
Partially Observable Games for Secure Autonomy*

Mohamadreza Ahmadi1, Arun A. Viswanathan2, Michel D. Ingham2, Kymie Tan2, and Aaron D. Ames1

Abstract— Technology development efforts in autonomy and
cyber-defense have been evolving independently of each other,
over the past decade. In this paper, we report our ongoing
effort to integrate these two presently distinct areas into a
single framework. To this end, we propose the two-player
partially observable stochastic game formalism to capture both
high-level autonomous mission planning under uncertainty and
adversarial decision making subject to imperfect information.
We show that synthesizing sub-optimal strategies for such
games is possible under finite-memory assumptions for both
the autonomous decision maker and the cyber-adversary. We
then describe an experimental testbed to evaluate the efficacy
of the proposed framework.

I. INTRODUCTION

The growing ubiquity of autonomous systems, their use

in ever more remote and unknown environments, and the in-

creasing sophistication of cyber threats are driving a need for

unprecedented system resilience, coupling robust autonomy

with efficient cyber-defense strategies [11], [7]. Consider the

push to develop swarms of smallsats in low Earth orbit. Cost-

effective operations of such swarms require improved auton-

omy capabilities, both onboard and on the ground. However,

complex autonomous behavior makes such systems suscep-

tible to malicious tampering. Similarly, current unmanned

air/ground/underwater systems rely on various signals for

communication and localization and are already vulnerable

to spoofing attacks. A GPS spoofing attack against such

systems could result in malicious GPS coordinates being fed

to the vehicle, causing it to be (mis)guided on an adversary’s

behest [8]. A resilient autonomous system should be able to

detect attacks against itself, diagnose the probable causes,

and automatically take corrective actions while ensuring the

system’s low/high-level goals and objectives are achieved.

However, a primary challenge to achieving this vision of

integrated cyber and physical resilience is that technology

development efforts in autonomy and cyber-defense are

presently evolving independently of each other. Our work

aims to reverse this trend. Our overall goal is to develop

and demonstrate resilient autonomy for autonomous agents,

by extending existing risk-aware planning and execution ca-

pabilities [15] with a combination of state-of-the-art model-
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Fig. 1. A simplified model of an autonomous system.

based reasoning for situational and self-awareness and active

cyber-defense mechanisms.

Current cyber adversaries can study the defender’s be-

havior, identify security caveats, and modify their actions

adaptively [16]. To tackle these security challenges, cyber-

agents require adversarial decision making under uncer-

tainty [10]. Furthermore, agents cannot directly observe their

adversary’s true state and/or intention. Hence, active cyber-

defense methods necessitate dealing with partial observa-

tions [2] and imperfect/incomplete information. A game-

theoretic framework known as partially observable stochastic

games (POSG) [12] provides a promising mathematical

formalism for these capabilities.

In this paper, we report our preliminary methodology

based on POSGs to integrate high-level autonomy and ad-

versarial decision making. Our method based on POSGs

is aimed at addressing cyber-physical threats caused by

active cyber-adversaries, for example, as seen in the Stuxnet

attack [13], wherein the attacker modifies their strategy in

reaction to defensive actions. We show that the solution to

the POSG can be cast as an optimization problem. Then, we

propose an experimental setup to evaluate our technique. In

summary, we hope to make the following contributions:

• Novel high-level resilient autonomy in the presence of

active cyber-attacks leveraging the POSG framework;

• Demonstration of an integrated ”defense-in-depth” ca-

pability for secure autonomy of cyber-physical systems.

The rest of the paper is organized as follows: Section II

discusses the threat model for a cyber-physical system such

as an UAV, an autonomous robot, or a swarms of space-

crafts; Section III discusses our proposed methodology using

POSGs; Section IV discusses our experimental evaluation

methodology followed by our conclusions and future work

in Section V.

II. CYBER-PHYSICAL THREAT MODEL

In this section, we first describe a model of an autonomous

system, followed by a description of adversarial goals and a

high-level taxonomy of threats.
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Fig. 2. Cyber-Physical Threat Model

Figure 1 shows a simplified model of an autonomous sys-

tem (agent), containing two subsystems: cyber and physical.
The cyber subsystem encapsulates functionality such as com-

mand and control logic, operating system, applications and

any communications between the cyber components. Cyber

components may be located on the agent or be external to

the agent. Multi-agent systems may have a centralized cyber

subsystem coordinating the agents. The physical subsystem

encapsulates entities such as sensors, actuators, physical

communication channels, and any other hardware comprising

the autonomous system. An attacker would want to gain

malicious control, cause damage, or deny service to prevent

the autonomous system from achieving its goals. Referring to

Figure 2, there are four different kinds of attacks an adversary

could use to achieve their goals.

