
A System for Monitoring Social Distancing Using Microcomputer Modules on
University Campuses

Yutaro Kobayashi∗, Yoshiaki Taniguchi∗†, Youji Ochi∗†, and Nobukazu Iguchi∗†
∗Faculty of Science and Engineering, Kindai University, Japan
†Cyber Informatics Research Institute, Kindai University, Japan

Abstract—We propose a system for monitoring social distance
on university campuses to prevent the spread of COVID-19 in-
fections. In our proposed system, mobile nodes are distributed
to students as permits for entering the campus. Distances
between students are measured by periodically sending and
receiving BLE advertising packets between nodes. Locations of
nodes on the campus can be roughly estimated by using signals
from the university Wi-Fi network. Information collected by
mobile nodes is sent to a monitoring server. We partially
implement the proposed system using an ESP32-based micro-
computer module as a mobile node. We evaluate fundamental
performance of the implemented system, especially regarding
BLE communication between nodes.

Index Terms—Social distancing, M5StickC, BLE, Wi-Fi,
COVID-19, University campus

1. Introduction

Various efforts toward preventing the spread of COVID-
19 infections are underway worldwide. The Japanese gov-
ernment announced in early April 2020 a state of emer-
gency, which was lifted at the end of May 2020. However,
university campuses are an environment posing high risk of
infection, so universities have implemented campus entry
restrictions and other regulations.

Maintaining social distance is one effective countermea-
sure against COVID-19 infections. After the state of emer-
gency was lifted, the main campus of our university, Kindai
University, restricted the number of students allowed to
enter per day as a congestion avoidance measure. University
staff first measure the body temperature of students wishing
to enter the campus. After receiving permission to enter,
students tap their ID card against a RFID reader. However
this method does not allow tracking of student behavior
after entrance or determination of places where congestion
occurs. Monitoring congestion sites on a university campus
facilitates avoidance of crowded environments, campus in-
frastructure improvements that will encourage students to
change their behavior, and class planning.

In this paper, we propose a system for monitoring so-
cial distance on university campuses. Figure 1 shows an
overview of the proposed system, in which mobile nodes
are distributed to each student as a permit for entering the
campus. The node can be worn from the neck with a neck

Figure 1. Overview of the proposed system.

strap. Distances between students are measured by period-
ically sending and receiving Bluetooth low-energy (BLE)
advertising packets between nodes. Locations of nodes on
the university campus can be roughly estimated by using
signals from Wi-Fi access points on a campus-wide Wi-Fi
network, through which information collected at each node
is sent to a monitoring server. Nodes further notify users
who are at risk of close contact. In this study, we partially
implemented our proposed system using an ESP32-based
microcomputer module (M5stickC; M5Stack Technology
Co., Ltd.) as the mobile node. We evaluated fundamental
performance of the implemented system, especially regard-
ing BLE communication between nodes.

2. Related work

Even before the COVID-19 pandemic, there was exten-
sive research on using cameras [1]–[3], sensors [4]–[6], and
Wi-Fi devices [7]–[9] to monitor numbers of persons and de-
grees of congestion. However, these studies did not consider
distances between people (social distancing), the monitoring
and management of which has become an important aspect
of countermeasures for preventing the spread of COVID-19
infections.

There have, however, been some studies regarding the
use of cameras [10], smartphones [11], [12], and dedicated
devices [13], [14] to monitor social distancing. In June
2020, the Japanese Ministry of Health, Labour and Welfare
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released a smartphone application called the COVID-19
Contact-Confirming Application (COCOA) [11]. Based on
the Exposure Notification Framework, this application uses
Bluetooth to measure distances between smartphones. If
smartphones are within one meter from each other for more
than fifteen minutes, this proximity information is recorded.
Therefore, in the unlikely event that an infected person is
discovered, it is possible to identify their close contacts. To
maintain privacy protection, however, this application does
not collect location information.

Smartphone-based approaches are inexpensive and quick
to deploy, because most students have smartphones. How-
ever, students have different smartphone models and carry
them in different ways, such as holding them or carrying
them in pockets or handbags. Radio-wave propagation envi-
ronments around the smartphone therefore differ by student,
possibly affecting the accuracy of distance measurements.
Our proposed system for monitoring social distance thus
assumes students wearing the same model of mobile node
on a neck strap.

