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Abstract—SentiNet is a novel detection framework for local-
ized universal attacks on neural networks. These attacks restrict
adversarial noise to contiguous portions of an image and are
reusable with different images—constraints that prove useful for
generating physically-realizable attacks. Unlike most other works
on adversarial detection, SentiNet does not require training a
model or preknowledge of an attack prior to detection. Our
approach is appealing due to the large number of possible
mechanisms and attack-vectors that an attack-specific defense
would have to consider. By leveraging the neural network’s
susceptibility to attacks and by using techniques from model
interpretability and object detection as detection mechanisms,
SentiNet turns a weakness of a model into a strength. We
demonstrate the effectiveness of SentiNet on three different
attacks—i.e., data poisoning attacks, trojaned networks, and
adversarial patches (including physically realizable attacks)—
and show that our defense is able to achieve very competitive
performance metrics for all three threats. Finally, we show that
SentiNet is robust against strong adaptive adversaries, who build
adversarial patches that specifically target the components of
SentiNet’s architecture.

I. INTRODUCTION

Deep neural networks are susceptible to a variety of
attacks aimed at causing misclassifications [28], [14], [3].
This has severe implications for the trustworthiness of deep
learning models in security-critical decision-making situations.
Defending against these attacks is challenging due to the wide
variety of possible attack mechanisms and vectors, especially
for models operating in the visual domain. In this work, we
explore localized and universal attacks on visual classifiers and
introduce SentiNet, a robust defense which detects adversarial
inputs without requiring any specific model re-training or prior
knowledge of the attack vector.

We focus on attacks that are localized, i.e., the adversarial
region is constrained to a small contiguous portion of an
image, and universal, i.e., attacks are image-agnostic. Inputs
with these properties have proven useful for instantiating
robust and physically realizable attacks that take the form
of an adversarial object or sticker placed inside a visual
scene [3], [21], [9], [10]. These classes of attacks typically
use unbounded perturbations (i.e., without any specific �∞ or
�2 constraint as in most digital attacks [28], [14]), to ensure
that the attacks are robust to changes in viewpoint, lighting
and other physical artifacts. Several such physical attacks have
been demonstrated, with the goal of causing misclassifications
when applied to arbitrary images with different class labels [3],
[21]. A drawback of localized attacks is that they are gener-

ally visible and detectable by the human eye, but there are
many situations where attacks can be deployed in autonomous
settings or carefully disguised [3].

Our goal is to create a defense against localized universal
attacks that is attack-vector agnostic. To this end, we identify
unifying and necessary features of successful localized uni-
versal attacks—including physically realizable attacks—and
develop SentiNet, a novel technique that exploits these attack
behaviors to detect them. We start from the observation that
localized universal attacks are designed to be robust to a
variety of artifacts while generalizing to a large distribution
of inputs (e.g., the adversarial patch of [3] is designed to
work when applied to any input image). Our first insight is
that a localized universal attacks’ success relies on the use of
“salient” features that strongly affect the model’s classification
on many different inputs. We thus consider techniques from
model interpretability and object detection to discover highly
salient contiguous regions of an input image. As we show,
these techniques uncover adversarial image regions, as well as
benign ones that strongly affect classification. In a second step,
we exploit the strong robustness and generalization properties
of malicious regions to distinguish them from benign regions
with high saliency. Specifically, we overlay extracted regions
on a large number of held-out clean images and test how often
this results in a misclassification. Malicious regions are much
more likely than benign regions to generate misclassifications
and are thus detected by SentiNet. As we show in our eval-
uation of SentiNet, mounting an attack that evades detection
requires lowering an adversarial region’s saliency to a point
where the region is no longer universal (i.e., it fails with high
probability on random inputs)—even for a adaptive adversary
with knowledge of SentiNet’s architecture. We also validate
SentiNet’s effectiveness in a realistic physical setting, where it
successfully detects a printed adversarial patch [3] with high
reliability.

Contributions: To summarize, this paper makes the
following contributions:

• We propose SentiNet a new architecture that protects
a neural network by using the same model to detect
localized universal attacks.