Cyber Attack
A cyber attack directly targets the components in

the cyber subsystem. For example, a denial-of-

service attack against the communication network

of an autonomous system is an example of a cyber

attack.

Physical Attack
A physical attack targets the components in the

physical subsystem. For example, a ballistic impact

is a type of physical attack which could damage

physical components of an autonomous system. A

physical attack often requires physical proximity to

the system.

Cyber-Physical Attack
In a cyber-physical attack, an attacker leverages

a cyber vulnerability with the intent to affect the

physical subsystem. For example, malicious input

injection attacks such as the malicious command or

data injection seen in recent car hacks [9]. Cyber-

physical attacks are often the most devastating as

they can be initiated remotely, and cause serious

damage to the physical subsystem.

Physical-Cyber Attack
In a physical-cyber attack, an attacker influences

the cyber subsystem by attacking the components

in the physical subsystem. For example, an attack

on the physical sensors of an autonomous system

(say the IMU), may cause inaccurate data to be sent

upstream to the cyber components (for example,

incorrect location information), thereby causing in-

correct decision-making and response by the cyber

component.

In our work, we focus on the cyber-physical and physical-

cyber kinds of attacks, as these attacks cross boundaries and

as such, are often more subtle and difficult to diagnose, and

consequently pose significant risk to missions. In addition,

existing cyber or physical defenses generally do not protect

against these attacks.

In the next section, we describe a mathematical formalism

considering cyber-physical and physical-cyber attacks.

III. METHODOLOGY: TWO-PLAYER POSG

A POSG is formally defined as follows.

A probability distribution over a finite or countably infinite

set X is a function μ : X → [0, 1] ⊆ R with
∑

x∈X μ(x) =
μ(X) = 1. The set of all distributions on X is Distr(X). The

support of a distribution μ is supp(μ) = {x ∈ X |μ(x) >
0}. A distribution is Dirac if |supp(μ)| = 1.

Definition 1: A stochastic game (SG) is a tuple G =
(S, sI , Act,P) with a finite set S = S◦ ∪S� of states, a set
S◦ of Player 1 states, a set S� of Player 2 states, the initial

state sI ∈ S, a finite set Act = Act◦ ∪Act� of actions, and
a transition function P : S × Act → Distr(S). We define
costs using a state-action cost function C : S×Act → R≥0.

A path of an SG G is an (in)finite sequence π = s0
a0−→

s1
a1−→ s, where s0 = sI, si ∈ S, ai ∈ Act , and P(si, ai) �=

0 for all i ∈ N. For finite π, last(π) denotes the last state of

π. The set of (in)finite paths of G is PathsGfin (PathsG).

To define a probability measure over the paths of an SG

G, the non-determinism needs to be resolved by strategies.

Definition 2 (SG strategy): A strategy σ for G is a pair
σ = (σ◦, σ�) of functions σi : {π ∈ PathsGfin | last(π) ∈
Si} → Distr(Act) such that for all π ∈ PathsGfin , {a |
σi(π)(a) > 0} ⊆ Act , i ∈ {◦,�}.
A Player-i strategy σi (for i ∈ {◦,�}) is memoryless if

last(π) = last(π′) implies σi(π) = σi(π
′) for all π, π′ ∈

dom(σi). It is deterministic if σi(π) is a Dirac distribution

for all π ∈ dom(σi).
A strategy σ for an SG resolves all non-deterministic

choices, yielding an induced MC, for which a probability
measure over the set of infinite paths is defined by the

standard cylinder set construction [5]. These notions are

analogous for MDPs.

In our framework, S◦ consists of the physical and mission

states, e.g. robot(s) location and obstacles, or the autonomous

decision maker; whereas, S� corresponds to the internal

states of the cyber-adversary and the cyber states of the sys-

tem, e.g. states constructed by an attack-response-tree [18].

These states are not directly observable to either player,

partly due to imperfect sensors and false positives/negatives

from the intrusion detection systems (IDSs); the players

must infer the true states based on the observations received

at every step of the game. Thus, we have a POSG as

follows (see Figure 3).

