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Abstract—Formal languages are ubiquitous wherever software
systems need to exchange or store data. Unparsing into and
parsing from such languages is an error-prone process that has
spawned an entire class of security vulnerabilities. There has
been ample research into finding vulnerabilities on the parser
side, but outside of language specific approaches, few techniques
targeting unparser vulnerabilities exist.

This work presents a language-agnostic approach for spotting
injection vulnerabilities in unparsers. It achieves this by mining
unparse trees using dynamic taint analysis to extract language
keywords, which are leveraged for guided fuzzing. Vulnerabilities
can thus be found without requiring prior knowledge about the
formal language, and in fact, the approach is even applicable
where no specification thereof exists at all. This empowers
security researchers and developers alike to gain deeper under-
standing of unparser implementations through examination of
the unparse trees generated by the approach, as well as enabling
them to find new vulnerabilities in poorly-understood software.

I. INTRODUCTION

Injections are the most widespread and critical vulnera-

bilities according to the OWASP Top 10 [1]. They come in

multiple names, hence Cross Site Scripting (XSS) (Top 7 on

the list) is just one variant of the general injection problem.

For prominent languages, like HTML and JavaScript, injec-

tion vulnerabilities can be mitigated by using existing frame-

works that correctly generate documents of such languages.

These frameworks prevent injections by utilizing unparsers

that correctly encode all data which developers pass to a

HTML or SQL document.

However, injections may occur in every output of a program,

not only in these well known languages. Figure 1 provides

an overview of this generalized situation. More specifically,

whenever an unparser takes a typed representation of data and

serializes it to an untyped one, i.e. a String, the syntax of the

serialized representation has to preserve the type information.

If the unparser fails to enforce that syntax for some input, this

is called an injection vulnerability. Note, that this untyped

representation or document does not have to be the output

of a program. Commonly it is passed to another component

within a system, where a parser is used to reconstruct the typed

representation, i.e. a parse tree (PT).

Following the LangSec mantra ”treat all valid inputs as a

formal language” [2], [3], the language an unparser produces

as output has to be defined in a context-free grammar as well.

Since producing output is seen as an easy task, programming

languages offer only the ability to write Strings without

defining their syntax. Therefore, developers implicitly define

the output language of their program and have to write encoder

code by hand, which is known to be error prone [4]. To prevent

injections, developers should define the output’s grammar, use

an unparser generator like McHammerCoder [5], and use the

generated unparser to produce valid encoded documents of the

defined language. Sadly, usage of unparser generators or equiv-

alent constructs in programming languages that automatically

generate an encoding and apply it is rare. And developers

unintentionally create more undefined languages every day.

For example, programs write records to a file or stream one

by one, separated by a new line and rely on this separation

when reading the records. This implicitly creates a language

with new line as keyword. However, during unparsing into

that language this keyword is commonly not encoded, which

results in an injection vulnerability.

In this paper, we investigate a dynamic analysis method to

identify injections in existing source code. Of course, there

is a whole tool industry for static and dynamic application

security testing that tries to spot injections for well-defined,

previously known languages, like HTML and SQL. However,

existing tools are not made for detecting injections in lan-

guages their inventor has never seen before. This is for good

reason, because their task at hand is already undecidable since

they face the halting problem which results in false positives

and thus poor user acceptance, even for known languages.

In order to reach out to developers, inform them about in-

jection vulnerabilities in their code, and change their approach

to writing unparsers, we are fine with entering the land of false

positives, since the goal is not to solve the problem once and

for all, but instead to raise awareness. Compared with existing

approaches from industry and academia for injection detection

[6]–[8], we do not limit the search to know languages but

include those carelessly created.

To accomplish that, we apply grammar mining techniques

– which AUTOGRAM [9] uses for parsers – to unparsers and

call this approach MARGOTUA as this is the reverse problem.

