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Abstract—Backdoors and poisoning attacks are a major threat
to the security of machine-learning and vision systems. Often,
however, these attacks leave visible artifacts in the images that
can be visually detected and weaken the efficacy of the attacks.
In this paper, we propose a novel strategy for hiding backdoor
and poisoning attacks. Our approach builds on a recent class of
attacks against image scaling. These attacks enable manipulating
images such that they change their content when scaled to a
specific resolution. By combining poisoning and image-scaling
attacks, we can conceal the trigger of backdoors as well as
hide the overlays of clean-label poisoning. Furthermore, we
consider the detection of image-scaling attacks and derive an
adaptive attack. In an empirical evaluation, we demonstrate
the effectiveness of our strategy. First, we show that backdoors
and poisoning work equally well when combined with image-
scaling attacks. Second, we demonstrate that current detection
defenses against image-scaling attacks are insufficient to uncover
our manipulations. Overall, our work provides a novel means
for hiding traces of manipulations, being applicable to different
poisoning approaches.

Index Terms—Poisoning, Backdoor, Deep Neural Network

I. INTRODUCTION

Machine Learning is nowadays used in various security-

critical applications that range from intrusion detection and

medical systems to autonomous cars. Despite remarkable

results, research on the security of machine learning has

revealed various possible attacks. A considerable threat are

poisoning attacks during the training process [e.g. 1, 5, 8].

Deep learning applications usually require a large number of

training instances, so that there is a risk of an insider carefully

manipulating a portion of the training data. Moreover, the

training process can be outsourced either due to a lack of

expertise in deep learning or due to missing computational

resources to train large networks—again giving the chance to

manipulate training data and the model.

In the context of deep learning, recent research has demon-

strated that neural networks can be modified to return targeted

responses without an impact on their behavior for benign inputs.

An adversary, for instance, can insert a pattern in some training

images of a particular target class, so that the network learns to

associate the pattern with this class. If the pattern is added to

arbitrary images, the network returns the target class. However,

a major drawback of most attacks is the visibility of data

manipulations either at training or test time [5, 8]. The attack

is thus revealed if human beings audit the respective images.

Xiao et al. [20] have recently presented a novel attack

vulnerability in the data preprocessing of typical machine
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Fig. 1. Example of a clean-label poisoning attack [12]: a neural network learns
to classify a dog as cat by blending the dog with multiple cat images. Image-
scaling attacks allow more insidious poisoning attacks. The dog as manipulation
is not visible in the training data and appears only after downscaling.

learning pipelines. An adversary can slightly manipulate an

image, such that an image scaling algorithm produces a novel

and unrelated image in the network’s input dimensions. The

attack exploits that images are typically larger than the input

dimensions and thus need to be scaled.

This novel attack directly addresses the shortcomings of

most poisoning attacks by allowing an adversary to conceal

data manipulations. As an example, Figure 1 shows a clean-

label poisoning attack [12] on the popular TensorFlow library.

The network will learn to classify the dog as cat if this dog is

repeatedly inserted into varying images showing cats during

training. In the attack’s standard version, the slight manipulation

of the training image is still noticeable. Yet, image-scaling

attacks conceal the manipulation of the training data effectively.

The dog appears only in the downscaled image which is finally

used by the neural network.

This paper provides the first analysis on the combination of

data poisoning and image-scaling attacks. Our findings show

that an adversary can significantly conceal image manipulations

of current backdoor attacks [5] and clean-label attacks [12]

without an impact on their overall attack success rate. Moreover,

we demonstrate that defenses—designed to detect image-

scaling attacks—fail in the poisoning scenario. We examine the

histogram- and color-scattering-based detection as proposed

by Xiao et al. [20]. In an empirical evaluation, we show that

both defenses cannot detect backdoor attacks due to bounded,

local changes. We further derive a novel adaptive attack that

significantly reduces the performance of both defenses in the

clean-label setting. All in all, our findings indicate a need for

novel, robust detection defenses against image-scaling attacks.
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Contributions. In summary, we make the following contribu-

tions in this paper:

• Combination of data poisoning and image-scaling attacks.
We provide the first analysis on poisoning attacks that

are combined with image-scaling attacks. We discuss two

realistic threat models and consider backdoor attacks as

well as clean-label poisoning attacks.

• Evaluation of defenses We evaluate current detection

methods against image-scaling attacks and show that

backdoor attacks cannot be detected.