Definition 3: A partially observable stochastic game

(POSG) is a tuple G = (G,Z◦, Z�, O◦, O�), with G =
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Fig. 3. Three stages of an example POSG. The states of the players need
to be estimated based on the observations, and in the case of the attacker
�, counteracted. The game starts at so with an initial observation z�.

(S, sI , Act,P) the underlying SG of G, Z◦ and Z� are
finite set of observations for Player 1 and 2, respectively,
and O◦ : S → Z◦ (O� : S → Z�) the observation function

for Player 1 (Player 2).
We lift the observation function to paths: For π = s0

a0−→
s1

a1−→ sn ∈ PathsMfin , the associated observation sequence
is O(π) = O(s0)

a0−→ O(s1)
a1−→ O(sn).

Definition 4 (POSG Strategy): An observation-based

strategy σi for Player i in POSG G is a strategy σi for
Player i in the underlying SG G such that σi(π) = σi(π

′)
for all π, π′ ∈ PathsGfin with Oi(π) = Oi(π

′).
Applying the strategy σ = (σ◦, σ�) to a POSG G resolves

all nondeterminism and partial observability, resulting in the

induced Markov chain Gσ .

However, since POSGs simply extend POMDPs to mul-

tiple players, computing optimal strategies requires infinite

memory [6]. To circumvent this difficulty, we represent

observation-based strategies with finite memory and we

use finite-state strategies (FSSs) (see also FSSs in Delay

Games [17]). If such an FSS has n memory states, we say

the memory size for the underlying strategy σ is n.

Definition 5 (FSS): A finite-state strategy (FSS) for
Player i in POSG G is a tuple Ai = (Ni, n

I
i , γi, δi), where

Ni is a finite set of memory states, nI
i ∈ Ni is the initial

memory state, γi is the action mapping γi : Ni × Zi →
Distr(Act), and δi is the memory update δi : Ni × Zi ×
Act → Distr(Ni). The set FSSG

k denotes the set of FSSs
with k memory states, called k-FSSs.

At each stage of the game, for each player, from a node n
and the observation z in the current state of the POSG, the

next action a is chosen from Act(z) randomly as given by

γ(n, z). Then, the successor node of the FSS is determined

randomly via δ(n, z, a).
A POSG for Secure Autonomy: With the FSS assumption,

the goal is then to maximize the probability of satisfying

mission specifications, e.g. reach goal region while avoiding

obstacles in the presence of cyber-adversarial activity. Next,

we formally define the game objective.

Game Objective: For a POSG G and a mission specifica-

tion defined by a temporal logic formula ϕ, we consider the

probability PrG(ϕ) to satisfy ϕ.

The specification ϕ is satisfied for a strategy σ = (σ◦, σ�)
and the POSG G with probability λ ∈ [0, 1], if the probability

PrG
σ

(ϕ) = λ or simply if the induced Markov chain by

applying strategy σ satisfies the specification with probabil-

ity λ. At this point, we have the following game formulation

of secure autonomy problem.

Problem 1: Given a POSG G = (G,Z◦, Z�, O◦, O�),
mission specification defined by a temporal logic for-
mula ϕ, memory bounds n◦ for the decision maker and
n� for the cyber-adversary, compute a FSS σ∗

◦ such
that

σ∗
◦ = argmax

σ◦∈FSSG
n◦

min
σ�∈FSSG

n�

PrG
σ

(ϕ).

In Problem 1, we look for worst-case resilient strategies

such that the probability of satisfying the specifications is

maximized. Note that a Nash equilibrium is not necessarily

desirable here. Alternatively, we can search for resilient

strategies that maximize the expected value of meeting the

specifications in the presence of adversarial activity. Indeed,

we can approximate PrG
σ

(ϕ) with an expected total cost type

constraint [3]. Then, for reachability type formulae such as

ϕ = �T (eventually reach a goal region represented by the

states in T ), where T ⊂ S. The solution to Problem 1 can be

found by solving an optimization problem as follows (see [1]

for the derivation for one-sided POSGs).

