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Abstract—We introduce a conceptual framework that asso-
ciates syntax and semantics with vertical and horizontal direc-
tions in principal bundles and related constructions. This notion
of geometry corresponds to a mechanism for performing goal-
directed file transformations such as “eliminate unsafe syntax”
and suggests various engineering practices.

Index Terms—bundle, fibration, lens, language-theoretical se-
curity

I. INTRODUCTION

There is a long tradition of considering syntax and semantics

as dual, e.g., with various type theories and sorts of categories

respectively inhabiting these roles [1]. Meanwhile, there is an

even longer tradition of considering algebra and geometry as

(Isbell, “sheafily,” or “spectrally”) dual, as manifested in the

notions of Stone duality between Boolean algebras and Stone

spaces; or Gel’fand duality between commutative C*-algebras

and locally compact Hausdorff spaces; or duality between

commutative rings and affine schemes [2]. 1 However, it can

be argued that “the duality between syntax and semantics is

really a manifestation of that between algebra and geometry”

[5].

Here, we introduce a conceptual framework that simultane-

ously embraces and extends this perspective: syntax transfor-

mations are viewed as forming a group (or more generally, a

groupoid), and semantically distinct (representations of) files

form a “base space.” 2 These constructs are unified in the

structure of a bundle (or more generally, a fibration), and a

goal-directed transformation of files imbues this structure with

a notion of geometry that connects syntax and semantics.

Perhaps the most contentious part of this conceptual frame-

work is the notion that syntax transformations are (or ought

The authors thank Sergey Bratus, Arquimedes Canedo, Dan Kaminsky,
Bartosz Milewski, David Spivak, and Matvey Yutin for helpful comments.
This material is based upon work partially supported by the Defense Ad-
vanced Research Projects Agency (DARPA) SafeDocs program under contract
HR001119C0072. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA.

1Of particular interest for our present considerations is the duality between
crossed product C*-algebras and principal bundles [3], and more generally
dualities that embody noncommutative geometry [4].

2The homotopy hypothesis/theorem that “spaces are ∞-groupoids” [6] can
and should be viewed in this context as giving a geometrical interpretation
for this base space, rather than an algebraic interpretation for paths on this
base space.

to be) invertible. On one hand, the requirement of vertical

invertibility is imposed by mathematics once one commits to

the model of a principal bundle or, more generally, a category

fibered in groupoids (see §II-A or §III-B, respectively) for

providing an arena where geometry can direct file transforma-

tions (or conversely, where directed file transformations can be

considered as defining a geometry). 3 On the other hand, the

requirement is justified by performing transformations with

ancillary memory: i.e., annotating any transformations with

inline comments or external ancillae that are invertible (into

nothingness) by (de)construction. 4

For example, consider a PDF file [12]. As §2 of [13] points

out, the program pdftk will produce a valid PDF from a

malformed file with an abbreviated header and missing data

about both the length of the page content stream and the

cross-reference table. At the same time, the program will

manipulate abstractly irrelevant details of concrete syntax such

as whitespace. Insofar as this process would be instantiated

in our framework, and notwithstanding the fact that the

original malformed and valid PDF files are presented in the

same syntactic representation, the overall transformation itself

should be considered as the composition of one explicitly in-

vertible “vertical”/“syntactic” and one not explicitly invertible

“horizontal”/“semantic” transformation. The former transfor-

mation merely inserts comments detailing the malformations

(including tags that detail the comments’ provenance and

hence facilitate their removal or “inversion”), whereas the

latter transformation actually manipulates the header, inserts

the missing data, and performs some collateral manipulation

of concrete syntax.

A simpler and completely explicit example in the same vein

would be a PDF file with invalid terminal object delimiters,

e.g. objend instead of endobj. 5 Here, the transformation

3The models we consider might admit further generalization to circumvent
this invertibility requirement via monoidal fibrations [7]. However, the relative
simplicity of the considerations of §II could (and probably should) be taken
as a hint to take the invertibility requirement seriously. Indeed, exposing the
constraints imposed by a mathematical model is the primary benefit of an
exercise such as ours.