• Adaptive Attack. We derive a novel variant of image-

scaling attack that reduces the detection rate of current

scaling defenses. Our evaluation shows that clean-label

attacks cannot be reliably detected anymore.

The remainder of this paper is organized as follows:

Section II reviews the background of data poisoning and

image-scaling attacks. Section III examines their combination

with the respective threat scenarios and our adaptive attack.

Section IV provides an empirical evaluation of attacks and

defenses. Section V and VI present limitations and related

work, respectively. Section VII concludes the paper.

II. BACKGROUND

Let us start by briefly examining poisoning and image-scaling

attacks on machine learning. Both attacks operate at different

stages in a typical machine learning pipeline and allow more

powerful attacks when combined, as we will show in the

remainder of this work.

A. Poisoning Attacks in Machine Learning

In machine learning, the training process is one of the most

critical steps due to the impact on all subsequent applications.

At this stage, poisoning attacks allow an adversary to change

the overall model behavior [e.g. 1, 6] or to obtain targeted

responses for specific inputs [e.g. 5, 8, 12] by manipulating

the training data or learning model. Such attacks need to be

considered whenever the training process is outsourced or an

adversary has direct access to the data or model as insider [15].

Moreover, a possible manipulation needs to be considered if a

learning model is continuously updated with external data.

In this work, we focus on poisoning attacks against deep neu-

ral networks where the adversary manipulates the training data

to obtain targeted predictions at test time. While particularly

effective with a few changed training instances, most methods

have the major shortcoming that the manipulation is visible [e.g.

5, 8]. As a result, the attack can be easily uncovered if the

dataset is, for instance, audited by human beings. We present

two representative poisoning attacks in Section III and show

that they can be easily combined with image-scaling attacks

to conceal manipulations significantly.

B. Image-Scaling Attacks

The preprocessing stage in a typical machine learning

pipeline is another critical point, surprisingly overlooked by

previous work so far. Xiao et al. [20] have recently identified

Attack
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Output Image D

scale

A ∼ S

D ∼ T

Fig. 2. Principle of image-scaling attacks: An adversary computes A such
that it looks like S but downscales to T .

an attack possibility in the scaling routine of common machine

learning frameworks. The attack exploits that most learning-

based models expect a fixed-size input, such as 224×224 pixels

for VGG19 and 299× 299 pixels for InceptionV3 [14, 16]. As

images are usually larger than the input dimensions of learning

models, a downscaling operation as preprocessing stage is

mandatory. In this case, an adversary can slightly modify an

image such that it changes its content after downscaling. She

can thus create targeted inputs for a neural network being invisi-

ble in the original resolution before, as exemplified by Figure 2.

Attack. In particular, the adversary slightly modifies a source

image S such that the resulting attack image A = S + Δ
matches a target image T after scaling. The attack can be

modeled as the following quadratic optimization problem:

min(‖Δ‖22) s.t. ‖scale(S +Δ)− T‖∞ � ε . (1)

Moreover, each pixel of A needs to stay in the range of [0, 255]
for 8-bit images. Note that an image-scaling attack is successful

only if the following two goals are fulfilled:

(O1) The downscaled output D of the attack image A is close

to the target image: D ∼ T .

(O2) The attack image A needs to be indistinguishable from

the source image: A ∼ S.

For a detailed root-cause analysis of image-scaling attacks, we

refer the reader to Quiring et al. [10].

Detection. Two methods have been proposed to detect image-

scaling attacks [20], that is, decide if an image was manipulated

to cause another result after downscaling. Both rest on the

following idea, exemplified by Figure 3: The downscaling of

A creates a novel image D which is unrelated to the original

content from A. If we upscale D back to its original resolution,

we can compare A and the upscaled version A′. In the case

of an attack, both images will be different to each other.

+Δ Downscaling

Upscaling

Image Comparison

S A

A′

D

Fig. 3. Defense based on down- and upscaling with image comparison. The
downscaled version D of A is upscaled again and compared with A.
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The first method uses an intensity histogram that counts

the number of pixels for each value in the dynamic range

of an image. To this end, a color image is converted into a

grayscale image before computing its histogram. The result

is a 256 dimensional vector vh for 8-bit images. The attack

detection is now based on the cosine similarity between A and

A′: sh = cos(vh1 , v
h
2 ). A low score indicates an attack, as the

distribution of both inputs do not match to each other.
The second method based on color scattering considers

spatial relations in an image. The color image is again converted

to grayscale, and the average distance to the image center over

all pixels with the same value is calculated, respectively. This

forms a 256 dimensional vector vs. The respective vectors from

A and A′ are also compared by using the cosine similarity.
We finally note that defenses exist to prevent image-scaling

attacks [see 10]. In contrast to detection, prevention blocks

the attack from the beginning, but would not uncover that the

dataset was manipulated, which is the focus in this work.

