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generalized and inform other forms of mitigation (e.g. public
policy, self-isolation).

Zhant et al. [23] and Thakare & Mathurkar [19] studied
vaccination strategies using information from the structure of
personal contact networks and compared them to a random
vaccination strategy. This was done to evaluate the impact of
the strategies when selecting individuals for vaccination prior
to the start of the epidemic.

Dubé, Houghten & Ashlock studied random vaccinations,
ring vaccinations (vaccinate individuals around a known in-
fectious individual), and high degree vaccination strategies
[8]. They evaluated the strategy’s effectiveness in reducing
the length and spread of a disease throughout a network.
The strategies were applied during the time that the epidemic
was spreading, for two different scenarios: when the personal
contact networks were known ahead of time and static, and
when they evolved over time.

A system was developed to test a given mitigation strategy
on a social network for the purpose of minimizing the spread
of a disease. The epidemic model used to simulate the spread
of the disease is the SEIR model [4] as it more accurately
fits how COVID-19 manifests and spreads when compared to
the SIR model [15]. Genetic programming (GP), a form of
artificial intelligence that searches for programs via a process
inspired by natural evolution [16], was used to discover novel
mitigation strategies. Here, the programs being evolved by GP
are the mitigation strategies.

Although the system was designed with SARS-CoV-2 virus
in mind, it is generalizable and can be used to understand an
arbitrary disease, if the relevant disease parameters are known.

The system was developed in Python and uses a number of
external libraries. Details of the system are presented through-
out the next sections with much of the description found in
Section V. Up-to-date software is available on GitHub1.

An explanation of how graphs are used to represent social
networks and a number of graph measures used by the system
to inform mitigation strategies can be found in Section II.
Information on the SEIR model is found in Section III. Details
on the GP system implementation, settings, encoding, and
language are found in Section IV, with additional details on
how the GP system fits into the overall system found in Section
V-B.

1https://github.com/convergencelab/eCov-GP

Abstract—It is important to understand how best to apply a 
limited number of vaccines to a population such that the spread 
of a disease, like SARS-CoV-2, is minimized. Although intuition 
provides a number of mitigation strategies that may be effective, 
they remain largely untested.

A system was developed to test a given disease mitigation 
strategy. It is designed to work with a graph representing a 
real social network. A Genetic Programming system was used to 
discover novel mitigation strategies that are easily interpretable 
by a public health decision maker.

Effective strategies were developed by the GP system. The 
strategies are easily explainable and intuitive. Novel mitigation 
strategies were compared to simple baseline strategies with 
varying success using a number of different metrics. Many of 
these strategies proved effective in general, however the topology 
of the graph influences t he e ffectiveness o f a  strategy.

The system has been made publicly available and the authors 
call on the research community to contribute their own mitigation 
strategies and measure their efficacy.

Index Terms—COVID-19; Epidemic; Genetic Programming; 
Optimization; Pandemic; SARS-CoV-2; SEIR Model; Simula-
tion; Vaccinations.

I. INTRODUCTION

If a limited supply of vaccines becomes available during a 
global pandemic, how best are they applied to a population 
such that the spread of the disease is minimized?

In the US, the Centers for Disease Control and Prevention 
(CDC) has procedures for determining how and who to apply
vaccinations to within a population [1], [2]. Risk analysis, 
health economics, implementation issues, and the values of 
a population are considered, as is demographic information 
that indicates relative risks, such as age and pregnancy.

Healthcare workers are considered key individuals to vac-
cinate as they may be under a larger virus load or they may
be working with patients with health conditions that put those 
patients at higher risk. The identification of other hot spots for
disease spread are done to protect other larger communities.

While acknowledging the importance of these considera-
tions, aside from the hot spot identification, exceptionally 
little data-driven work has been done to determine how best
vaccines, or other mitigation strategies, could be applied to
minimize the spread of a disease given the topology of a
community’s social network.

Although vaccination is the primary focus, we use the
term mitigation strategy as the strategies developed may be
© IEEE 2020. This article is free to access and download, along with rights for 
full text and data mining, re-use and analysis



TABLE I: Graph and SEIR Model Settings.

Number of Nodes 500
Edge Probability 0.04

β (Beta) 0.025
γ (Gamma) 0.133
α (Alpha) 0.175

I0 0.01

Fig. 1: Example Erdős-Rényi graph with 500 vertices and an
edge connection probability of 4%. This provides context for
the results presented within this article as they were generated
using these types of graphs.

In addition to the creation of the evaluation system, a
number of novel mitigation strategies were found. Although
preliminary, they proved effective, and despite being perhaps
complex, they are explainable and intuitive. Further, it was
noted that topology of the graph is important to consider when
designing an effective mitigation strategy.