• SentiNet uses a novel approach to detect a potential
attack region using techniques developed for model
visualization and object detection and feeds the attack
deployed on multiple test images back to the network
to perform attack classification.
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Fig. 1: Localized universal attack with an adversarial patch [3].

• We evaluate SentiNet to protect networks against
multiple attack vectors. While we primarily focus
on adversarial patches, an extended version of our
work [7] also shows SentiNet’s effectiveness in de-
tecting backdoors in poisoned or trojaned networks.

• We further evaluate SentiNet against a fully adaptive
white-box adversary and present seven attacks against
SentiNet’s core components. We show that SentiNet is
resistant against strong adversaries by demonstrating
the robustness of each individual component.

II. BACKGROUND

A. Threat Model

In this work, we assume a scenario where a DL system
uses a pre-trained deep CNN model to classify sensor data.
The goal of the adversary is to hijack the prediction of the
model by providing a malicious image to the CNN model. In
Section II-A1, we present the properties of the malicious inputs
considered in this paper, and in Section II-A2, we present
existing techniques to mount the attacks. Additionally, we
assume an adversary that is aware of the defense mechanisms,
and that can generate malicious images to bypass SentiNet. In
Section II-A1, we present such an adversary.

1) Localized Universal Attacks: The goal of the adversary
is to hijack the prediction of the model to gain control of the
actions performed by the DL system by crafting a malicious
object and placing it in the input image, e.g., inside the visual
scene of the sensors. The malicious objects considered in this
paper are localized, i.e., the object is constrained to a small
contiguous region of the image. The objects of this paper are
also universal, i.e., the object is created once and reused many
times with different input images. Figure 1 shows an example
of such universal, localized malicious objects.

2) Attack Vectors: The adversary can construct and use
malicious objects in different ways, that we review in this
section. For example, the adversary can “alter” the behavior
of the network to respond to a malicious object before its
deployment in a DL system. Examples of these attacks are
trojaning [19], [21] or poisoning attacks [16], which we
describe and evaluate in more detail in an extended version
of this work [7]. Here, we focus on an adversary that causes
misclassifications to uncompromised models by crafting ad-
hoc malicious objects, e.g., adversarial patches [26], [20], [3],
[9], [10], [2]. More specifically we consider an adversary
that makes use of localized universal malicious objects, e.g.,
printed patches [26], [3], [10], [9] or 3D objects [2] (see, e.g.,
Figure 1), that can fool a model under real-world conditions
such as lighting, sensor noise, and rotation.

3) Adaptive Adversary: Over the past years, many ideas
have been proposed to protect neural networks from attacks.
While some new ideas have moderately increased the robust-
ness of neural networks (e.g., strong adversarial training [23]),
many do not adequately protect networks against adversaries
aware of the specific defense mechanism being used (see,
e.g., [5], [1]). Accordingly, in this paper, we assume a strong
white-box adversary that is fully aware of SentiNet, its archi-
tecture and mechanisms.

III. SENTINET

In this section, we present SentiNet. The goal of SentiNet
is to identify adversarial inputs that will hijack the prediction
of the neural network without assuming the knowledge of
the attack vector beforehand, e.g., exploiting vulnerabilities of
compromised and uncompromised networks. The core insight
of SentiNet is to use the very behavior of adversarial misclas-
sification to detect an attack.

The architecture of SentiNet is shown in Figure 2. First,
SentiNet uses techniques from model interpretability and
object detection to extract from an input scene x those
regions that most highly influence the model prediction y
(Section III-A). These regions likely contain the malicious
object (if present) as well as benign salient regions. Then,
SentiNet applies these extracted regions on a set of benign
test inputs and observes the behavior of the model. Finally,
SentiNet compares the synthetic behaviors with the known
behavior of the model on benign inputs, to detect prediction
hijacking (Section III-B).