By doing so we extract keywords of the language produced by

unparser code. These are used in a fuzzing step to create inputs

that cause injections. To determine if an input successfully

exploited an injection vulnerability, MARGOTUA compares

the parse tree of a known good input with those created

by the fuzzer. Clearly, our proof-of-concept implementation

relies upon some assumptions to successfully detect injection

vulnerabilities in existing Java unparser code, which we also

discuss in this work. Most notably, it requires the user to

identify the unparser’s entry point.
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Fig. 1: Overview of the components that are involved in an injection vulnerability. HTML is used as an example for L2

The remainder of this paper is structured as follows: We

first review related work. In Section III, we lay out the general

problem of injection vulnerabilities and provide a more formal

definition. MARGOTUA is presented in Section IV, and we

evaluate this approach and its limitations by assessing multiple

unparser implementation in Section V. By highlight future

work and drawing a conclusion in section VI, we close the

paper.

II. RELATED WORK

One of the few works targeting the security of unparsers

was proposed by Hermerschmidt et al. [10]. The authors

focused on unparsing and encoding malicious user data into a

document whose language is defined by a grammar containing

the context sensitive encoding rules. They generated encoder

and decoder for HTML and JavaScript and evaluated them

using penetration testing techniques. Their follow up work [5]

showed how encoders can be derived. Although they provide

a mitigation by construction to the injection problem they do

not, however, search for specific injection vulnerabilities.

While there is very little work targeting unparsers, inter-

esting results have been achieved in the analysis of parsing

code. Notably, Höschele et al. [9] have pursued extraction of

the grammar recognized by a given parser using AUTOGRAM.

They leverage dynamic taint analysis to match up the typed

outputs of the parser with their corresponding input fragments.

They make use of call graphs from traced fuzzing runs in

order to infer the hierarchical structure in which the input is

processed. From this, they are able to synthesize very good

approximations of the grammar covered by the fuzzed inputs.

Their approach is applicable to data understanding, program

understanding, test generation, and program decomposition.

A static analysis approach is used by Doh et al. [11] to

analyze PHP programs that dynamically generate HTML doc-

uments as strings. It compares data-flow information extracted

from the programs with a context-free reference grammar. This

reference grammar has to be known ahead of time. Another

drawback to this approach is that the programs need to be

annotated at all points where critical strings are generated.

III. FORMAL PROBLEM DEFINITION

To better illustrate our approach, we first describe the

general sequence of actions necessary for an injection vulner-

ability to occur which is illustrated in Figure 1. An injection

attack is launched by providing a program A some input

document written in a language L1. From this document,

A’s parser creates a program internal representation of this

document, called parse tree (PT), where individual values are

typed. When processing the document, A’s logic operates on

the input via the PT. L1 has to be defined by a grammar [2],

so that documents can be formally recognized, i.e. accepted

as a member of the language or rejected.

At some point, the program A reaches out to another

component B, so it has to create a document written in a

language L2 that is sent to B. To accomplish this, in an

ideal world, A creates an unparse tree (UPT) that is the in-

program, typed representation of the document it is about to

send. Next A calls the unparser for L2 to transform the typed

information from the UPT into a document that contains the

untyped representation conforming to the formal definition of

L2. This setting also describes the prominent example of XSS

where B, i.e. a browser, originally sends a request written

in L1, i.e. HTTP, to A and receives a document wrapped in

HTTP that is written in L2, i.e. HTML.

The receiving component B, being the target of the injection

attack, uses a parser for L2 to create a parse tree (PT)

containing a typed representation of the document. The parser

of B relies on the syntax of L2 to correctly process the

document. It has no means to detect or prevent an injection.

At the core of an injection attack is to change the context in

which B’s parser of L2 interprets input that has been handed

over to A in a document written in L1. Note that a change

in context results in a modified PT created by B’s parser.

Regarding textual languages, the contexts during parsing are

separated by keywords of the language. Therefore, to perform

an injection attack, keywords of L2 have to be smuggled

through the parser of L1, A’s program logic, and the unparser

of L2 to change the PT of L2 within the receiving component

B. Counterintuitively for developers, this changes the intended

semantics of the document noted in the program’s unparser

code.