II. GRAPH

Most of the graph portions of the system are implemented
using the networkx Python package, software for creating,
manipulating, and studying complex graphs [12]. The system
is designed to work with an arbitrary graph as it can read an
adjacency list. This makes it easy to create or test mitigation
strategies for specific social network topologies. For example,
if one has access to a graph representing their community,
it becomes possible to design tailor-made strategies for that
specific graph. This is important as it seems that the spread
of a disease through a graph depends on the specific topology
[14], [6].

If a graph is not provided to the system, an Erdős-Rényi
(ER) [9] graph will be created based on provided parameters.
Random ER graphs are helpful given their ubiquity and
generality, however the choice of ER graphs was somewhat
arbitrary. The system can easily be manipulated to create
any other form of graph, and future work will include the
option to create the perhaps more relevant Watts-Strogatz
graphs as they better fit small-world properties found in real
social networks (low average shortest path lengths and large
clustering coefficients) [21].

Due to resource constraints, a random ER graph of size
500 with edge probability of 4% was used (see Table I). This
resulted in the vertices having, on average, 20 edges. Figure
1 shows an example ER graph created with these parameters.
Larger graphs were explored, but 500 was selected to reduce
runtimes for these preliminary results.

A. Graph Measures

Graph measures and information about the pandemic are
the primary parameters considered by the mitigation strat-
egy to determine if an individual should be vaccinated.
In other words, the mitigation strategy is some function
(f(x1, x2, . . . xn)) of these measures that simply returns a
Boolean value. Although all the measures listed are included
in the system, not all were used when generating the mitigation
strategies presented in this article. Those measures that were
used are emphasized in boldface. Further, additional measures
can easily be added to the system. Computational complexity
is presented in terms of the set of vertices V and set of edges
E.

1) Static Graph Measures: Static graph measures only need
to be calculated once before the execution of an evolutionary
search or any simulation of the epidemic/pandemic.
• Identify Travelers — Travelers are not well defined,

but they are intended to represent individuals that con-
nect clusters/communities within the graph. The Clauset-
Newman-Moore Greedy Modularity Maximization algo-
rithm [5], as implemented within the networkx package,
was used to identify clusters. Computational complexity
of Clauset-Newman-Moore is O(d|E|log|V |), where d
is the depth of the dendrogram describing the com-
munity structure; however, in typical real-world graphs,
O(|V |log2|V |). Once clusters are identified, arbitrary ver-
tices from within each cluster are identified and minimal
cuts (using the Preflow-Push Algorithm, O(|V |2

√
|E|))

are used to identify critical vertices connecting com-
munities. The authors acknowledge that the algorithm,
as described, could likely be improved. Note that this
measure is only implemented to facilitate the Is Traveler
measure (described below).

• Average Degree of Vertices — Calculate the average
degree of all vertices within the graph: O(|V |). Although
this could be approximated for random ER graphs in
constant time, this is not the case for arbitrary graphs.

2) Whole Graph Measures: Whole graph measures are
required to be run before mitigations are applied.
• Number of Vertices of a Given State — Only the

number of vertices having the infected state are used for
the results presented in this article, O(1) as the simulation
keeps track of the vertices in each state.

• Average Distance Between Vertices of a Given State —
Implemented with Dijkstra’s Algorithm between all ver-
tex pairs: O(|V |2|E|+|V |3log|V |). Runtimes are reduced
by only considering a small sample of all vertices. Future
implementations could use Floyd-Warshall to improve



computational complexity. This measure, although imple-
mented, was not used due to the runtime limitations.

3) Local Measures: Local measures must be calculated
before mitigations are applied.
• Current Node State — O(1). Important for future ver-

sions of the software as it will have different vaccination
applications.

• Current Node Degree — O(1).
• Average Neighbour Degree — O(|V |), but in practice,
O(1) given that the number of edges each vertex has
will be much smaller than the number of vertices in the
whole graph.

• Number of Neighbours of a Given State — Only the
number of neighbours having the infected state is used
for the results presented. O(|V |), but in practice, O(1).

• Is Traveler — Return a Boolean value indicating if the
vertex is in the traveler set (as described above under
Identify Travelers): O(1) .

4) Extra-Graph Measures: The extra-graph measures are
those that are not directly related to the graph, but provide
additional information for the mitigation strategies.
• Number of Mitigations Currently Available — O(1).
• Is Mitigation Available — O(1). Returns a Boolean

Value. Important for future versions of the software.

