 300GB of storage. If not working in AWS

or other cloud-based environments, researchers need to

have appropriate resources (network bandwidth, storage

and processing) to handle these data sets.

The team’s takeaway from the above is that Common Crawl

is an extremely useful resource for quickly gathering files

generally, but it cannot be relied upon for a complete crawl

of the web nor of specific sites.

2) Extracting PDFs: As an initial step, we selected crawls

from 2013 to present. Because Common Crawl was not

running file type detection on the earlier crawls, we performed

file type detection on every file in the selected crawls and

extracted the PDFs to S3 buckets. We added processing to

re-pull “truncated” PDFs from the original URLs. As of this

writing, we’ve gathered 30 million PDFs for researchers to

use.

B. Sparkler

Fig. 4. Sparkler dashboard showing collected PDFs from ghostscript and the
IRS website.

At its core, Sparkler is a Java-based web crawler that ex-

tends the functionality of Apache Spark [21], alongside other

Apache projects, such as Kafka, Lucene/Solr, Tika, and pf4j.

Sparkler is a much more extensible version of Apache Nutch

that runs on Apache Spark Cluster. Sparkler was initially

designed for use in DARPA MEMEX. However, due to its

general purpose crawling capabilities, it has been employed

in a variety of other projects, including DARPA SafeDocs.

Alongside its universality, one of the biggest benefits of using

Sparkler is its high performance, coupled with an extensive

real-time analytics dashboard, which allows for controlled

large-scale crawls. Sparkler also has an extensible plugin

framework and comes prepackaged with many useful add-

ons, including a plugin for JavaScript rendering, which allows

webpages to be searched in their final rendered state. Sparkler

Crawl Environment (SCE), on the other hand, is a set of tools

built on top of Sparkler that provides an efficient software

architecture that is used to enrich a domain by expanding its

collection of artifacts. SCE conveniently provides a Docker-

based command line interface (CLI) for building and running

jobs. Due to the extensible nature of both, we have used

Sparkler and SCE for experimental PDF crawls. Although

not always successful, Sparkler has yielded many interesting

results.

In order to use Sparkler, a crawling profile is first configured

in YAML. For our purposes, we enabled plugins that allowed

Sparkler to render JavaScript to resolve a wider range of links

and restricted crawling to the initially specified host so as

to not deviate too far from our target source. Additionally,

Sparkler was configured to be “polite” and we restricted

the amount of requests per second we made to any given

website. Lastly, Sparkler is initially configured with a regular

expressions filter to limit the pages it traverses. This filter is
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setup to avoid pages that identify their content-type as a file

or any links that end in common file extensions. In order to

make Sparkler collect PDF files, this filter was appropriately

modified. Once pages are crawled, Sparkler uses Apache Tika

to extract the text content and concatenates them and stores

them in Solr. While all documents can be recreated from this,

we decided to slightly modify the Sparkler source code to

dump found PDFs for automation purposes.

In order to use Sparkler at a more institutional level, we

explored many options of scaling its deployment. Initially

we tried using AWS Elastic Map Reduce (EMR) to host

Sparkler. However, this proved to require significant manual

configuration and was not as scalable as initially hoped, so

we switched over to using Kubernetes on AWS Elastic Ku-

bernetes Service (EKS). While Sparkler included a Kubernetes

deployment configuration, it was slightly out of date with the

Kubernetes version used by EKS and the latest version of Solr

and ZooKeeper, so the deployment was modified and a Pull

Request was submitted to the Sparkler repository.

Sparkler serves as a solution for on-demand crawling and

collection of PDFs. Since it assumes no prior knowledge of the

sites it crawls, it is much less efficient than individual website

scrapers and it cannot easily traverse websites built around

search APIs. Despite these limitations, we experimented with

using Sparkler to crawl ghostscript’s bug tracker and the

Internal Revenue Service (IRS) website 4. Results were mixed

and Sparkler was unable to return all available PDFs in a

reasonable search depth, but after crawling through 71,508

pages, 311 PDFs were found and collected. Going forward,

we aim to incorporate and extend related work that will allow

Sparkler to more intelligently traverse links based on search

relevance into our deployment.