A. Adversarial Object Localization

The first phase of our approach intends to localize on the
given input the regions that might contain malicious objects.
The idea is to identify the parts of the input x that contribute
to the model prediction y. Because the attack is localized, we
can hope to recover the true class of input x if we evaluate the
model on a segmented input that contains no part of the attack.
In the following, we look into the details of this phase. First,
we present a segmentation-based approach to propose classes
(see Figure 2.a). Then, starting from proposed classes and the
given input, we generate a mask for x that may contain the
malicious object (see Figure 2.b).

1) Class Proposal via Segmentation: The detection of the
attack begins with the identification of a set of possible classes
that may be predicted by the model fm. The first of such
classes is the actual prediction, i.e., y = fm(x). The other
classes are identified by segmenting the input x and then eval-
uating the network on each segment. Algorithm 1 shows the
algorithm to propose classes via input segmentation. Different
approaches can be used to segment a given input x including
sliding windows and network-based region proposals [25]. In
our approach, we use the selective search image segmentation
algorithm [29]. Selective search generates an exhaustive list
of region proposals based on the patterns and edges found in
natural scenes [29]. Then, we evaluate each proposed segment,
i.e., f(xp), and return the k most confident predictions, where
k is a configuration parameter of SentiNet. We exclude the
primary class y = fm(x) from our choice of k classes. A
general guideline towards selecting k is to set it to be slightly
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Fig. 2: Overview of the SentiNet architecture to protect a model fm. The output and class proposals of an input are used to
generate masks and image tests, which are then fed back into fm to generate values for boundary analysis and attack classification.

higher than the amount of classes that are present in the dataset
per-image. In our case, Imagenet [8] has around 1.5 classes per
image, and we set k to 2.

Algorithm 1: ClassProposal

in : fm – model;
x – input of fm;
y – primary class, i.e., y = fm(x);
k – propositions

out : C - set of proposed classes and confidence (|C| = k)
1 P = SelectiveSearch(x);
2 C = {(yp, confp) : ∀xp ∈ P, (yp, confp) = fm(xp) ∧ yp �= y};
3 C = TopConf(C, k);
4 return C

2) Mask Generation: Once the class proposal C is ob-
tained, the second step of SentiNet consists in identifying
the regions of x that most highly influence the predictions
C. To find these regions, we resort to techniques to explain
and interpret model predictions.

A particularly suitable approach for our goal is Grad-
CAM [6], a model-interpretation technique that identifies con-
tiguous spatial regions of an input without requiring modi-
fications to the original model. At a high level, Grad-CAM
uses gradients computed in the final layers of a network to
calculate the saliency of input regions. For class c, Grad-
CAM calculates the gradients of the model’s output yc (the
model’s logit score for class c) with respect to each of the
k feature maps Ak of the model’s final pooling layer to

obtain δyc

δAk . The mean gradient value of each filter map, or

“neuron importance weight”, is denoted αk
c := 1

ZΣiΣj
δyc

δAk .

Finally, the feature maps Ak are weighted by their neuron
importance and aggregated to obtain the final Grad-CAM
output: Lc

Grad−CAM := ReLU(Σkα
k
cA

k). Here, ReLU(x) =
max(x, 0) is the ReLU activation function [12] which retains
only the positive gradient signals for class c. The output of
Grad-CAM is a coarse heatmap of the positive importance of
the image, usually at a lower resolution that the input image
due to downsampling in the model’s convolutional and pooling
layers. Finally, masks are produced by binarizing the heatmap
with a threshold of 15% of max intensity. We use this mask
to segment salient regions for the next steps.

We generate masks with Grad-CAM as shown in Algo-
rithm 2. We start by extracting the mask using Grad-CAM for
the input x and prediction y. As Grad-CAM can identify salient
areas for benign classes, the resulting mask may span over both
benign and malicious regions. To improve the accuracy of the

(a)

(b)

Fig. 3: Differential mask generation to remove ambiguous
areas. (a) Example of Grad-CAM mask using prediction y cov-
ering benign areas. (b) Example of precise mask by removing
masks of class proposals C.

mask, we also extract a mask for each proposed class yp. Then,
we use these additional heatmaps to generate secondary masks
to improve the original mask for the prediction y by subtracting
common region, resulting in a set of masks that highlight only
the localized attack and not the other salient regions.