III. SEIR MODEL

The Susceptible, Exposed, Infectious, Removed (SEIR)
epidemic model was chosen for the system [4]. Unlike the
Susceptible, Infectious, Removed (SIR) model [15], SEIR al-
lows for an extended incubation period where an individual has
contracted the disease, but is not infectious and has yet to be
identified as they have not started showing symptoms. Given
the lengthy incubation period of COVID-19, the SEIR model
is more appropriate; however, the authors acknowledge that
this model is not a perfect match as there is currently strong
evidence that presymptomatic and asymptomatic individuals
can transmit SARS-CoV-2 [11]. Still, the SEIR model is well
defined within the literature and has been a popular model for
studying the spread of SARS-CoV-2 [17].

The implementation of the SEIR model found in the Python
Network Diffusion Library (NDlib) [18] was used, which is
built on top of the networkx package [12].

The SEIR model has three key parameters having real values
[0, 1]: β — the probability of transmission at contact of an
infectious and susceptible individual, causing the susceptible
individual to transition into the exposed state, α — latent
period to move from the exposed state to infectious, and γ
— probability that an infected individual will transition from
the infectious state to the removed state.

The values for these parameters can be found in Table I
and are based on those presented by Prem et al. [17], however
these values are easily changed within the system. The value
of β (0.025) is based on early evidence, however this value has
different reported values depending in the source. γ is based
on a mean duration of 7 days [22]. The α value is based on

TABLE II: GP system parameters.

Hyperparameters
Population 25

Generations 50
Initialization Ramped Half-and-Half

Init. Max Depth 4
Crossover One Point

Crossover Rate 0.75
Mutation New Sub-Tree Uniformly Applied

Mutation Rate 0.1
Selection Tournament

Tournament Size 2
Depth Limit 5

Tree Node Limit 32
Language

Arithmetic Operators +
−
×†

÷ (protected)†

Boolean Operators and
or
not

Comparison and >
Conditional <

==
If, Then, Else

Constants/Terminals TRUE/FALSE
Integers 0 – 30

† Operators included in the system, but not used when generating results presented in
this article.

a mean incubation period of 5.2 days [20], although He et al.
reported 4 days [13] and Li et al. reported roughly 3. The day
values were converted to probabilities with 1 − exp(−1/t),
where t is the number of days.

The last important value for the pandemic model is the
number of initial infected individuals (I0) within the graph.
This value was arbitrarily set to 1% (5 individuals in our tests).

IV. GENETIC PROGRAMMING IMPLEMENTATION

The evolutionary computation framework used for gener-
ating the functions to determine if an individual should be
vaccinated was Distributed Evolutionary Algorithms in Python
(DEAP) [7], [10]. Only the GP functionality was used here,
however the framework can easily be used for many other
forms of evolutionary computation.

The system was used out of the box and the relevant GP
system hyperparameter settings can be found in Table II.
The authors acknowledge the small population size and low
number of generations and these values will be increased
for future runs on large computing clusters. Despite such
unusually small values, we present our results as interesting
mitigation strategies and insights are obtained.

The chromosomes being evolved are functions representing
mitigation strategies. The language operators and constants are
included in Table II. The variables/function parameters are
the graph measures outlined in Section II-A. Therefore, the
function tells us, given an individual and the current graph
measures, do we vaccinate the individual? The ultimate goal
is to find a strategy that, when applied to all admissible vertices
(individuals that are not known to have or have had the disease)



throughout the course of the simulation, reduces the spread
and/or severity of the disease. See Figure 2 for an example
mitigation strategy function (chromosome).

What it means to reduce the spread and/or severity of
the disease is open to interpretation. Is it best to maximize
the number of individuals left as susceptible? Reduce the
maximum number infected at any given time, thereby flatten-
ing the curve? Minimize the total infected? This problem is
naturally multi-objective as there are a number of considera-
tions. Additionally, one may want to minimize the number
of vaccinations used, or, reduce the number of ineffective
vaccines (discussed further in Section V). Fortunately DEAP
makes it easy to play with the objectives used, which gives
the user the flexibility to find a strategy suited for their needs.
For the results presented below, we maximized the number
of individuals left as susceptible at the end of the simulation
while also minimizing the number of vaccines used.

The depth and number of nodes within the trees is kept
relatively low to maintain function interpretability. This is
critical as any strategy would need to be intuitively understood
by relevant public health decision makers and stakeholders.

V. METHODS

All up-to-date code has been made available online via
GitHub. This includes both those used to generate the mit-
igation strategies and those used to test the strategies.

A. Simulation

The simulation specific parameters that were included in
the system at this stage are (a) the number of iterations
the simulation lasts (these can be thought of as days), (b)
how frequently mitigations can be applied and how often the
population can be measured (how often the graph measures
can be obtained), and (c) how many mitigations (in our
case, vaccinations) are available each time mitigations can
be applied. All these values are parameterized and can be
changed.