269



Since legitimate documents written in L1 might contain

elements of the syntax of L2, it is not A’s parser, but A’s

unparser which is responsible to encode these entries, such

that they do not interfere with the syntax of the created L2

document. If an unparser fails to do so we call it an injection

vulnerability. More formally, an unparser that does not ensure

a correct unparser-parser round-trip parse(unparse(t)) = t
for any given UPT t has an injection vulnerability [10]. Note

that this definition for injection vulnerabilities and the solution

also holds for binary languages that do not rely on keywords,

but on length fields to separate contexts within the parser. To

perform an injection into a binary language the unparser of

L2 has to fail in validating the length of some content and be

tricked into overwriting the length field.

However, in real world software, the aforementioned clean

structure mostly does not exist. Therefore, we face additional

challenges to determine if an injection is present in a given

unparser implementation. First of all, there is no single UPT

t, because, after parsing, t is a PT. This means the UPT

and the PT of a language commonly are constructed by

two different implementations, resulting in different object

structures not necessarily holding the same data. Therefore,

the formal definition for a correct unparser-parser round-trip

can not be used directly to check unparser correctness. As

presented in Section IV, we rather only assess the PT for

deviations from a known good sample to detect injections.

In addition, there exists unparser code which implicitly

defines a language and skips the creation of a UPT. Since, from

the code itself, it is often not obvious which keywords exist

in this language, the unparser code and hence the language

is commonly missing proper encoding for the language’s

keywords. One could call this anti-pattern a shotgun unparser.

If the language does not have syntax for encoding, fixing

the injection vulnerability requires fixing the language first.

Afterwards, all (un)parsers for the language have to be updated

to process the encoding correctly.

Although there is a solution and general guideline on how

to eliminate the formal problem of injection vulnerabilities

[5], [12], in practice it is rather difficult to enforce such a

solution on a codebase without the ability to automatically spot

violations. Therefore, we strive to demonstrate the scale of the

problem and its impact by providing such an analysis in order

to raise developers’ awareness for using correct unparsers.

An ideal analysis should automatically detect unparsers in

source code, injection vulnerabilities within these unparsers,

and at best create sample exploits to prove the impact. One

could also consider to integrate the analysis into Integrated

Development Environments (IDEs) to notify developers im-

mediately whenever they write ad-hoc unparser code. Ideally,

a sustainable solution is to eliminate the possibility of creating

insecure unparsers in the first place. However, this remains a

challenge for future programming languages.

In this work we focus on the problem of identifying

injection vulnerabilities within a given unparser for a textual

language to highlight the existence of such injections within

existing implementations.

IV. AUTOMATIC ANALYSIS OF UNPARSERS

To approach our ultimate goal of identifying injection vul-

nerabilities in unparser code according to our previously given

definition, we created MARGOTUA, the concept of which we

lay out in the following. MARGOTUA targets Java applications,

since it is one of the most popular programming languages

with rich open source communities and relevance in enterprise

applications that process data in custom languages.

We use techniques inspired by AUTOGRAM’s approach,

through which they obtain a context-free grammar for given

program inputs [9]. However, in our current approach, we do

not extract the full grammar, but only the set of keywords of

the language, and the contexts in which these are valid. This,

by itself, is already very useful information, as these keywords

control the contexts, which influence parsers when creating the

parse tree. Therefore, knowledge about them can be leveraged

in guided fuzzing of the unparser in order to find injections.

In the following, we describe the steps MARGOTUA performs

in a pipeline in more detail.

A. Deriving Unparse Trees

Höschele et al. [9] have shown that associating parts of

a program with the input they process is a viable approach

to deduce the grammar this input adheres to. From bare

string input they obtain a parse tree, representing the syntactic

structure of that input. By repeating this for multiple inputs,

collecting all the corresponding parse trees, they are able to

synthesize a context-free grammar describing the inputs.

We adapt this idea to the inverse scenario of unparsing.

In such software, given structured data as an input, a bare

string output is generated. Our goal is to correlate each part

of this structured input data with a corresponding slice of

the bare output string that is derived from that part of the

input. We can then also identify those parts of the output that

have no counterpart in the input, meaning they are created

during the unparsing process. These are the keywords of the

language. Together, this gives us a UPT that contains structural

information on how the output can be decomposed into its

constituent parts of input fragments and keywords.

