
ELF Analyzer Demo: Online Identification for IoT
Malwares with Multiple Hardware Architectures

Shin-Ming Cheng∗†, Tao Ban‡, Jr-Wei Huang∗, Bing-Kai Hong∗, and Daisuke Inoue‡
∗Department of Computer Science and Information Engineering,

National Taiwan University of Science and Technology, Taipei, Taiwan
†Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

‡Cybersecurity Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan
Email:{smcheng, m10815007, d10815003}@mail.ntust.edu.tw, {bantao, dai}@nict.go.jp

Abstract—This demonstration presents an automatic IoT run-
time platform with a web interface, ELF Analyzer, where
suspicious ELF files uploaded by users could be executed and
dynamically analyzed for malicious behavior identification. The
key component of our platform is a crafted IoT sandbox, where
multiple hardware architectures are emulated using QEMU.
With the introduction of strace functionality, we demonstrate
that system call and traffic logs of an uploaded ELF file with
different hardware architectures can be generated successfully.
After proper analysis, malicious ELF files can be identified.

Index Terms—architecture emulation, dynamic analysis, IoT
malware, QEMU, strace

I. INTRODUCTION

In order to understand the behavior of tremendous kinds
of IoT malwares, static code analysis or dynamic runtime
analysis are necessary. However, with multiple architectures,
such as ARM, MIPS, X86, PPC, or SPARC, the execution
of malware binaries in different hardware architectures are
tough, thereby making dynamic analysis challenging [1]. We
developed an automatic IoT runtime platform with a web
interface, ELF Analyzer, where different hardware architec-
tures are emulated using QEMU so that an ELF file can be
executed in a customized virtualized system. By including
strace functionality, our platform could retrieve system call
as well as network traffic logs of the examined ELF file, and
consequently malicious one can be identified.

II. SYSTEM DESCRIPTION OF ELF ANALYZER

As shown in Fig. 1, various kinds of IoT malwares down-
loaded from malware databases (such as Virustotal) are ex-
ploited as the training dataset for malicious behavior identi-
fication. Users could upload any suspicious ELF file to the
platform via the web interface to verify its legality. The parser
located in the platform scans the file header to determine the
corresponding hardware architecture.

The core part of the platform is a crafted sandbox, where
eight main IoT hardware architectures, including ARM, MIPS,
X86, X86-64, PPC, SPARC, SH4, and m68k, are emulated
using QEMU. According to the information in the file header,
the file is delivered to the virtualized system with correspond-
ing architecture. Then we build a strace-enabled OS using
OpenWRT or lightweight Buildroot on the system and execute
the file to get system call logs and network traffic pcap files.

Fig. 1. Operation flow of ELF Analyzer

(a) ELF file uploading interface (b) Identification result

Fig. 2. ELF Analyzer Intefaces

For example, the solid and dot lines respectively represent
virtualized systems with MIPS architecture and OpenWRT
OS as well as SPARC architecture and Buildroot OS. To
ensure that the file could be executed and communicated with
outside servers normally, we simulate various Internet services
using Inetsim and build a Mirai-based C&C server. By
using a simple classifier such as KNN, our platform returns
identification results to the users via the web page or an email.

III. DEMONSTRATION

Fig. 2 shows the web interfaces of ELF Analyzer where user
could upload ELF files for testing and get the identification
results.

REFERENCES

[1] Y. Minn, P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: Analysing the rise of IoT compromises,” in Proc.
USENIX Workshop 2015, Aug. 2015.

126

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Shin-Ming Cheng. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00036