III. DATA POISONING USING IMAGE-SCALING

Equipped with an understanding of data poisoning and image-

scaling attacks, we are ready to examine novel attacks. The

adversary’s goal is that the model returns targeted predictions

for specially crafted inputs while behaving normally for benign

inputs. As image-scaling attacks provide a new means for

creating novel content after downscaling, they are a perfect

candidate to create less visible poisoning attacks. We start by

describing two plausible threat models and continue with a

description of two attack variants.

A. Two Realistic Threat Models

Stealthiness during test time. It is common practice to

outsource the training of large deep neural networks, either

due to the lack of computational resources or due to missing

expertise. In this scenario, an adversary can arbitrarily change

the training data (or the model), as long as the returned model

has the expected accuracy and architecture. The application of

image-scaling attacks to hide changes is here not necessary.

However, common backdoor attacks add visible triggers in test

time instances to obtain a targeted prediction [e.g. 5, 8]. If

such instances are examined, a visible backdoor, for instance,

would directly reveal that a model has been tampered. These

attacks can thus benefit from image-scaling attacks at test time.

Stealthiness during training time. In the second scenario, the

adversary has only access to the training data, but the training

process or model cannot be manipulated. This scenario is

particularly relevant with insiders who already have privileged

access within a company [15]. Most poisoning attacks leave

visible traces in the training data, so that the attack is detectable

if audited by human beings. Consequently, image-scaling

attacks are also useful for these scenarios.

Finally, the application of image-scaling attacks requires (a)

knowledge of the used scaling algorithm and (b) the input size

of the neural network. Their knowledge is plausible to assume

if the attacker is an insider or trains the model herself.

B. Enhanced Poisoning Attacks

We study two representative poisoning attacks against deep

neural networks: backdoor and clean-label attacks. Both enable

us to examine different approaches to manipulate images and

their impact on image-scaling attacks and defenses.

Backdoor attack. As first attack, we use the BadNets backdoor

method from Gu et al. [5]. The adversary chooses a target label

and a small, bounded backdoor pattern. This pattern is added

to a limited number of training images and the respective label

is changed to the target label. In this way, the classifier starts

to associate this pattern with the target class.

We consider both threat models for the attack. As first variant,

the adversary hides the poisoning on test time instances only.

Thus, we use the BadNets method in its classic variant during

the training process. At test time, the adversary applies an

image-scaling attack. The original image without backdoor

represents the source image S, its version with the backdoor

in the network’s input dimensions is the target image T . By

solving Eq. (1), the adversary obtains the attack image A that

is passed to the learning system. The pattern is only present

after downscaling, so that an adversary can effectively disguise

the neural network’s backdoor.

In addition, we study the threat scenario where the adversary

hides the modifications at training time. We use the same attack

principle as before, but apply the image-scaling attack for the

backdoored training images as well. This scenario is especially

relevant if the backdoor is implemented in the physical world,

e.g. on road signs. The trigger can be disguised in the training

data by using image-scaling attacks, and easily activated in the

physical world at test time (without a scaling attack).

Clean-label poisoning attack. As second attack, we consider

the poisoning attack at training time as proposed by Shafahi

et al. [12]. The attack does not change the label of the modified

training instances. As a result, this poisoning strategy becomes

more powerful in combination with image-scaling attacks: The

manipulated images keep their correct class label and show no

obvious traces of manipulation.

In particular, the adversary’s objective is that the model

classifies a specific and unmodified test set instance Z as a

chosen target class ct. To this end, the adversary chooses a set

of images Xi from ct. Similar to watermarking, she embeds a

low-opacity version of Z into each image:

X ′
i = α · Z + (1− α) ·Xi. (2)

If the parameter α, for instance, is set to 0.3, features of Z
are blended into Xi while the manipulation is less visible. For

an image-scaling attack, the adversary chooses Xi as source

image S, and creates X ′
i as respective target image T in the

network’s input dimensions. The computed attack image A
serves as training image then. The changed images are finally

added to the training set together with their correct label ct.
As a result, the classifier learns to associate Z with ct. At

test time, Z can be passed to the learning system without any

changes and is classified as ct. This attack enables us to study
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the detection of image-scaling attacks, if the entire image is

slightly changed instead of adding a small and bounded trigger.