4This is essentially the reverse of the tactic underlying logically reversible
computation, for which see, e.g. [8]–[11]. In reversible computation, one
accepts ancillary inputs that are transformed into “garbage”: here, we accept
ancillary outputs that can be reverse-transformed into nothingness.

5We thank P. Wyatt for noting that this delimiter is invalid, though it can
be seen on occasion “in the wild.”
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int i;
for (i=0; i<10; i++)
{

z+=i;
}

(a) A for loop.

int n=0;
while (n<10) {

x+=n;
n++;

}

(b) A while loop.

Fig. 1: (Adapted from [14].) Two semantically identical C

loops. The more versatile while construct is better suited for

a normal form of C (and for a bootstrapping compiler).

jmp @5
@4:

jmp @9
@8:

jne @19
jmp @10

@19:
jmp @14

@13:@14:
jg @13

@9:@10:
jge @20
jmp @8

@5:@20:
jge @21
jmp @4

@21:

(a) Branches and labels from
assembler listing of Gauss-
Jordan elimination code.

START; S
do while b

S
do while b

if b
S
do while b

S
enddo

endif
S

enddo
S

enddo; HALT

(b) Algorithmically restructur-
ing control flow from (a) to
turn backward branches into
while loops. Each S is its
own statement/subroutine; each
b is its own Boolean predicate.

Fig. 2: (Adapted from [15].) Decompiling into normal form.

sequence would be something like

objend⇒vert/
synt objend % objend -> endobj

⇒horz/
sema endobj % objend -> endobj

which actually specifies how to perform the inverse syntactic

transformation. (Recall that comments in PDFs are initialized

by % and terminated by end-of-line markers outside of strings

or inside of content streams (see §7.2.4 of [12]).

For lack of a better term, we call this sort of bookkeeping

sugar-neutral: i.e., we view syntactic sugar such as variable

forms for a token in a file or a case or elseif statement

in source code as something that should be accomodated and

potentially preserved in a file at the outset of a transformation,

but that should not be introduced during a transformation.

Taking (de)compilation as an example and insisting on normal
forms as in Figures 1 and 2, we can in principle carry

along the concrete syntax of a file through quite complex

transformations to detail how to transform between seman-

tically equivalent files with different concrete syntax in any

representation (see §II-B3).

II. BUNDLES

A. Principal bundles

The geometry of principal bundles [16], [17] turns out to

provide a useful conceptual framework for reasoning about

and manipulating syntax and semantics. Given a “horizontal

base space” X corresponding to some particular lossless

representation of a language/file format (e.g., strings/words,

concrete syntax trees [CSTs], etc.) and a “vertical” group G
of invertible syntactic transformations, we consider an object

akin to a connection in a principal bundle P (X,G) as depicted

in Figure 3.

Fig. 3: A principal G-bundle P (X,G) provides a natural

arena for geometry realized through a connection, i.e., a

smooth direct sum decomposition TpP = VpP ⊕ HpP of

tangent spaces into “vertical” and “horizontal” components

that is equivariant under an action of G. In the figure,

π : P → X is the bundle projection map.

In the present context, we can think of a connection as a

recipe for directing file transformations in terms of vertical

syntactic transformations and horizontal semantic transforma-

tions, or in a complementary sense to connect the spaces of

lifts of nearby files. Since syntactic file transformations can

be thought of as abstractions of semantic file transformations

[18], the connection (in particular, its equivariance property)

informs the distinction between syntax and semantics.

In other words, the common notion of lifting a file to a

different representation is consistent with the usage of the term

“lift” in mathematical use: a directed semantic modification

corresponds to the terminal point of a (presumably fairly

“short”) path on the base space X that can be lifted to a path

in the bundle P (X,G) using a connection. In this differential-

geometrical analogy, the goal of semantic file transformations

is manifested by side information (e.g., format specifications,

corpora, programs that nominally accept such files as inputs,

etc.) that define a geometry, and a directed file transformation
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itself corresponds to parallel transport along a vector field. 6

An explicit objective function that gives rise to the geometry

can be specified in practice by, e.g., a dissimilarity measure

between the original and perturbed files [21], or between traces

or indeed any other suitable artifacts (see §III-C). In this

analogy, “infinitesimal” transformations are composed, and the

transformation approach of §II-B draws from this conceptual

framework.