To extract UPTs from given unparser code we observe the

running program via tracing through the Java Debug Interface

(JDI) while it transforms the Java object structure representing

the UPT into untyped output. MARGOTUA achieves this by

assigning a unique taint to each object of the UPT using the

dynamic taint analysis system Phosphor [13]. This enables us

to track value propagation for them simultaneously.

Through JDI, the locally visible program state is constantly

snapshotted during execution. This way, a snapshot for each

method call, return, as well as source code line is produced.

Notably, the program state contains the variable assignments

including their associated taint tags. The collection of all these

snapshots make up an execution trace.

From such a trace, we extract the call tree by matching

up corresponding call and return events. As is evident in the

example in Figure 2a, the call graph structure yielded by this

step is already very close to the final UPT. Any method calls
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1 JSONValue::toJSONString {"array":["nested",{}]}

2 └─JSONObject::toJSONString {"array":["nested",{}]}

3 ├─KEYWORD {

4 ├─JSONObject::toJSONString "array":["nested",{}]

5 │ ├─KEYWORD "

6 │ ├─JSONValue::escape array

7 │ ├─KEYWORD "

8 │ ├─KEYWORD :

9 │ └─JSONValue::toJSONString ["nested",{}]

10 │ └─JSONArray::toJSONString ["nested",{}]

11 │ ├─KEYWORD [

12 │ ├─JSONValue::toJSONString "nested"

13 │ │ ├─KEYWORD "

14 │ │ ├─JSONValue::escape nested

15 │ │ │ └─JSONValue::escape nested

16 │ │ └─KEYWORD "

17 │ ├─KEYWORD ,

18 │ ├─JSONValue::toJSONString {}

19 │ │ └─JSONObject::toJSONString {}

20 │ │ ├─KEYWORD {

21 │ │ └─KEYWORD }

22 │ └─KEYWORD ]

23 └─KEYWORD }

(a) An example UPT for the JSON.simple library derived by
MARGOTUA. The output slices associated with each node are
shaded blue.

1 value {"array":["nested",{}]}

2 └─object {"array":["nested",{}]}

3 ├─ {

4 ├─string "array"

5 │ ├─ "

6 │ ├─characters array

7 │ └─ "

8 ├─ :

9 ├─value ["nested",{}]

10 │ └─array ["nested",{}]

11 │ ├─ [

12 │ ├─value "nested"

13 │ │ └─string "nested"

14 │ │ ├─ "

15 │ │ ├─characters nested

16 │ │ └─ "

17 │ ├─ ,

18 │ ├─value {}

19 │ │ └─object {}

20 │ │ ├─ {

21 │ │ └─ }

22 │ └─ ]

23 └─ }

(b) A ground truth derivation of a UPT according to the JSON
specification.

Fig. 2: UPTs for the same JSON example.

appear in this tree as nodes named after the containing class

and method, separated by two colons. Additional nodes, like

those containing keywords, are added later on in the pipeline,

during the actual UPT derivation. First, however, the call tree

is enriched with return value information, which is shown in

the UPT shaded in blue.

Generally, the values returned for each call can be copied

directly from the corresponding return event within the trace.

This does not suffice for our analysis however, because, as

an artifact of optimization, many internal unparser methods

return void. In Java, for performance reasons, String ob-

jects, like the unparser’s ultimate output, should generally

not be constructed by iterative concatenation. Instead, classes

like StringBuilder and StringBuffer or Writer
are used to accumulate additions with less overhead. Many

unparsers use and modify these objects across method bound-

aries, passing them along as a return parameter to their

subcalls, which then return void. As a result, the structure

of the output is often hidden behind side effects on such

effectively global state.

To handle this pattern and to ensure that return values are

present for each method call, we apply a simple heuristic. For

methods with no return value, we look for a parameter of one

of the aforementioned classes. Using the snapshots at call and

return time, we extract the difference in content of this object.

The resulting string is added into the call tree, taking the place

of the corresponding missing return value.