C. Custom Crawlers

For a small number of critical sites, the team developed cus-

tom scrapers or relied on APIs to retrieve files. For example,

rather than crawling every issue on ghostscript’s Bugzilla issue

tracker [22], the team used Bugzilla’s API to query for issues

that contained attachments with mime-types including the term

’application’. Further, the team relied on JIRA’s API [23] to

retrieve attachments from PDFBox’s and Apache Tika’s JIRA

sites programmatically [24] [25].

IV. EXTRACTING FEATURES

It has been previously noted that gathering data for corpora

is easier than analyzing it and generating helpful features

[12]. An important driver of effective search – especially over

millions of files or documents – is the availability of rich,

expressive features (attributes) of the files contained in the

search corpus [26]. Features providing information about a

file can describe the type and structure of the file, its contents,

or the results of a virus scan using existing open-source tools.

Features may also be generated through rule-based encodings

or through the use of natural language processing (NLP),

machine learning (ML), or byte-frequency analysis approaches

which could be used to generate subsequent features of inter-

est. Part-of-speech and word-dependency tags provided from

CoreNLP [27] provide the means for extracting measurements

and their relations from text [28], and machine learning

techniques are enabling search capabilities on scientific data

[26].

We apply this thinking for the purposes of developing

search over a wide reach corpus to support the development

of LangSec-based parsers by using features of interest in the

generation of test corpora (which reduces corpus sizes and is

easier than distributing many terabytes of data [12]). As an

initial proof of concept, we randomly selected 20,000 files

from GovDocs1 and from our Common Crawl files in which

to provide features to enable search incorporating attributes

of interest to the LangSec community using the open-source

tools Clam Anti-Virus and Apache Tika.

A. Clam Anti-Virus

Identifying which files in corpora are malicious is important

to researchers and developers in the areas of parser and foren-

sic tool development. Tools such as VirusTotal – which provide

indications as to which files are malicious and the types of

malicious threats contained within those files – are valuable

tools for use in annotating documents and are leveraged here

for annotating those documents contained within a corpus.

One of these tools is the open-source software Clam Anti-

Virus, which supports a wide variety of file formats including

PDF [29], which is often utilized as a server-side email scanner

which reports the virus signatures detected within scanned

files or related heuristics. The utility allows users to refresh

virus signatures automatically or manually, and supports users

providing their own signatures for use within the software. The

utility also provides a multi-threaded daemon which may be

used to integrate the utility’s capabilities into various types of

software. While in use across many domains - including email

security, endpoint protection, and web scanning - comprehen-

sive reports on the effectiveness of Clam anti-virus against

corpora of malicious files are not known to the authors. The

effectiveness of current open-source tools such as Clam Anti-

Virus in detecting malicious files is not well documented, yet

the annotations provided by these tools may serve as valuable

information for researchers and software engineers developing

LangSec based, safe parsers.

The output of tools is often accepted on the basis of the

vendor or development team’s reputation and formal evalua-

tion of such tools is difficult without the availability of test

data that can be shared easily [6]. In order to establish a point

of comparison for the effectiveness of Clam Anti-Virus, we

explored the software’s capabilities using a corpus of internal

user-reported abusive emails from the NASA Jet Propulsion

Laboratory (JPL) for the year 2017 (n=3,115). The corpus and

email files contained within – provided by the laboratory’s

Security Operations Center (SOC) – is annotated by expert

security personnel following user submission into categories

pertaining to phishing attacks, malware, extortion, and others

(as shown in Table (III). Emails classified as malware are those
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that contain either a link, hidden pixel, or attachment which

downloads or installs malware used to infect the user’s system

or provide Trojan backdoor access.

Category Email Count
Credential Phishing 1,319

False Positives 495
Malware 3,115

Phishing Training 4,186
Propaganda 273

Recon 178
Social Engineering 1,190

Spam 1,312
Unknown 122

TABLE III
THE NUMBER OF EMAIL FILES REPORTED BY USERS FOR EACH OF THE

CATEGORIES DEFINED BY THE JPL SECURITY OPERATIONS CENTER

(SOC).

25.55% of user-reported emails (n=3,115) in the corpus are

annotated by the SOC as emails containing malicious content.