Crucially, adding or removing sugar in syntactic transforma-

tions affects the group structure required to define a notional

connection (though as we discuss later, groupoids can suffice

for algebraic purposes and a connection per se is unnecessary

since geometry can be constructed via alternative means).

We avoid this by choosing representative semantics-preserving

transformations based on normal forms. This reflects the ob-

servation of [22] that “sugaring is a compilation process.” For

programming languages, such normal forms can be enforced

by, e.g., restructuring code so that backward branches become

while loops [15] or in reference to a particular configuration

of some machine learning algorithm such as [14] (i.e., we fix

a trained implementation once and for all).

Under this analogy, in the file transformation process,

points in P (X,G) correspond to CSTs and G corresponds

to semantics-preserving (invertible) transformations on CSTs.

The equivalence class of CSTs that correspond to a given

abstract syntax tree (AST) carries both group-theoretical and

language-security theoretical significance, as it indicates re-

dundancy in a format.

B. File transformations

In order to indicate the substantive nature of the analogy in

§II-A, we proceed to sketch some examples of directed file

transformations in §II-B1, detail the first of these in §II-B2,

and in §II-B3 outline a generic framework for implementing

directed file transformations that separates concerns between

syntax and semantics.

1) Examples of directed file transformations: 7

• Toy example 1 (detailed and elaborated upon in §II-B2):

– X = {0, 32, . . . , 126}∗ (i.e., ASCII strings of NULLs

and printable characters) endowed with edit distance;

– G = cyclic shifts on individual characters;

– Goal: remove NULLs and punctuation and make

lowercase.

• Toy example 2:

– X = {97, . . . , 122}∗ (i.e., lowercase alphabetical

ASCII strings) endowed with edit distance;

– G = rot13 (or G = 97 + 13 · Z/2Z);

6It bears mentioning that the relevant mathematics can be adapted to the
cases where X and/or G are discrete: these are respectively exemplified by
lattice gauge theory [19] and/or discrete gauge groups in physics [20]. The
essential idea is obvious: such discrete spaces are embedded in continuous
ones that they approximate.

7There may be relatively simple and useful examples obtainable by, e.g.,
manipulating casts/encodings of simple datatypes.

– Goal: minimize the number of character edits plus

the Hamming distance between the eventual result

and the rot13 of its reversal. 8

• Language-theoretical security [23]:

– X = files in a fixed format endowed with a distance

on, e.g. ASTs (see §III-C1);

– G = sugar-neutral bidirectional transformations;

– Goal: eliminate syntax that does not conform to

reasonably specified deterministic grammar (possibly

including syntax features such as [24], [25]).

• Feature elimination in C:

– X = C source files with distance defined on ASTs;

– G = sugar-neutral translations (between, e.g.,

source, LLVM, etc.);

– Goal: parsimoniously eliminate a particular type of

syntactic sugar or other language feature.

• Binary patching:

– X = disassembled binaries (for distance, see §II-B);

– G = sugar-neutral lifts/translations/etc.;

– Goal: parsimoniously patch a known vulnerability.

2) Detail of toy example 1: Consider the alphabet A :=
{0, 32, . . . , 126} corresponding to ASCII NULL and printable

characters, and let X := ⊕∞j=1A(j) be the categorical di-

rect sum of copies of A, i.e., the infinite sequences over

A with only finitely many nonzero entries. The string or

word w corresponding to an element of X is defined here

simply by removing any (trailing) zeros and mapping the

numbers to ASCII characters. We endow X with the Lev-

enshtein distance dX : i.e., edit distance with unit-cost inser-

tions/deletions/substitutions. Since |A| = 96, let G := Z/96Z
act on A via cyclic unit shifts, and define G :=

∏∞
j=1 G(j).

Finally, define P := X × G to be the trivial “principal G-

bundle” over X .