Some studies have investigated the use of dedicated
devices to monitor social distancing [13], [14]. In June 2020,
the Singapore government announced plans to distribute a
device called the Trace Together Token [13]. This token has
Bluetooth functions that record information about contact
with other tokens. As in smartphone-based approaches, it
is possible to identify close contacts after determination of
an infection. This token does not have Internet connectivity
or GPS functions, and user data is deleted after twenty-five
days to maintain privacy protection.

Safe Spacer [14] is another wearable device for mea-
suring social distance. It alerts Safe Spacer users coming
within six feet of each other. This device is worn on a
wristband or hung from the neck with a strap, and distances
are measured using ultra-wideband radio. These devices are
less affected by interference than are Bluetooth devices,
and allow distance measurements as short as 10 cm. In
contrast to these systems, our system monitors both contact
information and contact locations.

3. Proposed system

Figure 1 shows an overview of our proposed social
distance monitoring system for university campuses, in
which mobile nodes (hereinafter, nodes) are distributed to
students as a permit for entering the campus. These nodes
are supposed to be worn using a neck strap. As of July 2020,
the Kindai University campus gate has restricted entry to
one person at a time. We thus assume that nodes can be
distributed at the time of entry and collected upon exit.

Nodes have both BLE and Wi-Fi functions, and are as-
sumed to be connected to the campus network via a campus-
wide wireless LAN. The campus-wide wireless LAN at
the Higashi-Osaka Campus of Kindai University comprises
1,000 installed access points. We assume that nodes utilize
Network Time Protocol to maintain the correct time.

Nodes periodically broadcast BLE advertising packets,
which include the MAC address of the sender node and a

Universally Unique Identifier (UUID) for system identifica-
tion. We assume that the MAC address is not randomized
during the service period.

When a node receives from a neighboring node a BLE
advertising packet including the proposed system’s UUID,
the receiving node records in internal memory the reception
time, the source MAC address of the packet, the received
signal strength indication (RSSI), and the basic service-set
identifier (BSSID), which is the MAC address of the cur-
rently connected Wi-Fi access point. The BSSID is used to
estimate the approximate node location. At regular intervals,
this information is collected at the monitoring server via
the campus-wide wireless LAN. The server then visualizes
campus congestion sites based on the collected information.

When a node receives a BLE advertising packet, it
uses RSSI to estimate the approximate distance between
nodes. If this distance is below a threshold value for more
than a designated time, the node displays an alert on a
monitor. In addition, for more precise location estimation,
the node compiles a list of campus LAN access points that
are accessible from that location, along with the RSSI of
beacon signal transmitted from each Wi-Fi access point, and
sends that information to the server. The Japanese National
Institute of Infectious Diseases exemplifies “close contact”
as being within one meter of a COVID-19 patient for
more than fifteen minutes without taking necessary infection
prevention measures [15]. We refer this values when setting
distance and time thresholds.

4. Experimental evaluations

To verify the feasibility of our proposed system, we
implemented a prototype focusing on between-node BLE
communications and conducted a fundamental evaluation.

4.1. Implementation

We used M5StickC devices as nodes in our implemented
system (Fig. 2). M5StickC is based on the ESP32-PICO mi-
crocontroller, which supports Wi-Fi (IEEE 802.11b/g/n) and
Bluetooth (classic and BLE). An M5StickC has dimensions
24×24×14 mm and weighs 33 g. It has a 80×160 pixel LCD
display, a six-axis inertial measurement unit (MPU6886),
and an 80 mAh battery.

Nodes in the implemented system send a BLE adver-
tising packet every second. The M5StickC cannot change
its transmission power. Up to 31 bytes of advertising data
can be included in each BLE advertising packet. Adverting
packets in our implemented system include a flag, a 16-byte
service UUID, and two bytes of battery voltage information
used for power consumption evaluation and debugging. The
overall size of an advertising packet, including its header,
CRC, etc., is 43 bytes.

The following sections present evaluations of our imple-
mented system, especially for between-node BLE commu-
nication. There have been many previous studies measuring
RSSI in BLE communications, but here we measure social



Figure 2. Mobile node used in our prototype system.