C. Adaptive Image-Scaling Attack

To hide poisoned images from detection, we additionally

introduce a new variant of image-scaling attack. In particular,

it targets the histogram-based defense, but is also effective

against the color-scattering-based approach.

The difficult part is to create an attack image A that changes

its appearance to T after downscaling, but has a similar

histogram if upscaled again, denoted as A′. To this end, we

use the following strategy: we upscale the target image T and

perform a histogram matching to the source image S. After

slightly denoising the result to make the adjusted histogram

smoother, we downscale the adapted image which gives us T ′.
We finally mount the image-scaling attack with S as source

image and T ′ as target. Although the content changes after

down- and upscaling, the histogram remains similar.

Figures 4(a) and 4(b) show an example with the histograms

of A and A′ for the original attack and our adapted attack, re-

spectively. Our adaptive attack enables aligning the histograms

of A and A′ although both are visually different to each other,

as depicted by Figures 4(f) and (h). Moreover, the visual

differences to the original attack are marginal.

However, the previous example also underlines that we do

not obtain an exact histogram matching. The attack chances

increase if source- and target image already have a similar

color tone. Therefore, we let the adversary select the most

suitable images for the attack. She mounts the attack on a

larger number of adapted images and select those with the

highest score.

IV. EVALUATION

We continue with an empirical evaluation and perform the

following experiments:

1) Poisoning & image-scaling attacks. We first demonstrate

that poisoning attacks benefit from image-scaling attacks.

The attack performance remains constant while the data

manipulation is hard to notice.

2) Detection defenses. We demonstrate that currently pro-

posed defenses against image-scaling attacks cannot detect

backdoor attacks.

3) Adaptive attack. We also show that clean-label attacks

cannot be detected if our new adaptive attack is applied

to the manipulated images.

A. Dataset & Setup

For our evaluation, we use the CIFAR-10 dataset [7]. Its

respective default training set is further separated into a training

(40,000 images) and validation set (10,000 images) that are

used for model training. We choose the model architecture

from Carlini and Wagner [3] which is commonly used in the

adversarial learning literature. The model expects input images

of size 32× 32× 3. This simple configuration of dataset and

model allows us to train a neural network for a variety of

different attack configurations in feasible time.
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(a) Original attack

Image A Image A′
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(b) Adaptive attack
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(c)
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(e) (f)
(g)

(h)

Original attack Adaptive attack

Fig. 4. Example of our adaptive image-scaling attack. Plot (a) and (b) show
the compared histograms for the original and our adaptive attack. Plot (c) and
(f) show A by using the original attack and our adaptive version, respectively.
Plot (d) and (g) show their respective downscaled version as input for the
neural network, (e) and (h) the respective upscaled version A′.

We implement the image-scaling attack in the strong variant

as proposed by Xiao et al. [20], and set ε = 1.0 in Eq. (1). We

use TensorFlow (version 1.13) and report results for bilinear

scaling, which is the default algorithm in TensorFlow. Due

to our controlled scaling ratio, other scaling algorithms work

identically and thus are omitted [see 10].

To evaluate image-scaling attacks realistically, we need

source images in a higher resolution. To this end, we consider

common scaling ratios from the ImageNet dataset [11]. Its

images are considerably larger than the input sizes of popular

models for this dataset. VGG19, for instance, expects images

with size 224×224×3 [14]. Based on these results, we upscale

the CIFAR-10 images to a size of 256 × 256 × 3 by using

OpenCV’s Lanczos algorithm. This avoids side effects if the

same algorithm is used for upscaling and downscaling during

an image-scaling attack and model training1.

B. Backdoor Attacks

Our first experiment tests whether image-scaling attacks

can effectively conceal backdoors. For a given target class,

we embed a filled black square in the lower-left corner as

backdoor into training images. We perform the experiments for

each class, respectively. To assess the impact of backdooring

on benign inputs, we evaluate the accuracy on the unmodified

CIFAR-10 test set. When evaluating backdoors on the test set,

we exclude images from the target class. We report averaged

results over the ten target classes. For each experiment, a

baseline is added if the backdoor attack is applied without

using an image-scaling attack.