The goal is to remove non-trailing NULLs and punctuation,

and to make the input lowercase. This goal can be achieved

by different combinations of atomic horizontal and vertical

steps. Here, an atomic horizontal step means replacing x ∈ X
with x′ ∈ X with dX(x, x′) = 1, and an atomic vertical step

means applying gk ∈ G of the form gk := ⊕∞j=1δjk, where δjk
equals the identity in G unless j = k, in which case it equals

the unit shift in G that sends 0 �→ 32, 32 �→ 33, . . . , 125 �→
126, 126 �→ 0.

It is easy to see that the optimal solution (in terms of

number of steps) is to delete and insert characters. This

is because A . . .Z and a . . .z respectively correspond to

the uint8s (65, . . . , 90) and (97, . . . , 122), and the cost of

making a character lowerspace by group actions is therefore

97− 65 = 32 = 122− 90, whereas the cost is only 2 to lower

case via a deletion followed by an insertion.

But suppose we change the notion of an atomic vertical

step to g′k := 31 ⊕∞j=1 δjk. Because 31 is coprime to 96,

these atomic steps generate a group isomorphic to G, which

8Note that strings such as gnat, tang, robe, serf, thug, etc. are left
unaffected by this goal.
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provides a measure of justification for this change. We have

that 31δjk sends 0 �→ 61, 32 �→ 62, . . . , 95 �→ 126, 96 �→
0, 97 �→ 32, . . . , 126 �→ 60. Now consider the initial string

α = ABCD: deletion and insertion to arrive at the goal ω =
abcd requires a cost of 8, whereas applying g′1, . . . , g

′
4 yields

β = ‘abc at a cost of 4. Deleting the leading ‘ and inserting

a trailing d incurs an extra cost of 2, for a total cost of 6 < 8.

That is, the deletion/insertion strategy is not always optimal

anymore, though it usually still will be.

Observe that there is a “flat connection” on P , which is

to say that the trivial factorization of P = X × G into

horizontal and vertical spaces is G-equivariant. That is, for

all x, y ∈ X there exists g ∈ π−1(x) ∼= G such that gx = y.
9 In other words, the trivial factorization into horizontal and

vertical spaces throughout P should be taken as compatible

with exchanging vertical displacements into horizontal ones:

dG(x, gx)︸ ︷︷ ︸
vertical displacement

= dX(x, y).
︸ ︷︷ ︸

horizontal displacement

To encode the idea of a collection of related files, we can

use a local section of P , which is a map s : Y → P , where

Y ⊆ X is open (for the implicitly assumed discrete topology,

this is a trivial restriction) and such that s(y)X := π(s(y)) = y
for all y ∈ Y . Moreover, goal-directed transformations are

generally (lifts of) paths t : Z → Y . A path is is a parallel
path if u(n)Gt(n) = t(n + 1), for all n ∈ Z, where here

u := s ◦ t and the subscript G denotes the projection from the

trivial bundle P = X ×G onto its second factor. Notice that

this allows the geometry of X to be lifted into G (or P ) via

the equation

dG(u(n)G, idG) := dX(t(n), t(n+ 1)).

With the definition L(t) :=
∑∞

n=−∞ dX(t(n), t(n+1)) for

path length, we obtain the following

PROPOSITION. If t is a parallel path, then L(t) =∑∞
n=−∞ dG(u(n)G, idG), i.e., the horizontal and vertical dis-

tances along a path are equal if the path is parallel. �

Armed with this, we can study problems of finding minimal-

length paths subject to constraints on the path in X , e.g.,

specified initial and terminal points, or more saliently the

requirement to stay within a specified subspace of X . As

examples of the latter sort of constraint, consider a forbidden

subsequence such as (the uint8) representation of EOF or a

“buffer” constraint on the maximum number of nonzero entries

of points in X . Such a restriction to some Y ⊆ X entails the

presence of more globally parallel sections and fewer locally

parallel sections than on X , and this can be measured via

9For example, if x = ABCD and y = ACD, then the corresponding
g = (0, 1, 1,−100) in ASCII numbering or g = (0, 1, 1,−37) in “internal”
numbering.