Algorithm 2: MaskGeneration

in : fm – model;
x – input for fm;
y, conf – model prediction on x;
C – proposed classes

out : M - masks for candidate regions with the malicious object
1 masky = MaskGradCAM(fm, x, y);
2 M = {(masky−MaskGradCAM(fm, x, yp), confp)
: (yp, confp) ∈ C};

3 return {masky} ∪M

B. Attack Detection

Once we identified regions M of the inputs x that may be
containing malicious inputs, we test the model fm to determine
whether any of the regions can hijack the expected predictions
of a set of benign test inputs.

1) Test Generation: Once an input region is localized,
SentiNet observes the effects the region has on the model to
determine whether the region is adversarial or benign. To do
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so, SentiNet overlays the suspected region on a set of benign
test images X , which are often shipped together with deployed
models. Test images X are fed back into the network, where
the number of fooled examples are counted. Intuitively, the
more often an overlaid region causes a change in classification,
the more likely the region is adversarial.

When the recovered region is small, this technique is
effective at distinguishing adversarial and benign inputs, as
small benign objects cannot typically overwhelm a network’s
prediction. However, one problem of this approach is that a
region (whether adversarial or benign) that covers a larger
fraction of the input image will likely cause misclassifications
when overlaid onto most other images because they occlude
the original object.

To measure the extent to which an overlaid region causes
misclassifications simply by occluding the original object,
rather than by virtue of highly-salient features, we perform
a second test where we replace the content of the overlaid
region with an inert pattern of low saliency (e.g., Gaussian
noise). We expect that adversarial regions will cause many
misclassifications when overlaid on the test set, but have
little effect on the network when replaced by an inert pattern
before being overlaid. In contrast, we expect benign patterns to
either cause few misclassifications, or to occlude objects and
thus also disrupt the model when replaced by inert patterns.
Algorithm 3 below shows the algorithm we use to test extracted
regions. For each region, we check how many overlaid test
images fooled the network, and how confident the model is
when classifying images overlaid with inert patterns.

Algorithm 3: Testing

in : fm – model;
x – input for fm;
y – class of x;
M – proposed masks;
X – benign test images;

out : Fooled, AvgConf
1 R = {x ∗mask : mask ∈M};
2 IP = InertPattern (M );
3 XR = Overlay (X , R);
4 XIP = Overlay (X , IP );
5 fooledyR = 0, avgconfIP

= 0;
6 for xR,xIP ∈ XR, XIP do
7 (yR, confR), (yIP , confIP ) = f(xR), f(xIP );
8 if yR == y then
9 fooledyR += 1

10 avgconfIP
+= confIP

11 avgconfIP
=

avgconfIP
|X| ;

12 return fooledyR , avgconfIP
;

2) Decision Boundary for Detection: With these two met-
rics (number of images fooled and average inert pattern
confidence values) we can determine whether an input x is
adversarial. A naive approach is to use thresholding based
rules, but it is hard to determine how to set the thresholds and
which metric holds more importance. Instead, we use metrics
collected on clean examples to train a simple two-feature one-
class classifier and classify outliers as adversarial.

IV. EVALUATION

To demonstrate SentiNet’s versatility, we evaluated its
performance against a variety of existing attacks including
poisoned networks, trojan triggers, and adversarial patches. For
lack of space, we refer the interested reader to an extended
version of our paper [7] for the results of this evaluation, in
which we found that SentiNet attained an average true positive
rate of 96.22% and an average true negative rate of 95.36%
across a variety of attack scenarios.

V. ADAPTIVE ATTACKS

Here, we focus on evaluating the more challenging and re-
alistic threat model of a fully adaptive white-box adversary [4]
that is aware of the presence of SentiNet, of its architecture
and its inner workings. Such an adversary can attempt to create
adversarial objects that simultaneously fool the target network
while also compromising the core components of SentiNet,
i.e., the mask generation, the class proposal, and the attack
detection. In Section V-A, we present attacks aimed at fooling
the mask generation phase. Then, in Section V-B, we evaluate
attacks against the class proposal. Finally, in Section V-C, we
present attacks against the attack detection phase.