Finally, a UPT is inferred from the call tree. This is achieved

by recursively examining calls, in order to characterize the

call’s return value. The analysis starts at the unparser’s entry

point, which must be a method call returning a string. This

entry point needs to be indentified by the user. The return

value is decomposed into parts of the original input to the

program, keywords created in the call, and values returned

from subcalls. Keywords are identified by their lack of taint.

In some unparsers, like the example from Figure 2a, these

intermediate return values can always be cleanly decomposed

into subcall return values and keywords. However, input data

fragments may also appear in variables.

One example where analyzing these variables is necessary

is shown in Figure 3. This is taken from an unparser for

URLs which is implemented in the toString method of the

class. As this method has direct access to the individual parts

stored in fields, which it essentially just needs to concatenate

correctly, it makes little use of subcalls. By incorporating

variables into the decomposition analysis, these scenarios can

be handled gracefully.

The keywords that were identified as previously described

are inserted into the UPT as KEYWORD nodes. For variables,

nodes named according to the variable’s identifier are intro-

duced. At each level of the tree, the nodes are positioned

according to their order in the decomposition of the parent

node. This ensures that an in-order concatenation of the

associated values of sibling nodes always yields the value

associated with the parent.

At this point, we are able to deduce the UPT for an

individual input. Given a corpus of inputs, one could now

proceed in similar fashion to AUTOGRAM and generalize the

resulting set of UPTs into a grammar. Thus, we instead opt to

directly use the UPT to guide a targeted fuzzer with keywords

and their location.
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1 URL::toString http://user:pass@example.com/

2 │ path?query#fragment

3 ├─scheme http

4 ├─KEYWORD :

5 ├─KEYWORD /

6 ├─KEYWORD /

7 ├─URL::userInfo user:pass

8 │ ├─username user

9 │ ├─KEYWORD :

10 │ └─password pass

11 ├─KEYWORD @

12 ├─Host::toHostString example.com

13 │ └─Domain::toString example.com

14 ├─path /path

15 ├─KEYWORD ?

16 ├─query query

17 ├─KEYWORD #

18 └─fragment fragment

Fig. 3: An example UPT for the galimatias library derived by

MARGOTUA. The output slices associated with each node are

shaded blue.

B. Information extraction

To identify injections we are mainly interested in deter-

mining the keywords of the language, since they have spe-

cial meaning to a parser of the language. For example, in

JSON, string literals are enclosed in double quotation marks

("enclosed string"), items in collections are separated

by comma characters ([1, 2, 3]), etc.

We leverage the syntactic information contained in UPTs

about the context of keywords within documents of the lan-

guage produced by the unparser. Especially those keywords

detected next to an input data fragment in the UPT can be

used in fuzzing to likely produce injections within that part of

the input.

With this information at hand, we can very easily assemble

injection candidate in the next step.

C. Fuzzing

The last step of the MARGOTUA pipeline is a guided fuzzer,

depicted in Figure 4. It uses the keyword information to

generate potential injection attacks and evaluates them by

subjecting both the injection and the original input data to

an unparser-parser round-trip and comparing the results.

The first step of this process is the generation of the injection

attempts. This is done by generating injection candidates,

which are fragments that can then be inserted in a specific

place into the otherwise unmodified input. We call this place

the site of the injection. Candidates are made up of two parts:

a prefix and a payload.

The prefix is constructed from keywords that were found

next to the output slice derived from the input at the site. Their

purpose is to ”escape” the syntactical construct immediately

enclosing the site when it is unparsed.

The payload is constructed from all keywords that were

extracted from the UPT. This way, valid fragments with

syntactic significance can be generated.

Through combination of such prefixes and payloads, we

obtain candidates that have a high likelihood of changing the

syntactic structure of the output generated by the unparser, i.e.

a high likelihood of a successful injection.
Let us use the UPT from Figure 2a as an example, where

we are attempting to inject into the target nested in line 14.

The candidate prefix in this case would be the double quote

character ", as it occurs directly after the target in line 16.