relative sheaf cohomology, e.g. by comparing the cohomology

to the space of parallel sections on X . 10 11

3) A framework for implementations: Language representa-

tives can be transformed by lifting/parsing them into semantics

(i.e., CSTs/ASTs), transforming the semantics at a higher

degree of abstraction, and projecting/unparsing them as in

[18], which points out that

[files] can be considered as an abstraction of their

semantics. For example the syntax of [files] records

the existence of [objects] and maybe their type but

not [the trace of a parser or renderer], as defined by

the semantics. 12

In general, an AST will be subject to additional processing

in order to reason over the syntax, frequently by producing

an augmented AST and identifying vertices in some way to

produce a suitably annotated digraph that we call a derived
syntax graph (DSG). 13 For example, the AST produced by

a PDF parser will have nodes for indirect objects and their

corresponding cross references (i.e., the byte offsets in the

xref table) as well as some additional relevant information

in the PDF trailer, and these data are subsequently associated

to each other in a DSG, even if implicitly [13].

As a more generally familiar example, a compiler will use

the AST of a computer program to produce a DSG in the

guise of a control flow graph (Figure 4). While parsing an

input to a CST is invertible (if it is actually performed),

parsing an input directly to an AST (or transforming a CST to

an AST) is obviously very far from invertible. However, the

transformation from an AST to a DSG is generally (or with

only minor annotations, can be made) invertible.

Our present considerations suggest a general principle by

which to separate concerns in file transformations that is

algorithmically favorable: compositionally 14 manipulate an

appropriate DSG, then unparse it into its corresponding AST,

where geometrical considerations can be more naturally and
efficiently accounted for. For example, a DSG may be re-

structured, decomposed, and locally perturbed, and only the

corresponding local ASTs need be compared for geometrical

purposes (see §III-C) such as determining convergence to a

10In the event that G is abelian, relative sheaf cohomology is comparatively
straightforward: in the more general nonabelian case, one can either panic or
contemplate much more abstract techniques such as outlined in §7 of [26]
(see also [27]).

11Equivalences of files in X induce additional highly nontrivial topological
structure on the resulting quotient space, which can in turn induce curvature
in any connection (via Chern-Weil theory, for which see, e.g. [28], [29] and
whose most basic incarnation is the Gauss-Bonnet theorem that relates the
integral of the Gaussian curvature over a closed orientable surface to the
Euler characteristic).

12Here we have replaced the words “program” and “variable” with “file”
and “object,” respectively.

13Note that dependencies between (versus within) files of the same format
suggest that we focus attention on properties relative to certain subspaces
of the base space, with all the topological baggage that implies. It would
be unusual except in very simple cases for the semantic base space to be
topologically trivial. In the same vein, the strongest topological condition that
seems likely to be broadly applicable to a bundle in the present context is
that its universal cover is homotopy equivalent to a trivial bundle [30].

14I.e., category-theoretically, which strongly constrains the form of a DSG.
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1 START
2 do while b
3 do while b
4 do while b
5 do while b
6 S
7 enddo
8 S
9 enddo
10 if b
11 do while b
12 S
13 enddo
14 if b
15 S
16 endif
17 endif
18 enddo
19 enddo
20 HALT

(a) A toy program skeleton.
Each S is its own statement
or subroutine; each b is its
own Boolean predicate.

  1 START

  2 do-while

  3 do-while

  4 do-while

  5 do-while

  6 S

  8 S

  10 if-else

  10 if

  11 do-while

  12 S

  14 if-else

  14 if

  15 S

(b) The corresponding AST.

  1 START
  2 do while b  3 do while b  4 do while b  5 do while b  6 S

  7 enddo

  8 S

  9 enddo

  10 if b
  11 do while b  12 S

  13 enddo

  14 if b
  15 S

  16 endif
  17 endif

  18 enddo

  19 enddo

  20 HALT

(c) The corresponding control flow
graph. Branches are colored ac-
cording to whether or not their
corresponding b evals to � or ⊥.