The number of iterations was set to 140 as this would result
in the simulation stabilizing for the given graph and SEIR
settings (Table I).

Mitigations could be applied to the population once every 7
days. This means that the graphs’ measures only needed to be
calculated once for every 7 days. This value was chosen as it
was deemed reasonable that a population could be evaluated,
and new vaccines could be obtained once a week. Note that
the first day mitigations could be applied would be on day 7,
and not day 0.

Given that the graph the simulations were performed on was
of size 500, the number of mitigations (vaccinations) made
available was 20, or 4% of the population. Since the simulation
lasted 140 days, this resulted in 20 vaccination periods, for
a total of 400 vaccines being made available throughout the
simulation. If any vaccines were not used during a mitigation
period then they could be stockpiled for the next period (a
Boolean flag can turn this feature on/off). A restrictive number
of vaccines was chosen for these initial tests since there is a

real possibility that only a few may be procured, and it was
thought that it may lead to particularly interesting results.

Algorithm 1: High-level epidemic/pandemic simula-
tion pseudocode.

input: f : Function defining a mitigation strategy.
ITERS: Number of days the simulation lasts.
MEAS: Graph measure and mitigation frequency.
MITS: Number of mitigations available.

1 for i← 0 to ITERS do
. If mitigation day

2 if i ! = 0 and i % MEAS == 0 then
3 mits used ← 0
4 susexp ← get susceptible exposed()
5 shuffle(susexp)
6 m global ← global measures()
7 foreach v ∈ susexp do

. Mitigations remaining
8 if mits used < MITS then
9 m local ← local measures()

10 m extra ← extra measures()
. If function says mitigate

11 if f(m global, m local, m extra) then
. If effective

12 if status(v) is susceptible then
13 set removed(v)
14 mits used ← mits used + 1

Algorithm 1 presents a high-level overview of the sim-
ulation. This algorithm assumes that some number of self
explanatory functions exist. The algorithm also receives some
function f representing the mitigation strategy and the param-
eters described above.

A number of important observations should be made.
Although the SEIR model does know the difference between

susceptible and exposed individuals, we must assume that the
simulation does not know the difference. This is done since
many jurisdictions will only test individuals if they present
symptoms, and exposed individuals are presymptomatic. This
is why both susceptible and exposed individuals are considered
(line 4). Further, these individuals are shuffled such that the
ordering of nodes does not affect the simulation (line 5).

If the mitigation strategy function being used indicates that
an individual v should be vaccinated (line 12), then susceptible
individuals’ states will be changed to removed. However,
it is possible that the vaccine is wasted since vaccines are
only effective when applied to a susceptible individual, and
therefore exposed individuals will remain exposed. Regardless
of the state of the individual, if a vaccine is used, it is counted
(line 14).

B. Evolution

The simulation, as outlined in Section V-A, is the fitness
evaluation for the functions being evolved by the GP system.

After each simulation the graph and SEIR model is reset
with different, randomly selected vertices being set to the
infectious state. The topology of the graph remains the same
because, in addition to random graphs, the system is designed
to work on arbitrary graph topologies that are defined by an



adjacency list. Further, mitigation strategies developed should
be robust to different starting conditions (initial infectious set)
with the same topology.

Since the starting conditions change for each simula-
tion/fitness evaluation, the environment evolution is occurring
in changes slightly. Thus, every candidate solution must be
reevaluated during each generation, even if the candidate
solution was propagated to the next generation without any
genetic operators being applied.

C. Testing

Since the results generated for this article used an ER graph,
a given strategy was tested in two ways.

First, generate a random graph and perform 100 simulations
of the epidemic/pandemic, each with a different starting set
of infectious individuals. This is referred to as the static
tests/results. Note that the graph topology used for static
testing was not the same topology used for evolution as those
used for evolution were not saved.

Second, generate 100 random ER graphs, each with a
different topology and starting set of infectious individuals,
and perform a simulation on each. This is referred to as the
non-static tests/results. This test provides insight into how
good a given strategy is in general, regardless of the topology,
while also indicating how much the topology of the graph
matters for a given strategy.

In addition to the generated mitigation strategies, a number
of simple strategies were also included in the tests to provide
baseline results for comparison. These included:
• Do nothing
• Random
• Traveler — Intuition being that this would prevent spread

between clusters/communities
• Degree 15 or higher
• Degree 20 or higher — The average degree of a node in

the graphs used
• Degree 25 or higher
The above list should not be considered comprehensive or

exhaustive; future work should include a larger number of
baseline strategies for a more effective comparison.