Figure 3. Experimental settings.

distances using BLE communication between M5StickC
devices hanging from the neck.

4.2. Effects of social distance on receiver-node RSSI

We first evaluated the effect of node distance on receiver-
node RSSI. We performed these experiments with two
subjects on the third-floor elevator hall of Building 38 at
Kindai University. One subject wore a sender node that
periodically broadcasts only BLE advertising packets, and
the other subject wore a receiver node that only receives
advertising packets (Fig. 3). The direction of the subject
wearing the sender node is defined as 0◦, and the between-
subject distance was varied in a range of 0.5 to 5 m in 0.5 m
increments. The sender node broadcasts 100 BLE adverting
packets at each distance. All nodes were powered by wired
cables to avoid effects due to remaining battery power.

Figure 4(a) shows the RSSI distribution, average, and
median at each distance. Here, 0 m indicates two terminals
immediately adjacent to each other. As this figure shows,
there are RSSI variations even at the same distance, but RSSI
averages and medians decrease with distance. Therefore, it is
possible to roughly estimate social distances by transmitting
and receiving BLE advertising packets between sender and
receiver nodes some number of times and acquiring average
or median values. The consulted guideline for COVID-19
close contacts [15] stipulates not only distances but also
contact durations exceeding fifteen minutes. Therefore, for
estimation of close contact, we can use the results of a
certain number of packet transmissions and receptions.

We also investigated distances at which nodes can re-
ceive BLE advertising packets. The results of this evaluation

indicated that sender nodes can deliver BLE advertising
packets to receiver nodes from distances up to 20 m. There-
fore, even if a BLE advertising packet is received, it cannot
be determined whether people are in close contact.

We should note here that we obtained these evalua-
tion results under limited conditions. In future work, we
will perform additional evaluations by changing conditions
including combinations of nodes, combinations of people,
postures of persons wearing monitors, and the environments
in which measurements are performed.

4.3. Effects of body orientation on receiver-node
RSSI

We next evaluated the effects of body orientation on
receiver-node RSSI. In these experiments, we fixed the
distance between subjects to 2 m, and varied the orientation
of the subject wearing the sender node in 90◦ increments
(Fig. 3). At each orientation, the sender node broadcasted
100 BLE adverting packets.

Figure 4(b) shows the RSSI distribution, average, and
median at each orientation. As the figure shows, there were
variations in RSSI even among same orientations. However,
the average and median RSSI decreased with orientation.
Compared to the case where both subjects faced each other
(defined as 0◦), RSSI decreased by about 5 dBm at sender-
node subject orientations of 90 and 270◦, and by about
10 dBm at 180◦. There will likely be situations where
students sit side-by-side on campus, so it is necessary to
estimate close contact with a margin of about 5 dBm.

Here, as an outlier, Fig. 4(b) also shows a point at
which RSSI exceeded −100 dBm at a 180◦ orientation. The
influence of such outliers can be reduced by using median
values when estimating social distancing.

4.4. Effects of sender-node battery level on
receiver-node RSSI

To evaluate any effects of sender-node battery levels on
receiver-node RSSI, we conducted experiments with two
nodes at a fixed distance of 1 m. In these experiments,
receiver nodes were powered with a wired cable and sender
nodes were powered by its internal battery. Two nodes
were fixed on a laboratory workbench, because we expected
measurement times to be long.

We found that the M5StickC battery voltage fell be-
low 3.0 V after the sender node transmitted 2130 BLE
advertising packets, after which the M5StickC shut down.
Figure 4(c) shows the relation between battery voltage
and RSSI as a scatter diagram. As the figure shows, we
found no correlation between battery voltage and received
signal strength. The calculated correlation coefficient was
−0.0133. We therefore conclude that in our implementation,
there is no need for considering effects of sender-node
battery voltage on RSSI. Accordingly, it is not necessary to
include battery voltage information in advertising packets.
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Figure 4. Experimental evaluation results.