Fig. 4: When suitably annotated with concrete details, se-

mantically richer representations of a file are better suited for

performing transformations on the semantics itself. The result

can be unparsed and/or syntactically transformed as appropri-

ate. Here, the control flow graph is a semantic augmentation

of the AST that includes cross-references, i.e., a DSG.

desired state, e.g. the elimination of nondeterministic syntax

elements [23] or local similarity to some reference file. Such

an approach inherits any compositional properties of the DSG

and can be viewed through the lens of a category of lenses

[31], [32] (cf. §III-A).

As a concrete example, a compiler might demand that a

control flow graph be defined and decomposed as in [33], [34],

restructured using the algorithm of [15] (cf. [35], [36]), and

then recursively manipulate (e.g., deoptimize) subroutines only

if/as needed. Extending this example, the structured program

theorem [37], [38] implies that we can choose a normal form

for the structured control flow in which only if-else and

while (or optionally also case/switch) constructs are

used (see also Fig. 2). 15

III. FIBRATIONS

A fibration [40], [41] is a generalization of a fiber bundle

that retains desirable homotopy properties, i.e., homotopy-

equivalent fibers and the homotopy lifting property which

states that for any f and f̃0 that make the outer square of

the following diagram commute, there is a map f̃ making the

entire diagram commute:

15These considerations apply equally well to decompilation: for example
the immediately preceding control flow constructs can be recognized from
the graph structure of the structured control flow graph alone [39], thereby
separating more mechanical issues of control flow and modularity from
undecidable problems such as variable name and type inference.

Y

Y × [0, 1]

P

X

id× {0}

f̃0

f

π
f̃

As a consequence, a path in X can be uniquely lifted to

a path in P . For example, in the context of homotopy type

theory, dependent types are fibrations [6]. A more general and

abstract notion of fibration is provided by the theory of model

categories and homotopical algebra [42].

A. Lenses as bundles and fibrations

Transforming files into a normal form has been considered

as a mechanism to produce simpler, unambiguous (i.e., not

polyglot [43] or schizophrenic [44]) files. However, complex

structural dependencies such as checksums can obstruct ad
hoc solutions along these lines. The notion of a lens [31]

provides a principled, compositional solution that permits

modifications to a file to be automatically transported to its

putative normal form. Lenses have been synthesized at small

scale from specifications and translation examples [45], [46],

suggesting an approach for safely transforming files [47].

It turns out that this lens-oriented approach can be fruit-

fully viewed from our perspective: indeed, a generalized lens

category can be defined in terms of a category C and a

functor F : Cop → Cat [32]. This recipe turns out to yield

a Grothendieck fibration or fibered category, which can be

thought of a generalized “total space” of a bundle (cf. §III-B).
16 Indeed, many of the cases motivating the definition of this

generalized lens category correspond specifically to bundles,

and in particular bimorphic lenses can be interpreted as trivial

bundles (i.e., the total space is a Cartesian product) [50].

B. Moduli spaces

As [51] points out,

A mathematically attractive definition of semantics

is that it is the invariant after translation. If we view

translation as operators between different [represen-

tations], the fact that semantics is preserved after

translation means that the generators for different

[representations] are all similar to one another [i.e.,

generators for representations commute with the

corresponding translations].

In other words, semantics is a modulus (i.e., a complete

isomorphism invariant) in the sense of algebraic geometry,

wherein moduli spaces or stacks describe the algebraic invari-

ants associated to categories fibered in groupoids [52], 17 and

16There are bundles (and similar objects) whose points are themselves
bundles (and related objects), e.g., bundles of connections [48], moduli spaces
of bundles [49], etc.

17For the moduli stack of elliptic curves [53], the appropriate (coarse,
i.e., automorphism-forgetting) modulus is the j-invariant, which sends “the”
modular curve X(1) to the affine line; modular forms are sections of line
bundles on this stack.
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wherein the role of “total space” is played by a Grothendieck

fibration [54].

In the event that such “generators” and translations can be

instantiated as linear operators, the spectra of the generators

ought to be a priori identical and yield “semantic fingerprints.”