We evaluate SentiNet protecting an uncompromised net-
work when processing adversarial patches. In our case, we
use a VGG-16 [27] Imagenet-pretrained [8] network as our
target network fm.

A. Attacking the Region Proposals

Our defense is reliant on successfully localizing the ad-
versarial region in an image. In our current framework, this
is done using the Grad-CAM algorithm, which generates a
heatmap of the salient regions leading to a classification.
If an attacker can disrupt the Grad-CAM mechanism and
avoid successful detection and localization, the subsequent
components of the pipeline will fail. We observe that the Grad-
CAM mechanism uses network back-propagation to measure
region importance. As this mechanism is differentiable, an
adversary could generate targeted gradient perturbations to
control the position and size of the heatmap. In this section,
we consider three of these attacks: Grad-CAM perturbation,
misdirection of the mask creation, and mask minimization.
As the analysis of this section shows, while manipulating the
heatmap is feasible in theory, in our defense context heatmap
manipulation is ineffective in practice.

1) Perturbing Grad-CAM: Consider the adversarial im-
age and its Grad-CAM heatmap in Figure 4a for the target
class “toaster”. The heatmap in Figure 4a correctly identifies
the area containing the patch. An adversary could try to
generate a perturbation, i.e., an adversarial image, resulting
in a visually identical heatmap. Such a perturbation can be
created in practice as the Grad-CAM function Lc

GradCAM =
ReLU(Σkα

k
cA

k) is differentiable, and the adversary can op-
timize an input on this function given a target class. For
example, the adversary can use a standard Stochastic Gradient
Descent Optimizer (SGD) on a VGG-16 network [27] to
minimize a loss function calculated as the total difference
between the current Grad-CAM output and the target Grad-
CAM output, and iteratively add noise until the loss converges.
An example of such a perturbation is shown in Figure 4b.
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(a) Heatmap of the adv. patch (b) Full image perturbation (c) Localized perturbation (d) Misdirection

Fig. 4: Attacking region proposal. (a) The heatmap of the adversarial patch overlaid on an image of a dog. (b) Full-image
perturbations can generate a visually identical heatmap. (c) Localized perturbation can generate the same heatmap of (a). (d)
Localized perturbation fails to generate a similar heatmap.

This attack shows that Grad-CAM outputs can be precisely
manipulated through gradient optimization. However, such an
attack requires to feed the network with a perturbation of the
size of the input of the network being protected, which is not
part of our threat model (Section II-A).

2) Heatmap Misdirection: In this attack, we consider an
adversary who intends to create an input image that tricks
SentiNet to detect the adversarial object in a different region
where the adversarial object is located. Let us assume the
adversary intends to convince SentiNet that the adversarial
object is in the position as indicated by the heatmap of
Figure 4a. As we demonstrated earlier, an adversary allowed
to add perturbational noise to an entire image can generate a
heatmap at the desired position, but the adversary does not
have full control of the whole image, rendering the attack
infeasible. An attacker may try to generate a heatmap visually
identical to the adversarial patch of Figure 4a by using a
perturbation constrained to the same region. Figure 4c shows
an example of such a perturbation obtained by modifying
the loss function of the SGD to constrain the noise on the
same region of interest. At this point, the adversary can
try to generate a perturbation at a different location leaving
the goal of the attack unchanged. An example of such an
attempt is shown in Figure 4d. The perturbation is now on
the top-left corner of the input image. However, the resulting
heatmap is not shown in the desired position, i.e., bottom-right.
Instead, the heatmap is positioned nearby the location of the
perturbation, indicating that localized noise can only affect the
corresponding Grad-CAM region.