Given the advertised use Clam Anti-Virus as an email server

scanner, we evaluate the software’s ability to detect and report

the viruses and their types for files labeled as malicious in the

context that similar annotations on our PDF corpus will be

used for search and retrieval by LangSec parser researchers

and developers. Using the Go programming language together

with Clam Anti-Virus’s multi-threaded daemon, we scan files

labeled as malicious using the default software configuration

and report whether malicious content was detected and, if so,

the virus signature which was detected within the file. The

types of malware detected according to the virus signatures

available in Clam Anti-Virus at the time of writing are shown

in Table (IV) (while not the central focus of this work, it

may be noted that using Clam anti-virus in this way resulted

in a scan speed of approximately 183 files per second using

a 2.4Ghz Intel Core i9 chip (a single container); replication

of this pipeline through containerization or other means can

provide further scalability).

Virus Signature Type Email Count
None (false negatives) 2,854
Doc.Dropper.Agent 43
Java.Malware.Agent 9
Xls.Dropper.Agent 7
Pdf.Dropper.Agent 5

Doc.Dropper.Downloader 3
Doc.Downloader.Jaff 2

Other Types 205

TABLE IV
THE VIRUS SIGNATURE TYPES OF MALICIOUS FILES PROVIDED FROM THE

OUTPUT OF A CLAM ANTI-VIRUS SCAN.

Scanning the malicious files results in 274 files identified as

containing malicious content by Clam Anti-Virus utility and

its database of virus signatures, or 8.76% of the files in the

malicious category. The software’s support for the Portable

Document Format (PDF) is noted on the website [29], and

several emails with PDF attachments were labeled as malicious

according to Clam anti-virus in the user-reported emails made

available by the SOC. While a significant amount of false

negatives are present – which needs further examination and is

not a core focus of this work – the presence of detectable virus

signatures and the ability to integrate Clam Anti-Virus into an

annotation pipeline using the multi-threaded daemon provided

enough justification to include it for annotating documents

within the corpus.

As an early means of exploring the tools applicability in

this domain – and with the goal of providing helpful file

annotations to the LangSec community – we apply Clam Anti-

Virus in its default configuration to the random selection of

20,000 PDF files from the GovDocs1 and Common Crawl

datasets and report the results of the scan in Table (V).

Clam Anti-Virus identified 68 malicious files in our corpus

generated through random sampling (0.34%), with Heuris-
tics.OLE2.ContainsMacros and Pdf.Exploit.CVE 2017 2957
as the most frequent virus signatures (both with n=22 occur-

rences).

Virus Signature Type Email Count
None 19,932

Heuristics.OLE2.ContainsMacros 22
Pdf.Exploit.CVE 2017 2957 22
Heuristics.Broken.Executable 17
Pdf.Exploit.CVE 2018 4993 2
Pdf.Exploit.CVE 2016 6948 1
Pdf.Exploit.CVE 2018 4882 1

Win.Exploit.E107-1 1
Win.Trojan.C99-15 1

Heuristics.PDF.ObfuscatedNameObject 1

TABLE V
THE VIRUS SIGNATURE TYPES OF THE RANDOM SELECTION OF 20,000

FILES PROVIDED FROM THE OUTPUT OF A CLAM ANTI-VIRUS SCAN.

While the number of virus signature detections from Clam

Anti-Virus is small at 68 (0.0034% of the sample corpus),

the annotations provided by Clam anti-virus may be used by

researchers and developers in building LangSec based, safe

parsers by searching for and retrieving files with specific

types of known exploits. When scaled to many millions of

documents, searching for documents with specific known

exploits will allow for the generation of test corpora that

meet specific requirements and for use in development and

testing, with the hope that future parsers are not as vulnerable

to today’s known exploits. In this early work, we index the

annotations provided by the Clam Anti-Virus utility and apply

search and visualization capabilities as an exploration of this

concept.

B. Apache Tika

The Apache Tika annotator uses a Python [30] wrapper for

Apache Tika [31], a Java-based content detection and analysis

framework. It is capable of detecting and extracting metadata

and text from 1,400 different file types (such as PPT, HTML,

PDF, JPEG and MP3). Tika finds applications in a wide range

of areas such as search engine indexing [32], analysis of

corpora or file contents [33] [34] and translation [35]. In addi-

tion, Solr, Drupal, Alfresco, Sparkler [21], ImageCat, DARPA

323



MEMEX [36] and many internal projects at the NASA Jet

Propulsion Laboratory use Apache Tika for purposes related

to search and content extraction.

The Tika annotator was used to extract several features from

the 20,000 subset of PDF documents containing GovDocs1

and Common Crawl

(VI).