VI. RESULTS AND DISCUSSION

A. Noteworthy Strategies Discovered

Hundreds of strategies were developed via evolution, but
only a few that obtained particularly effective results were
selected for testing, interpretation, and simplification — given
the nature of GP, the functions were rather complex but would
often be reduced to something simpler (see Section VI-A1).

It was common for the simple baseline strategies to be found
with GP. Programs could be reduced to IS TRAV , DEG >
C (some constant), or TRUE, which is effectively the random
strategy as the individuals are shuffled before the application
of any mitigation. Although this is interesting, we will focus
on five of the more nuanced functions produced:
• F1: IS TRAV or ((14−NB INF ) < (DEG− 8))

OR

IS_TRAV OR

if_then_else

False <

-

14 NB_INF

-

DEG 8

<

-

14 NB_INF

-

DEG 8

OR

<

-

14 NB_INF

-

DEG 8

False

Fig. 2: F1 as derived by GP. This tree can be simplified
significantly.

• F2: DEG > 10 and NB INF > 3
• F3: NB INF > 1
• F4: IS TRAV or NB INF > 5
• F5: NUM MIT < NB INF

These results suggest that the traveler Boolean, vertex de-
gree, and the number of neighbours that are currently infected
are important measures. Any of the integer values present
in these functions should probably be interpreted as some
constant C that could be further optimized. For simplicity,
the values found with evolution will be left alone for analysis.

With the exception of F1, which is investigated in Section
VI-A1, the intuition is rather obvious for these functions.
Although F5 may seem puzzling at first, considering that
the number of mitigations currently available (NUM MIT )
is a relatively small number that will continue to decrease
towards 0, it seems unlikely that the number of mitigations is
what’s actually important. Rather, it is a more sophisticated
form of F3 that mitigates individuals with many infected
neighbours, but the number of infected neighbours required
before a mitigation could be used decreases as more and more
mitigations are applied.

1) F1: The most interesting strategy found by GP was F1,
which also obtained very high-quality results for the specific
ER graph being fit to. The final results had 109 subjects left
as susceptible and 215 mitigations used, meaning only a total
of 176 people had contracted the disease. Although this is
a single result obtained on a single set of starting infectious
individuals, this function is likely to be robust to different
starting sets since it survived evolution — a new starting set
was selected for each fitness evaluation.

Figure 2 shows the final tree structure, and the simplified
version of the function can be found in the previous section.
This function can be further simplified to IS TRAV or
NB INF > 22−DEG. Additionally, the number of infected
neighbours is bound by the degree (NB INF ≤ DEG).
As stated previously, the value of 22 should be considered
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Fig. 3: The admissible values of NB INF and DEG for
F1 are found in the shaded area bound by NB INF >
22 − DEG and NB INF ≤ DEG. These lines intersect
at DEG = 11.

simply as some constant C, however 22 will be used for the
interpretation here. Figure 3 shows the admissible values for
NB INF and DEG in the shaded area.

Notice that past degree 12 the number of infected neigh-
bours required before an individual is vaccinated decreases
as the degree increases. To gain the intuition, consider that
the average degree of a vertex in our graphs was roughly 20.
Given this, 12 is a rather small value, therefore it is only worth
applying a mitigation to that individual if a high number of
those neighbours are infected. As the degree increases, the
number of infected neighbours required decreases as the risk
of likelihood of an individual spreading the disease grows
with the degree of the node. There is even a point where the
degree is large enough that no neighbours need be infected
(DEG > 22).

Also consider the case where, in this example, an individual
had degree 10 and all 10 are infected. One may be tempted
to vaccinate this individual as they appear likely to contract
the disease, however this individual has a high probability of
already having been exposed, and even if they are susceptible,
it would protect at most one individual. It seems as if this
strategy may have developed a way to not waste vaccines by
applying them to individuals likely to already be exposed. It
is still likely the case that the individual is exposed when
DEG == NB INF when DEG > 12, however, perhaps
once the degree is high enough, it is worth the risk of wasting
a vaccine. Additionally, as the degree increases, the likelihood
of all neighbours being infected would seem low.

B. Comparing Strategies

Table III presents the results obtained from the static tests,
and Table IV contains the results from the non-static tests.
In these tables, Total Infected refers to the area under the
infected curve. Removed’ refers to the number of individuals
removed and not vaccinated. Effective refers to the number
of vaccines that were applied to susceptible individuals and
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Fig. 4: Example trends curve generated by the system. Unlike
typical SEIR trend curves, this includes the number of mitiga-
tions used. This particular example is the average results over
the 100 non-static tests for F1.