3) Heatmap Minimization: An alternative strategy to fool
SentiNet is to minimize the corresponding Grad-CAM region
to the greatest extent possible to avoid detection. For example,
the adversary can achieve that by modifying the loss function
of SGD to optimize for minimal Grad-CAM output. The ad-
versary can start from the adversarial patch image in Figure 5a
and iteratively add perturbational noise to the region. Figure 5a,
we show that as our loss converges, the Grad-CAM output
is successfully minimized, avoiding detection of the patch.
Our analysis shows that heatmap minimization, i.e., fooling
SentiNet, is in tension with the attack success rate of the patch,
i.e., fooling fm. Figure 5a shows that as more noise is added to
the patch, the success rate of the attack is reduced. This result
suggests that Grad-CAM is capturing some inherent saliency
of the region and cannot be minimized without reducing the
attack effectiveness. The tension between the two objectives
could be solved by creating a perturbation that optimizes both
for targeted misclassification and for heatmap minimization.
Let us consider an adversary that attempts to jointly generate

a patch for both criteria by optimizing both objectives during
every iteration. Also, to better explore the role played by
each objective, we introduce a weighting parameter α ∈ [0, 1]
between the two objectives (i.e., the misclassification objective
has weight α, and the heatmap minimization has weight 1−α).
To evaluate then attack, we generate 40 adversarial patches as
described by Brown at al. [3] for a range of weighting values
α ∈ [0, 1]. For each patch, we select 100 images from the
Imagenet test set [8] and apply the patch. In total, we generated
4,000 malicious images for each weighting ratio α. Then, we
counted the patches that fool the model, the Grad-CAM1, or
both.

The results of our experiment are shown in Figure 5b.
As patches work with slight variance, we averaged the attack
result to give a better sense of how well a patch would
perform. As can be seen in Figure 5b, there is an inverse
relationship between the effectiveness of a patch in fooling fm
(in red) and the region proposal of SentiNet (dashed green),
corroborating our previous findings. Additionally, we further
plot the patches that successfully fulfill both criteria (in dashed
purple), and find that the optimum value is where the ratios
of successful misclassifications and hidden patches overlap,
giving us patches that fulfill both criteria with an average
success rate of 10%. This strongly suggests that minimizing
the Grad-CAM output directly weakens the attack effectiveness
and that it is difficult to optimize for both objectives jointly.

4) Results on Attacking Region Proposals: To summarize,
in this section, we presented three attacks against the Grad-
CAM algorithm. Our evaluation shows that, while the Grad-
CAM output can be perturbed with localized perturbations,
misredirecting the Grad-CAM heatmap seems an infeasible
attack strategy. Also, our results show that minimizing the
heatmap size dramatically reduces the effectiveness of the
attack. Accordingly, we conclude that attacking the Grad-CAM
algorithm may bring a very little advantage to an adversary.

B. Attacking the Class Proposal

Another approach to avoid the localization of the adversar-
ial region is attacking the class proposal step. In this section,
we discuss attacks exploiting the algorithms implemented
in the class proposal step. In particular, we concentrate on
two types of attacks where the adversary intends avoiding
detection by generating masks without the adversarial region
or weakening the detection by creating inefficient masks.

1We use a < 0.5 overlap ratio between the adversarial pixels and the Grad-
CAM region.
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(a) Heatmap minimization (b) Minimization and attack

Fig. 5: Heatmap minimization attack. (a) Example of ad-
versarial input minimizing the Grad-CAM output (top); Plot
showing the tension between minimization and attack success.
(b) Patches minimizing the heatmap and maximizing the attack
success respectively (top); Plot of success of the patch vs.
minimization of the heatmap.

1) Mask Reduction with Specialized Patch Sub-regions:
Instead of avoiding detection, the adversary may try to weaken
the detection of the patch by reducing the size of the mask of
the primary class. The goal of the class proposal is to identify
additional classes in the input image to remove ambiguous
areas (see Figure 3a-b). Here, the attacker may try tricking
the class proposal into identifying classes in sub-regions of
the patch. Such an attack results in a mask containing only a
portion of the entire patch, thus weakening the response of the
model at test time and the detection of the attack. The creation
of a localized universal patch exposing such behavior may be
very challenging. Such a patch needs to have a region causing
the activation of a class, say y′, and, at the same time, another
region for the target class y. Also, to carry this attack, the patch
should cause a change in the prediction of the model when the
region for y′ is missing. Building a localized universal patch
with such a non-linear dependency between the two regions
may be hard, if not unfeasible, and we hope other researchers
will explore whether such a type of attack is possible.