5. Conclusions and future work
We proposed a social distance monitoring system for

university campuses. The proposed system estimates social
distances by using BLE packets among dedicated mobile
nodes, collecting their data on a monitoring server via a
campus-wide wireless LAN. We partially implemented the
proposed system using M5StickC devices and conducted
fundamental evaluations for between-node BLE communi-
cations. The results confirmed that it is possible to roughly
estimate distances by using average or median RSSI values,
that there are variations in RSSI depending on the orienta-
tions of persons wearing the monitor, and that sender-node
battery power does not affect RSSI.

Evaluations in this study considered only very simple
situations, so in future studies it will be necessary to perform
evaluations in larger and more varied university campus
environments. It is also necessary to consider mechanisms
for reducing node power consumption.

Acknowledgments
The authors would like to thank Dr. Masahiro Tada,

Dr. Hitoshi Habe, Dr. Shoji Mizobuchi, and Dr. Hisashi
Handa for their comments at early stages of this work.
This work was partly supported by JSPS KAKENHI
(19K11934), 2020 Kindai University Research Enhancement
Grant (SR08), and the “All Kindai” COVID-19 Infection
Control Support Project.

References

[1] A. B. Chan and N. Vasconcelos, “Counting people with low-level
features and Bayesian regression,” IEEE Transactions on Image Pro-
cessing, vol. 21, no. 4, pp. 2160––2 177, Apr. 2012.

[2] Z. Ma and A. B. Chan, “Crossing the line: Crowd counting by integer
programming with local features,” in IEEE CVPR 2013, Jun. 2013,
pp. 2539––2 546.

[3] S. Fujisawa, G. Hasegawa, Y. Taniguchi, and H. Nakano, “Pedestrian
counting in video sequences based on optical flow clustering,” Inter-
national Journal of Image Processing, vol. 7, no. 1, pp. 1–16, Feb.
2013.

[4] F. Bu, R. Greene-Roesel, M. C. Diogenes, and D. R. Ragland, “Esti-
mating pedestrian accident exposure: Automated pedestrian counting
devices report,” UC berkeley Traffic Safety Center, Mar. 2007.

[5] R. Greene-Roesel, M. C. Di’ogenes, D. R. Ragland, and L. A. Lin-
dau, “Effectiveness of a commercially available automated pedestrian
counting device in urban environments: comparison with manual
counts,” TRB 2008 Annual Meeting, 2008.

[6] S. Fujii, Y. Taniguchi, G. Hasegawa, and M. Matsuoka, “Pedes-
trian counting with grid-based binary sensors based on Monte Carlo
method,” SpringerPlus, vol. 3, pp. 1–10, Jun. 2014.

[7] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin,
“Measuring human queues using WiFi signals,” in Proceedings of
ACM MobiCom 2013, Sep. 2013, pp. 235–237.

[8] L. Schauer, M. Werner, and P. Marcus, “Estimating crowd densities
and pedestrian flows using Wi-Fi and Bluetooth,” in Proceedings of
Mobiquitous 2014, Dec. 2014, pp. 171–177.

[9] T. Yoshida and Y. Taniguchi, “Estimating the number of people
using existing WiFi access point based on support vector regression,”
Information, vol. 19, no. 7A, pp. 2661–2668, Jul. 2016.

[10] N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Monitoring COVID-
19 social distancing with person detection and tracking via fine-tuned
YOLO v3 and Deepsort techniques,” arXiv:2005.01385, May 2020.

[11] Ministry of Health, Labour and Welfare, “COCOA: COVID-19
Contact-Confirming Application,” Jun. 2020, https://www.mhlw.go.
jp/stf/seisakunitsuite/bunya/cocoa 00138.html.

[12] MAMORIO, “Mamorio,” 2020, https://mamorio.jp/.

[13] Singapore Government, “TraceTogether Token: Media
Statement,” 2020, https://www.tech.gov.sg/media/media-releases/
2020-06-16-tracetogether-token-media-statement.

[14] IK Multimedia, “Safe spacer,” 2020, https://www.safespacer.net/.

[15] Naitonal Institute of Infectious Diseases, “ Guidelines for Active Epi-
demiological Surveys on New Coronavirus Infections,” 2020, https:
//www.niid.go.jp/niid/images/epi/corona/2019nCoV-02-200529.pdf.