Payloads could then be randomly generated from any selection

of the other keywords.
These payloads are passed to the unparser to test the imple-

mentation. At the moment MARGOTUA does not recognize the

interface of the unparser code automatically. Hence, in order to

run MARGOTUA on a test subject, a small piece of code has to

be written to adapt the unparser to a pre-defined interface. We

call this piece of code the stub. It has to provide the following

prerequisites:

1) The stub has to mark the subject unparser’s entry point

in order to make targeted analysis of just the unparsing

code possible.

2) The stub must prepare the input objects for the unparser.

It is not yet possible to generate these inputs automati-

cally.

3) It must also provide the ability of inserting an injec-

tion candidate supplied by MARGOTUA into such input

objects.

4) For some subjects that handle unordererd collections,

simply comparing the benign and malicious parser out-

puts directly is error-prone, because there might be

undefined behavior in how precisely the collection’s

component items are ordered at parse-time. In order to

significantly reduce false positives in theses cases, the

stub also has to provide a comparison metric for parser

outputs.

In order to identify whether an injection attempt is success-

ful, we utilize an unparser-parser round-trip as described in

section III, wherein UPTs are unparsed by the given unparser

code and the results are parsed again. As described earlier

however, object structures can differ between unparser and

parser, so we can not simply compare the unparser input with

the parser output.
To resolve this issue, we first run the unparser-parser round-

trip on a benign input. This yields an object structure as

emitted by the parser, the benign output. Next, we apply our

injection candidate to the same input, preserving its structure.

We can then run the unparser-parser round-trip a second time,

now using this input modified with the injection candidate.

This again yields an object structure from the parser, the

malicious output. Since we did not change the structure of the

input when applying the modification, the two outputs we have

collected should also have the same structure if encoding and

decoding is implemented correctly. If we find a difference in

the structures between benign and malicious output, however,

this means we have identified an injection.
Using this method, we can evaluate whether a given candi-

date actually produces a successful injection. We can thus use

the previously described mechanisms for constructing candi-

dates and evaluating them to perform very targeted fuzzing of
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Fig. 4: The fuzzing process

the unparser. Even in the presence of parser differentials [14]

among the unparser and corresponding parser the approach is

applicable, since even if unparser and parser disagree on the

language the resulting change of the parse tree can be detected.

V. EVALUATION

During the implementation of MARGOTUA, we identified

some limitations of the approach which we find worth men-

tioning. We first present these limitations and subsequently

discuss them in the context of a case study of three unparser

implementations.

Most notably, unparser code that only generates outputs of

a very small subset of a language can only be used to extract

that subset. One prominent example of this are applications

that build up ad-hoc SQL queries using string concatenation.

Commonly, large parts of such SQL statements are pre-

determined by string constants containing the SQL statement

with just one variable containing input. Since only this variable

crates structural variability in the output, MARGOTUA can not

identify individual keywords of the SQL language but rather

recognizes the string constants used. Hence, MARGOTUA’s

fuzzer does not detect such injections.

Due to the proof-of-concept state of MARGOTUA’s imple-

mentation the taint tracking is not implemented for primitive

types (not including arrays with primitive types) in the tracing

step. As a result, parts of inputs that are of a primitive type

can not be identified correctly in the output, degrading the

quality of the UPT. However, since we are targeting injections

of textual languages, which are constructed from strings, the

impact of this limitation is low for the purposes of our

evaluation.

At the moment MARGOTUA does not recognize the interface

of the unparser code automatically. Hence, in order to run

MARGOTUA on a test subject, a small piece of code has to be

written to adapt the unparser to a pre-defined interface. We

call this piece of code the stub. It has to provide the following

prerequisites:

1) The stub must prepare the input objects for the unparser.

It is not yet possible to generate these inputs automati-

cally.

2) It must also provide the ability of inserting an injec-

tion candidate supplied by MARGOTUA into such input

objects.

3) The stub has to mark the subject unparser’s entry point

in order to make targeted analysis of just the unparsing

code possible.