Ineffective refers to those applied to those that were already
exposed. None of the graph topologies used for testing were
those that any evolved strategy were fit to. The emphasized
rows correspond to the strategies that are particularly effective
on multiple metrics and are the focus of further analysis. Prob-
ability values obtained with a Mann-Whitney U test comparing
the static and non-static results can be found in Table V.

When investigating the results in Table III and IV, it is clear
that no one strategy dominates across the multiple objectives,
although the simple strategy of DEG > 20 performed very
well and did dominate in the non-static tests. It is also
interesting that 20 happens to be the average degree of the
vertices in the graphs used here. Although causality is difficult
to confirm with the level of analysis done at this stage, it was
the success of this simple strategy that led to the addition
of the average degree global graph measure to the system as
discussed in Section II-A.

There are some observable differences when comparing
the static and non-static results; however, most strategies, if
they improved when applied to the non-static graphs in some
metrics, significantly or not, would perform worse in others,
and vice versa. For example, the traveler strategy did not
improve when applied to different topologies, but the number
of mitigations needed decreased.

The GP derived strategies also performed better and worse
in different metrics between the static and non-static tests. This
shows that the topology of the graph matters a lot. Remember,
none of these test results were generated with the graphs the
strategies were was actually fit to, where it obtained even better
results.

Figure 4 shows the epidemic/pandemic trend curves for
the F1 mitigation strategy averaged over all 100 non-static
tests. The jagged decrease and increase in the susceptible and
removed curves are a result of the mitigations being applied.
Removed’ is the total number of individuals that had the
disease and removed is the number of individuals that had the



TABLE III: Summary statistics of mitigation strategy performance on the static graphs with 100 different starting sets of
infectious individuals. Results presented are the median and interquartile range.

Strategy Susceptible Max Infected Total Infected Removed’ Mitigations Effective Ineffective
Nothing 23.0 (± 5.0) 98.0 (± 6.5) 3566.0 (± 108.75) 477.0 (± 5.0) 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)
Random 0.0 (± 0.0) 64.0 (± 8.5) 2414.0 (± 170.88) 321.0 (± 18.38) 215.0 (± 16.5) 179.0 (± 18.38) 35.0 (± 3.5)
Traveler 31.0 (± 6.0) 71.0 (± 6.62) 2953.0 (± 127.12) 394.0 (± 7.0) 79.0 (± 1.5) 76.0 (± 2.5) 3.0 (± 1.12)
Degree 15 17.0 (± 4.5) 62.0 (± 8.0) 2336.0 (± 181.12) 317.5 (± 18.38) 198.0 (± 12.62) 164.0 (± 15.12) 33.0 (± 4.12)
Degree 20 63.0 (± 11.5) 55.5 (± 7.12) 2374.0 (± 208.62) 312.0 (± 17.88) 139.0 (± 6.62) 121.5 (± 10.25) 17.0 (± 3.12)
Degree 25 36.0 (± 6.5) 75.0 (± 7.5) 3114.0 (± 120.0) 416.0 (± 7.5) 51.0 (± 1.0) 49.0 (± 1.5) 2.0 (± 1.0)
F1 53.0 (± 10.62) 58.0 (± 7.5) 2334.5 (± 202.38) 306.5 (± 18.25) 168.0 (± 8.0) 140.0 (± 9.12) 28.0 (± 4.12)
F2 27.0 (± 4.5) 83.0 (± 4.75) 2797.0 (± 122.38) 373.0 (± 8.25) 161.5 (± 6.62) 98.0 (± 5.5) 64.0 (± 4.5)
F3 26.0 (± 7.0) 64.0 (± 8.12) 2343.5 (± 182.5) 321.5 (± 18.62) 196.0 (± 13.62) 150.0 (± 15.0) 46.5 (± 3.62)
F4 37.0 (± 5.62) 69.0 (± 5.62) 2895.0 (± 113.5) 385.0 (± 6.12) 88.0 (± 5.5) 77.5 (± 2.62) 10.0 (± 4.0)
F5 26.0 (± 5.5) 63.0 (± 7.12) 2423.0 (± 165.62) 322.5 (± 13.62) 200.0 (± 10.62) 151.5 (± 11.25) 47.5 (± 5.0)

TABLE IV: Summary statistics of mitigation strategy performance on the non-static graphs with 100 different ER graphs.
Results presented are the median and interquartile range.