Attack performance. Figure 5 presents the success rate of

the original attack for a varying number of backdoored training

images. The adversary can successfully control the prediction

1If we use the same algorithm, we obtained even better results against
image-scaling defenses, which might not be realistic with real-world images.
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Fig. 5. Backdoor attacks: Percentage of obtained target classes on the
backdoored test set, with and without image-scaling attacks for hiding the
backdoor. Scaling attacks have no negative impact on the attack’s success rate.
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Fig. 6. Backdoor attack examples. The first and second row result in the
third row after downscaling. However, the second row relies on image-scaling
attacks and better hides the backdoor trigger.

by embedding a backdoor on test time instances. If 5% of the

training data are changed, she obtains an almost perfect attack

result. The test set accuracy with unmodified images does not

change considerably.

The application of image-scaling attacks on the backdoored

test time instances has no negative impact on the success rate.

At the same, the adversary can considerably hide the backdoor

in contrast to the original attack, as Figure 6 shows. Although

the backdoor’s high contrast with neighboring pixels and its

locality creates rather unusual noise in the backdoor area, the

detection is hard if only quickly audited.

In addition, we evaluate the variant where the image-scaling

attack is also applied on the training data to hide the backdoor

pattern. We obtain identical results to the previous scenario

regarding the success rate and visibility of the backdoor pattern.

In summary, image-scaling attacks considerably raise the bar

to detect backdoors.

Detection of image-scaling attacks. Another relevant ques-

tion concerns the reliable detection of image-scaling attacks

(see Section II-B). Figure 7 depicts ROC curves for the

histogram-based and color-scattering-based defense when back-

doors are inserted at test time or training time.

For both threat scenarios, the defenses fail to detect image-

scaling attacks. A closer analysis reveals that the backdoor

manipulation is too small compared to the overall image size.

Thus, down- and upscaling creates an image version that still

corresponds to the respective input. We conclude that a reliable

attack detection is thus not possible if small and bounded parts

of an image are changed only.
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Fig. 7. Defenses against backdoor attacks: ROC curves of histogram-based
and color scattering-based method. Both do not reliably detect image-scaling
attacks that hide backdoors.
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Fig. 8. Clean-label attacks: Efficiency of attack in controlling the prediction
with and without image-scaling attacks, and our adaptive variant.

C. Clean-Label Poisoning Attack

We proceed with the clean-label attack from Section III-B,

following the experimental setup from Shafahi et al. [12].

We test 50 randomly selected target-source class pairs (ct, cz)
where cz denotes the original class of Z, ct the adversary’s

target class. For each pair, we choose a random target

instance Z and vary the number of modified images Xi. Again,

a baseline is added where no image-scaling attack is applied

on Xi. For the embedding, we set α = 0.3.

Attack performance. Figure 8 presents the success rate of

the attack with respect to the number of modified images. The

adversary can significantly control the prediction for Z. The

success rate increases with a larger number of modified images

that are added to the training set, and corresponds to results

as reported by Shafahi et al. [12].

Image-scaling attacks have only a slight impact on the

success rate of the poisoning attack. At the same time, the

attacker can conceal the added content of Z effectively, as

exemplified by Figure 9. The 4th row emphasizes that the

added content is not visible in the novel images used for

training, while Z is visible for the original attack.

As opposed to the backdoor attack from the previous section,

the added content Z from the clean-label attack is not noticeable

even under a closer analysis. As the whole image is partly

changed, the manipulation becomes an imperceptible noise

pattern. We conclude that poisoning attacks can benefit from

image-scaling attacks the most if the manipulation is a weaker

signal, distributed over a larger area in an image.

Detection of image-scaling attacks. Figure 10(a) depicts

ROC curves for the defenses. Only the histogram-based method
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Fig. 9. Clean-label attack examples. The 3rd and 4th row result in the 5th row
after downscaling. Image-scaling attacks can effectively hide the manipulation
(4th row), which would be visible in the original poisoning attack (3rd row).

can reliably detect attacks. At 1% false positives, 94.5% of

manipulated images are correctly marked as attack. The color-

scattering-based approach detects only 48.2% at 1% false

positives. In contrast to backdoor attacks, both defenses can

more reliably spot the manipulations by the clean-label attack.