4) For some subjects that handle unordererd collections,

simply comparing the benign and malicious parser out-

puts directly is error-prone, because there might be

undefined behavior in how precisely the collection’s

component items are ordered at parse-time. In order to

significantly reduce false positives in theses cases, the

stub also has to provide a comparison metric for parser

outputs.

Since MARGOTUA requires a stub for each individual target

it assesses, we evaluate our approach through the lens of case

studies on open source software. As we have already hinted

at in Section II, there are no approaches targeting the same

problem we are addressing. Therefore, no direct comparisons

to other works are possible. Instead, our first goal was to assess

the general viability of MARGOTUA by observing the UPTs it

is able to extract. By comparing such intermediate results of

our processing pipeline with known ground truths, we aim to

identify strengths and limitations of this technique. We will

show some examples to reason about which software patterns

our approach is able to correctly analyze, and where it falls

short, giving rise to future work.

Ultimately though, we are most interested in actually find-

ing injection vulnerabilities in unparsers. To test for such

capabilities, we modified the subjects to insert deliberately

placed vulnerabilities. Specifically, we disabled encoding steps

present in the software so as to simulate missing encoding. We

then ran MARGOTUA to examine whether the vulnerabilities we

implanted could be identified.

A. Subjects

We selected evaluation subjects handling languages that

cover a variety of different grammar structures, like repetition

and recursion. We target libraries for one specific language

as opposed to general utility libraries or large applications,

as such more minimal and specific pieces of software lend

themselves more easily to targeted examination. As our

approach identifies injections through unparser-parser round

trips, the evaluation targets need to include both an unparser

as well as a parser for the same language.
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1) JSON.simple: JSON.simple [15] is a very popular li-

brary for the JSON [16] format, with over 47000 Github

repositories depending on it. As can be observed in Figure 2a,

MARGOTUA is able to derive very accurate UPTs for this

library. In comparison with a ground truth derivation for the

same example, shown in Figure 2b, it is apparent that the over-

all structure is very similar. One notable difference, however,

is that the derivations for the string nonterminal is inlined

in the UPT extracted on this example by MARGOTUA. This

is the case because the unparsing of string values is similarly

inlined in the implementation of the library itself, i.e. it is not

handled by a separate method, but instead performed directly

whereever such a method would be called from. Because

structural distinction is lost in this kind of optimization, the

accuracy of the extracted result suffers by necessity.

Whereever a string appears as a value in an object or

as part of an array, the impact of this loss of information is

low, because in these cases the extracted UPT simply lacks the

additional indirection that is present in the ground truth deriva-

tion. This can be observed comparing line 12ff. in Figure 2a

and Figure 2b. Conversely, as in JSON, object keys can only

ever be strings, they do not appear as descendants of a value
in the ground truth derivation (see line 4 of Figure 2b). For

these, the inlining results in a more significant loss of structure,

as is evident in line 5ff. in Figure 2a. Here, the string’s contents

and its delimiting keywords can not be distinguished from the

other sibling nodes, including the keyword :. As a result, the

quality of the context information for the fuzzer is lower.

This example illustrates that accurate UPTs can be extracted

from execution traces. However, some kinds of implementation

optimizations, like inlining, can degrade the accuracy of these

results.

In the library’s original state, we were not able to find any

injection vulnerabilities. This is not surprising, as the library

has seen widespread use and can thus be assumed to be well-

tested. For our evaluation, we therefore disabled the encoding

performed on string inputs in the JSONValue::escape
method. On this patched variant of the library, MARGOTUA
was consistently able to find injections within fewer than

100 tries in the fuzzing stage, with an average of 10 tries.

When disabling the keyword context analysis, i.e. using only

the knowledge of the overall set of keywords for fuzzing,

these statistics already more than double. This speaks to the

relevance of the extracted information.

2) galimatias (URL): galimatias [17] is a parsing and

normalization library for URLs. We have already seen an

excellent result for this subject in Figure 3. This UPT rep-

resents the correct syntactic structure of the example, and the

node namings extracted from variables and fields accurately

conveys their semantic meanings. One shortcoming that can

be observed is that the two slashes (//) in lines 5-6 are not

grouped in this UPT even though they represent one syntactic

unit. This comes down to an implementation detail, however,

and is not representative of a limitation of the approach itself.