Strategy Susceptible Max Infected Total Infected Removed’ Mitigations Effective Ineffective
Nothing 22.0 (± 4.5) 98.0 (± 5.5) 3613.5 (± 127.75) 478.0 (± 4.5) 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)
Random 0.0 (± 0.0) 65.0 (± 6.5) 2392.0 (± 156.25) 319.0 (± 14.62) 214.0 (± 13.62) 181.0 (± 14.62) 35.0 (± 3.5)
Traveler 30.0 (± 5.5) 76.0 (± 6.12) 3053.5 (± 120.12) 403.5 (± 11.62) 68.0 (± 8.0) 65.0 (± 7.62) 3.0 (± 1.5)
Degree 15 18.0 (± 5.12) 64.0 (± 7.12) 2363.0 (± 184.88) 313.0 (± 16.5) 199.5 (± 13.12) 165.0 (± 13.75) 34.0 (± 4.5)
Degree 20 53.0 (± 12.62) 57.5 (± 7.62) 2347.5 (± 183.38) 313.0 (± 17.5) 153.0 (± 9.12) 132.5 (± 10.75) 22.0 (± 4.0)
Degree 25 37.0 (± 4.62) 73.5 (± 6.5) 3116.0 (± 123.62) 415.0 (± 6.88) 50.5 (± 4.62) 48.0 (± 4.5) 2.0 (± 1.0)
F1 45.5 (± 9.12) 61.0 (± 9.62) 2390.0 (± 197.75) 313.0 (± 22.38) 170.0 (± 10.0) 140.5 (± 14.5) 29.0 (± 4.5)
F2 28.0 (± 4.62) 80.0 (± 6.62) 2807.0 (± 95.12) 373.5 (± 7.5) 160.0 (± 6.5) 99.0 (± 5.62) 61.0 (± 5.62)
F3 26.0 (± 6.12) 61.0 (± 8.75) 2393.5 (± 205.62) 323.0 (± 16.75) 201.0 (± 11.5) 151.0 (± 11.25) 47.0 (± 5.0)
F4 31.5 (± 6.5) 73.0 (± 6.5) 2919.0 (± 127.88) 390.0 (± 7.62) 94.0 (± 8.62) 78.5 (± 7.12) 14.5 (± 4.5)
F5 25.0 (± 7.75) 64.5 (± 8.0) 2453.0 (± 171.38) 321.0 (± 17.75) 198.0 (± 11.12) 151.5 (± 12.62) 46.5 (± 4.0)

TABLE V: Mann-Whitney U test p-values obtained when comparing the static (Table III) and non-static (Table IV) tests on
the various mitigation strategy functions. Values less than 0.05 are emphasized.

Strategy Susceptible Max Infected Total Infected Removed’ Mitigations Effective Ineffective
Nothing 4.40e-01 3.33e-01 2.16e-01 4.52e-01 — — —
Random — 3.92e-01 4.45e-01 2.34e-01 3.00e-01 2.32e-01 2.00e-01
Traveler 5.16e-02 3.89e-04 4.61e-04 1.64e-07 1.41e-11 3.68e-11 4.15e-01
Degree 15 3.22e-02 2.04e-01 2.35e-01 1.73e-01 3.32e-01 3.21e-01 4.47e-01
Degree 20 2.23e-04 3.27e-02 3.84e-01 4.63e-01 3.51e-13 1.11e-04 6.83e-10
Degree 25 2.25e-01 4.47e-01 4.84e-01 4.94e-01 2.19e-01 2.07e-01 3.71e-01
F1 1.33e-02 1.78e-01 4.24e-01 1.26e-01 1.14e-01 3.12e-01 1.33e-01
F2 3.51e-01 2.67e-02 2.23e-01 3.07e-01 1.38e-01 2.80e-01 2.21e-02
F3 4.33e-01 3.74e-01 2.24e-01 4.51e-01 4.12e-01 4.68e-01 1.97e-01
F4 8.70e-05 2.23e-03 1.48e-01 7.39e-03 1.05e-04 2.64e-01 5.63e-06
F5 2.68e-01 4.12e-01 4.63e-01 3.52e-01 4.04e-01 4.12e-01 2.99e-01

disease plus the number of individuals that were vaccinated.
Based on these results, it seems that the simpler strategies

do well in general, but a more complex function like F1
performs well on certain topologies. This suggests that tailor-
made strategies for certain populations may reduce the spread
of a disease most effectively for that specific population.

Since the non-static results represent effectiveness more
generally, these results will be further analyzed to compare
strategies. Figure 5 presents the probability values obtained
when comparing each of the four strategies of interest’s results.
The degree 20 strategy had the most susceptible left by a
significant amount and used the least number of mitigations,
however it did non significantly outperform F1 for max and
total infected.

VII. CONCLUSIONS AND FUTURE WORK

A system to test mitigation strategies for an epidemic or
pandemic over a given social network graph was developed
and has been made available online via GitHub. Additionally,

the system also includes a GP based method to develop novel
mitigation strategies.