[55] exploits this to perform high-performance unsupervised

translation between natural language corpora. The essential

step is to construct a Markov chain from statistics of the

spacings between word pairs in a document, though other

techniques (e.g., cross-correlations of tokens or words) might

also be used in similar ways.

C. Geometry of program artifacts

Transformations on dynamic program artifacts (e.g., ASTs,

traces, error ontologies etc.) define relevant groupoids, and

dissimilarity measures between these artifacts define relevant

geometries on fibrations and their ilk. Here, we outline various

(classes) of examples in this vein.

1) ASTs: As suggested in §II-B, ASTs are well-suited

for performing goal-directed transformations on files using

a dissimiliarity measure (or outright metric) as an explicit

objective function.

For instance, edit distances for ASTs would be considerably

less computationally expensive than edit distances for DSGs.
18 Also in this particular vein, tree edit distance is appealing

due to the compositional structure of dynamic programs [62]

that compute it: i.e., edit distances are recursively com-

puted from edit distances of substructures. Moreover, node

annotations/labels can be taken into account in a way that

separates their concerns from the tree structure by considering

dissimilarities on attributed trees. There are several potential

avenues to producing a suitable and generic dissimilarity in

this vein, e.g. combining known ordered tree isomorphism

algorithms with the polytime approach of [63] for attributed

rooted labeled unordered trees. Another avenue is to use

kernels for attributed trees [64], [65]. 19

2) Traces: An execution trace of a parser is a more dynamic

and architecture-specific (i.e., operational [66]) representation

of semantics than an AST. Considering traces as paths on

the control flow graph of a program, one might coarse-grain

subroutines [34] or roughly equivalently, use the dynamic

sequence of function calls to get a suitably high-level notion of

trace to define a relevant notion of algebra on individual fibers

and a geometry relating fibers. A particularly useful class of

dissimilarities on traces can be constructed using [67].

In other words, each intermediate representation (token

sequence, CST, AST, etc.) that a parser constructs defines a

section in a fibration associated to a set of execution traces.

18Tree edit distances are still quite expensive: the best known algorithm for
edit distance on rooted labeled ordered trees requires cubic time [56], and a
subcubic algorithm is unlikely to exist [57], though there are reasonably good
practical algorithms [58], [59] and approximations [60], [61].

19It might be sufficient or even practically necessary to use the trivial metric
on node annotations defined by d(x, y) := 1 for x �= y, and d(x, x) := 0 for
all x. Besides completing the specification of a dissimilarity measure, it seems
likely that this particular case would admit tailored improvements relative to
generic node annotation metrics.

Due to software errors, this section is typically local, but

ideally global.

3) Ontologies: An order metric [68] can be applied across

multiple instantiations of parser (or more generically, program)

errors. This has the advantage that we can perform topological

differential testing [69] in concert with an error ontology to

define a nice notion of de facto syntax and get a reasonable

notion of the “base space” X .

4) Generalized Wasserstein metrics: A particularly inter-

esting and general avenue for defining bona fide metrics using

category theory is suggested by [70], which shows how to

define a generalized Wasserstein metric on functors from a

given small category to Set. If for example we take the small

category to be given by two parallel morphisms between two

objects, such functors are quivers/multidigraphs.

With a suitable functor, the Wasserstein metric applies to

attributed quivers, and may admit specialization to be more

narrowly tailored for a metric dissimilarity of a domain-

specific form. One advantage of this approach is that the metric

is a convex relaxation of a Hausdorff-style metric that admits

computation via a linear program. Thus the algorithmic effort

can be concentrated in the selection of an appropriate category

and specialization of the linear program formulation to support

fast evaluation.

IV. REMARKS

As §II-B2 shows, even slightly nontrivial examples are

intractable to explicitly analyze with this framework, but this

is not its raison d’être. Rather, this framework is intended

to provide a conceptual basis for engineering transformation

frameworks as in §II-B3. Insisting on analogies or formal iden-

tifications with bundle-like objects endowed with geometry

can inform the design and implementation of goal-directed

file transformations.
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