For s◦ ∈ S◦, and s� ∈ S�, we define the cost variables
cs◦ ≥ 0 cs� ≥ 0 that represent the expected cost of reaching

T ⊆ S with csI being the expected cost of reaching to

T from the initial state sI . Let γ ∈ [0, 1) be the discount

factor to ensure finite total expected cost. We then have the

optimization problem:

minimize
cs◦ ,σ◦

maximize
cs� ,σ�

csI (1)

subject to

cs = 0, ∀s ∈ T, (2)
∑

a∈Act◦

σz
a = 1, ∀z ∈ Z�, (3)

∑

a∈Act�

σz
a = 1, ∀z ∈ Z◦, (4)

cs� = C(s�, a) + γ
∑

a∈Act◦

σO(s�)
a

∑

s′◦∈S◦

P(s�, a, s′◦) cs′◦ ,

∀s� ∈ S� \ T, ∀σO(s�)
a ∈ σ�, (5)

cs◦ = C(s◦, a) + γ
∑

a∈Act�

σO(s◦)
a

∑

s′�∈S�

P(s◦, a, s′�) cs′� ,

∀s◦ ∈ S◦ \ T, ∀σO(s◦)
a ∈ σ◦. (6)

The objective in (1) implies the decision maker ◦ is

minimizing the cost of reaching T from the initial state;

whereas, the cyber-adversary � is trying the maximize the

cost. We assign the expected cost of the states in the target set

T to 0 by the constraints in (2). We ensure that the strategies

of the decision maker and the cyber-adversary are well-

defined with the constraints in (3) and (4). The constraints

in (5)–(6) give the computation for the expected cost in the

states of the POSG via dynamic programming.

We will develop methods based on heuristics and nonlinear
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Fig. 4. Three robots involved in experimental evaluations at CAST: (left)
quadruped, (center) Segway, and (right) Flipper.

programming to solve the resultant POSGs algorithmically

and we will study trade-offs between resilience (cyber side)

and mission goals (physical side). Preliminary work in

solving POSGs was carried out in [1] for the case when

only the adversary is subject to partial observation with

application to network security. Instead of solving the full

game, we used model checking to synthesize a set of strong

(sub-optimal) strategies for the adversary and then composed

robust defensive strategies.

IV. EXPERIMENTAL EVALUATION

The efficacy of the developed methods will be evalu-

ated through experiments with three autonomous agents (a

Segway, a quadruped, and a Flipper robot) in Caltech’s

Center for Autonomous Systems and Technologies (CAST)

as depicted in Figure 4. The quadruped and the Flipper robot

will be tasked to locate the target and the obstacles, respec-

tively; whereas, the Segway is able to retrieve the target

once the quadruped and Flipper explore the area. Flipper

is equipped with a 3D LIDAR and a router. The quadruped

robot is equipped with a high-resolution camera, an Inertial

Measurement Unit (IMU), and a router. The Segway only

has wheel odometry, an IMU, and a router. The centralized

decision making is carried out through a computer connected

to the robots via a wifi network. The sensor signals of

each robot are also sent back to the computer via the same

network (see our previous work on safe autonomy with this

set up [4], [14]). The goal of the experiments is to find

and retrieve the target in the presence of cyber adversarial

activity. This experimental setup is described next.

The states of the POSG for Player ◦ (the decision-

maker) correspond to the locations of each agent, obstacles,

and the goal. The actions for Player ◦ include moving

Left,Right, Up,Down for each agent. The two states of

Player � (cyber-adversary) are Quadruped, F lipper cor-

responding to the two surveying agents. The actions of

the attacker are to TakeDown or Wait. If TakeDown
is chosen at one stage of the game, for example, for the

Flipper robot, the robot will not move in the next step and

its observation cannot be used for path planning. On the other

hand, Wait means no action is taken by the adversary.

The objective of Player ◦ is then to maximize the probabil-

ity of retrieving the target and avoiding obstacles; whereas,

the Player � attempts to minimize this probability. This

POSG fits in the framework of Section II and can be used

to assure high-level mission autonomy as well as cyber-

resilience. This initial abstract problem formulation will

provide a basis for more realistic (high-fidelity) solutions to

the real-world problem in future work, e.g., examining real

injected cyber-attacks and practical defensive responses.

V. CONCLUSIONS

We described our ongoing research on the fusion of

autonomous decision making and active cyber-resilience. We

proposed a POSG that can capture high-level mission specifi-

cations, uncertainty, partial observation, and adversarial deci-

sion making. Although finding optimal strategies for POSGs

is undecidable, we discussed finite-memory strategies as

computationally tractable alternatives. Finally, we presented

an experimental testbed, methodology and a case study to

evaluate our secure autonomy techniques in the future.
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