The GP system was used to discover mitigation strategies
for the SARS-CoV-2 virus, and although the authors feel that
the results are preliminary, results are reported as they provide
interesting insight. Further, given that GP was used to develop
the strategies, they were interpretable and intuitive.

Mitigation strategies were developed for a random ER graph
and tested in multiple ways. Most generated results proved to
work well in general, however it was noted that the success
of a given strategy may depend on the topology of the graph,
which confirms observations within the literature. In the end,
no silver bullet strategy was discovered as the more effective
methods had varying success across different metrics.

Currently the strategies developed and tested did not use all
the mitigations available. Although saving resources (vaccines)
is beneficial, using all mitigations may prove to be more
important. Having the system apply the remaining mitigations
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Fig. 5: Probability value matrices comparing various mitiga-
tion strategies over four different metrics. Mann-Whitney U
tests were used to generate the p-values.

after a mitigation period to the population in some way,
perhaps randomly, would likely improve results.

The system is currently designed to easily include additional
graph measures. For example, measures such as a minimal
vertex cover may be particularly effective for this problem.

Further results will be obtained on static graphs derived
from data representing real social networks. This will allow for
more accurate results and the ability to design custom tailored
strategies for a given community. Although ER graphs were
used as a random graph for testing, a more appropriate random
graph having better small-world characteristics, like a Watts-
Strogatz graph [21], or the scale free Barabási–Albert model
[3] will be used.

Since the SEIR model is not perfect for SARS-CoV-2, a
more sophisticated model may be developed that incorporates
infections individuals that are presymptomatic (SEE’IR). Fur-
ther, including disease parameters for specific demographics,
such as recovery or infections rates for older individuals,
would increase the accuracy of the model.

A website to host the system and current results for graphs
and pandemics will be created. Researchers will be able to
submit their functions to the website for automatic evaluation.
Results will be stored on the system for future reference.
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algorithms made easy. The Journal of Machine Learning Research,
13(1):2171–2175, 2012.

[11] NW Furukawa, JT Brooks, and J Sobel. Evidence supporting trans-
mission of severe acute respiratory syndrome coronavirus 2 while
presymptomatic or asymptomatic. Emerging infectious diseases, 26(7),
2020.

[12] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using networkx. Technical report, Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[13] Xi He, Eric HY Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao,
Yiu Chung Lau, Jessica Y Wong, Yujuan Guan, Xinghua Tan, et al.
Temporal dynamics in viral shedding and transmissibility of covid-19.
Nature medicine, 26(5):672–675, 2020.

[14] Matt J Keeling and Ken TD Eames. Networks and epidemic models.
Journal of the Royal Society Interface, 2(4):295–307, 2005.

[15] William Ogilvy Kermack and Anderson G McKendrick. A contribution
to the mathematical theory of epidemics. Proceedings of the royal
society of london. Series A, Containing papers of a mathematical and
physical character, 115(772):700–721, 1927.

[16] John R Koza and John R Koza. Genetic programming: on the
programming of computers by means of natural selection, volume 1.
MIT press, 1992.

[17] Kiesha Prem, Yang Liu, Timothy W Russell, Adam J Kucharski,
Rosalind M Eggo, Nicholas Davies, Stefan Flasche, Samuel Clifford,
Carl AB Pearson, James D Munday, et al. The effect of control strategies
to reduce social mixing on outcomes of the covid-19 epidemic in wuhan,
china: a modelling study. The Lancet Public Health, 2020.

[18] Giulio Rossetti, Letizia Milli, Salvatore Rinzivillo, Alina Sı̂rbu, Dino
Pedreschi, and Fosca Giannotti. Ndlib: a python library to model
and analyze diffusion processes over complex networks. International
Journal of Data Science and Analytics, 5(1):61–79, 2018.

[19] Punam R Thakare and SS Mathurkar. Modeling of epidemic spread
by social interactions. In 2016 IEEE International Conference on
Recent Trends in Electronics, Information & Communication Technology
(RTEICT), pages 1320–1324. IEEE, 2016.

[20] Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang,
Binbin Wang, Hui Xiang, Zhenshun Cheng, Yong Xiong, et al. Clinical
characteristics of 138 hospitalized patients with 2019 novel coronavirus–
infected pneumonia in wuhan, china. Jama, 323(11):1061–1069, 2020.

[21] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[22] Roman Woelfel et al. Clinical presentation and virological assessment
of hospitalized cases of coronavirus disease 2019 in a travel-associated
transmission cluster. MedRxiv, 2020.

[23] Zhaoyang Zhang, Honggang Wang, Chonggang Wang, and Hua Fang.
Modeling epidemics spreading on social contact networks. IEEE
transactions on emerging topics in computing, 3(3):410–419, 2015.