URLs always follow the same basic structure, as they do

not feature recursion or repetition. It follows that UPTs for

1 CsvWriter::write 1,"two,",three

2 ├─KEYWORD 1

3 ├─KEYWORD ,

4 ├─KEYWORD "

5 ├─KEYWORD t

6 ├─KEYWORD w

7 ├─KEYWORD o

8 ├─KEYWORD "

9 ├─KEYWORD ,

...

Fig. 5: A truncated UPT extracted from a CSV library.

them are accordingly similar to one another. This template-like

format presents a problem for our approach when fuzzing. In

order to assess injection success, as described in Section IV,

we compare parser outputs. Because the structural variability

is very limited for this subject, injections can not consistently

be identified by our structural comparison heuristic.
3) CSV: vsg-csv [18] is a library for the CSV file for-

mat [19]. This subject is one example our implementation

currently can not handle. The reason for this is that this library

does not make use of any subcalls. Instead, everything is

inlined into one method, which handles the entire input in

one big loop. As a result, our approach can not deduce any

of the structure at all. This is demonstrated by the truncated

UPT in Figure 5

This is not a true limitation of the underlying approach,

however. Such cases could be handled by making more use

of the line-by-line program state snapshots gathered in the

tracing phase. Local variable state could be examined at each

step, and all of these intermediate values used for the return

value decomposition analysis as described in Section IV. Our

current implementation simply lacks this feature.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented MARGOTUA, an approach to

identify injection vulnerabilities in unparsers. Using grammar

mining techniques, MARGOTUA extracts a UPT by observing

the unparser execution. From that UPT, MARGOTUA infers

the keywords of the language which the unparser produces.

Guided fuzzing focusing on these keywords eventually reveals

injection vulnerabilities in the unparser.

Fostering adoption of LangSec principles and a more wide-

spread use of solutions that prevent injection vulnerabilities

requires raising awareness for the problem. Therefore, we

choose to identify vulnerabilities in existing code bases to

bring the call to action right to developers of those unparses.

To enable developers to assess their own unparser im-

plementation for injection vulnerabilities, we implemented

MARGOTUA. Evaluating MARGOTUA on Java unparser li-

braries, we found that MARGOTUA is able to derive very ac-

curate UPTs in JSON.simple and galimatias (URL). However,

inlining optimizations in the implementation can degrade the

quality of these results. We further showed that MARGOTUA is

a viable approach for identification of injection vulnerabilities

for textual languages.
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Also when faced with the question of whether to use an

existing unparser library, MARGOTUA can help developers to

identify vulnerabilities before they use the library. Notifying

creators and users of existing unparsers hopefully creates

awareness and thus improve adoption of known good solu-

tions.

To this end, we encourage developers faced with injection

vulnerabilities in their code to use a known solution or come

up with an improved one that better fits their needs.

Although generating injection exploits is of interest to better

illustrate the impact of injection vulnerability at scale, it still

requires a human to judge on the system’s context and the

impact of the vulnerability. Therefore, it is questionable if this

path of improvement of our approach really has value.

In contrast, extending MARGOTUA to extract complete gram-

mars from unparsers is of value for developers. This would

enable them to use unparser generators like McHammerCoder

[5] to derive a correct unparser and encoding implementation

from that grammar.

Since this work focuses on textual languages the detection

of injection vulnerabilities in binary languages is an open

problem. This includes the challenge to automatically identify

length fields and their relation to other parts of the grammar.

Another avenue for improvement would be automatic de-

tection of unparsers without having to write any stub code.

When integrating MARGOTUA into the software development

life-cycle, developers might be warned as soon as they create

an unparser and whether they choose an appropriate solution.

However, to radically improve the security in input process-

ing, (new) programming languages resp. their core libraries

shall adopt LangSec concepts for parsing and unparsing.

Rather then using pure string operations like split and con-

catenation, developers would then use parsers and unparsers

per default. This way developers have the tools at hand to

create a secure implementation.
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