As the whole image is slightly changed, the difference between

the attack image and its down- and upscaled version increases—

enabling the detection.

D. Adaptive attack

We finally demonstrate that an adversary can use an adaptive

strategy against both defenses to lower their detection rate.

Figure 10(b) presents ROC curves for our adaptive image-

scaling attack in the clean-label scenario. Our attack signifi-

cantly lowers the detection rate. At the same time, the overall

success rate of the attack is only slightly affected (see Figure 8).

We contribute this to the histogram matching, so that parts of Z
are slightly weaker embedded, especially for very dark or highly

saturated images. Overall, we conclude that an adversary can

circumvent current detection methods by adjusting histograms.

V. LIMITATIONS

Our findings demonstrate the benefit of image-scaling attacks

for poisoning and the need to find novel detection defenses.

Nonetheless, our analysis has limitations that we discuss in the

following. First, we consider defenses against image-scaling

attacks only. Direct defenses against data poisoning [e.g. 19]

are another possible line of defense that would need to be used

after downscaling. The design of such defenses is an ongoing

research problem [17, 19] and beyond the scope of this work.

Furthermore, we apply a simple backdoor technique by adding

a filled box into training images. We do not optimize regarding

shapes or the model architecture, resulting in a relatively high

amount of manipulated training data. Our goal is rather to draw

first conclusions about the utility of image-scaling attacks for

backdooring. As scaling attacks are agnostic to the model and

poisoning attack, other backdoor techniques are also applicable

whenever a manipulation needs to be concealed.
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Fig. 10. Defenses against clean-label attacks: ROC curves of histogram-based
and color scattering-based method with the original and adaptive attack.

VI. RELATED WORK

The secure application of machine learning requires consid-

ering various attacks along a typical workflow. Regarding the

order of the targeted step, attacks can be categorized into the

following classes: membership inference [e.g., 13], poisoning

attacks [e.g., 1, 5, 8], evasion- and perturbation attacks [e.g.,

2, 3, 9], as well as model stealing [e.g., 18].

In this work, we focus on poisoning attacks that manipulate

the training data so that the learning model returns targeted

responses with adversarial inputs only while behaving normally

for benign inputs. Two attack variants are backdoor and clean-

label poisoning attacks, differing in the the amount of necessary

data changes, visibility or robustness with transfer learning [e.g.

4, 5, 8, 12, 21]. We consider the following two rather simple,

but representative approaches: The BadNets method [5] inserts

a small, bounded pattern into images as backdoor, while the

clean-label attack from Shafahi et al. [12] slightly changes the

whole image to add a poison. Both provide first insights about

the applicability of image-scaling attacks for data poisoning.

Concurrently, Quiring et al. [10] comprehensively analyze

image-scaling attacks by identifying the root-cause and examin-

ing defenses for prevention. Our work here extends this line of

research on image-scaling attacks by analyzing the poisoning

application and detection defenses. While prevention stops

any attack, detection uncovers that an attack is going on. Our

findings here underline the need for novel detection approaches.

VII. CONCLUSION

This work demonstrates that image-scaling attacks can be

leveraged to hide data manipulations for poisoning attacks. We

consider two representative approaches: a backdoor attack [5]

and a clean-label poisoning attack [12]. Our evaluation shows

that the adversary can conceal manipulations more effectively

without impact on the overall success rate of her poisoning

attack. We find that image-scaling attacks can create almost

invisible poisoned instances if a slight manipulation is spread

over a larger area of the input.

Furthermore, our work raises the need for novel detection

defenses against image-scaling attacks. Local and bounded

changes—as done for backdoors—are not detected at all. The

detection if the whole image is changed can be circumvented

by using our proposed adaptive image-scaling attack variant.
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AVAILABILITY

We make our dataset and code publicly available at

http://scaling-attacks.net to encourage further research on

poisoning attacks and image-scaling attacks.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding by the

Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany’s Excellence Strategy -

EXC 2092 CASA - 390781972 and the research grant

RI 2469/3-1, as well as by the German Ministry for Education

and Research as BIFOLD - Berlin Institute for the Foundations

of Learning and Data (ref. 01IS18025A and ref 01IS18037A).

REFERENCES

[1] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under
adversarial label noise. In Proc. of Asian Conference on Machine
Learning (ACML), pages 97–112, 2011.

[2] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
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