Feature Description
Author Author of the document

PDF version PDF Version of the document
Digital Signature Presence of digital cryptographic signatures

Creator Tool Tool creating the original document
Producer Tool converting from original format to PDF

Application Type MIME Type
Number of Pages Number of pages in the document

Number of Annotations Additional objects added to a document

TABLE VI
FEATURES EXTRACTED BY TIKA ANNOTATOR ON 20,000 SUBSET OF PDF

DOCUMENTS

The goal is to provide the results of this annotator to visual-

ize the datasets and provide a targeted search of documents in

the hopes of locating specific files of interest when developing

LangSec-based parsers, as is the case with Clam Anti-Virus.

V. VISUALIZING FEATURES

As mentioned in the previous section, the following visu-

alizations are based on a 20,000 file subset of GovDocs1 and

Common Crawl data. The team indexed the extracted features

in Elasticsearch [37] and used Kibana [38] for prototyping

potential visualizations.

LangSec developers need to understand file type distribu-

tions. We intentionally selected only PDF files for our proof

of concept feature extraction and visualization. However, PDF

files often contain several different file types, including image

files for inline rendering, font files and/or regular attachments

(including other PDF files!). In Fig. 5, we show the distribution

of the containers (PDFs) and all embedded files.

Fig. 5. Top 10 File Types for Container and Embedded Files

LangSec developers need to understand the temporal distri-

butions of files in a corpus. This will allow them to ensure a

broad range of tests of file formats through the years, as the

syntax of file formats evolve through time. From an industry

perspective, it can also be useful to visualize the adoption of

new versions. For example, in Fig. 6, we show the distribution

of PDF versions by year.

Fig. 6. PDF Version by Year

Developers and researchers also need to ensure coverage by

creation software. Different software packages may implement

standards differently, and it can be useful to ensure coverage of

files created by the major software vendors – see, e.g. Figure

7. For forensics researchers, it can also be useful to find these

characteristics to help confirm file authenticity.

Fig. 7. Creator Tools by Year (Top 2 per Year)

Given the complexity of character set encodings and lan-

guage directionality (left-to-right languages vs right-to-left

languages), developers and researchers need a diversity of

languages in their corpora. One of the recognized limitations

of GovDocs1 is its high concentration of English language

documents (see Fig. 8). CommonCrawl’s PDFs offer a slightly

broader distribution of languages (see Fig. 9) when compared

to GovDocs1, getting closer to the prevalence of the English

language’s representation within content on the web (at ap-

proximately 59%) [39].

VI. FUTURE WORK

Our next steps include three primary areas:

1) increase the breadth of feature extraction – as we work

with researchers and parser developers we continue to

identify new features that need to be extracted and made

searchable.

2) scaling – once we determine a minimum viable product

in terms of feature extraction and search, we plan to

scale out the indexing and search via Elasticsearch in

AWS.
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Fig. 8. Top 10 Languages in GovDocs1 PDFs

Fig. 9. Top 10 Languages in Common Crawl PDFs

3) making the data public – keeping in mind on cost, legal

concerns, and other priorities, we would like to provide

our toolsets and perhaps our corpus publicly, as has been

the case with previous work [40] [6]. If we can work

with Common Crawl or VirusTotal to include some of

the features we are extracting, that could help the parser

developer communities broadly.
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APPENDIX

A. JPL Abuse Data Malware Categories

• Credential Phishing: Attempts to trick the victim into

providing sensitive username/password information. Usu-

ally contains a link which directs the victim to a site

requesting they enter in the username/password.

• False Positive: A legitimate email that is mistakenly

labeled as a malicious email.

• Malware: An email which contains either a link, hidden

pixel, or attachment which downloads or installs malware

used to infect the user’s system or provide Trojan back-

door access.

• Phishing Training: Test phishing emails sent to users to

measure their susceptibility for falling victim to phishing

attacks.

• Propaganda: Email containing political, religious, or

other debatable information use to spread the attackers

ideas and world views.

• Recon: Email used to gather more information, usually to

prepare for another future attack. For example, if you ever

see an email from an unknown Gmail or Yahoo account

with a blank subject-line or content, the email is likely

a test email to determine if your email account is active

and may be used for a future attack.

• Social Engineering: An email attempted to trick the

user into responding to the email or provide sensitive

information (Example: Nigerian lottery).

• Spam: A non-malicious marketing email.

• Unknown: An email that was not well categorized into

any of the above categories.
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