2) Avoiding Mask Reduction by Over-Segmentation: The
adversary might attack the image segmentation algorithm, i.e.,
selective search [29], and trick the algorithm into returning
many small segments outside of the malicious region. When
processing small segments, the network may return predictions
with low confidence which are ignored when generating the
mask for the primary class (see TopConf(C, k) in Algo-
rithm 1). As a result, the final mask will not be refined by
removing the ambiguous areas thus weakening the response
of the model at test time. However, attacking the selective
search algorithm may not be a feasible strategy. Our inspection
of the selective search algorithm revealed that an adversary
controlling a limited region of the input image may not be
able to influence the generation of a segment of arbitrary size
and position. As a result, we believe that attacking the selective
search algorithm may be unlikely.

C. Attacking the Attack Classification

We now consider attacks aimed at fooling the decision
procedure of SentiNet, where extracted regions or inert pat-
terns are overlaid onto benign test images to measure their
generalizability. One possible attack in the context of poisoned
or trojaned networks has the adversary manipulate the model
so that it recognizes the inert pattern as a member of a
targeted class. This would let the attacker bypass our defense as
adversarial patterns will remain adversarial when overlaid with
the “inert” pattern. This attack does not apply to the setting we
consider in this short paper, where an adversary aims to evade
an uncompromised network with adversarial patches. For the
general case considered in an extended version of our work [7],
we note that the choice of inert pattern can be made after the
network has been trained, so one can test whether the chosen
pattern affects the model. We also found that using patterns
made up of random noise produces good results, which further
hinders a training-time adversary’s ability to target the specific
pattern than will later be used at test-time.

D. Attack Size

The goal of SentiNet is to capture unreasonably salient
attacks, designed to be small and unnoticeable. With this
measure, SentiNet largely succeeds at detecting abnormal
regions of images that deviate from patches of natural images,
but not when modifying the majority of pixels in an image.
As noted by Brown et al. [3], large images of an actual toaster
will hijack the same prediction of an adversarial patch at a
large enough size, raising an interesting question about what
actually constitutes an “attack”.

VI. RELATED WORK

Detection techniques for attacks as a defensive measure
have been proposed by many researchers. Safetynets [22] is
designed to detect adversarial-noise based attacks and exploits
the different activations adversarial perturbations produce to
train a SVM classifier. Metzen et al. [17] use a similar
approach by training a modified target classification network
to detect adversarial perturbations. Feinman et al. [11] also
trains a classifier to detect adversarial perturbational inputs
based on the neural network features, while Gong et al. [13]
introduces a classifier trained to detect adversarially-perturbed
images. Magnet [24] trains a classifier on manifolds of normal
examples to detect adversarial perturbations without prior
knowledge of the attack. There are also some works designed
at creating defenses that do not require training. Grosse et
al. [15] uses statistical techniques to distinguish adversarial-
perturbations outputs, while Hendrycks et al. [18] uses PCA
to visualize differences in perturbed images. A survey by Yuan
et al. [30] covers further detection defenses. All these works
are only aimed at defending against adversarial perturbations
whereas SentiNet can defend a network against other types of
attacks, i.e., data poisoning and trojaning attacks.

VII. CONCLUSION

In this work, we introduce SentiNet, a framework for
detecting localized universal attacks on Convolutional Neural
Networks. Our method is notable because it only relies on the
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malicious behavior of an adversarial attack to perform classifi-
cations, without requiring prior knowledge of the attack vector.
We further evaluate the robustness of SentiNet against strong
adaptive adversaries by individually testing each component
of our defense. We hope SentiNet inspires further approaches
towards creating attack-agnostic defenses. Tailoring a defense
towards a specific attack means unknown attacks cannot be
captured, and also makes the system highly vulnerable to
strong adaptive adversaries. We believe a similar approach can
be used to detect other attacks by leveraging the same core
concepts of identifying an attack from a model’s weakness.
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