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Abstract— The lungs are the primary organs of the respiratory 
system in humans. Meanwhile, lungs are also vulnerable and are 
easily damaged by inflammation or impact lesions during the 
course of our daily lives. Due to the epidemic of COVID-19 
pneumonia, the confirmed and suspected cases often grow rapidly 
beyond the capabilities of medical institutions, rapid and accurate 
diagnosis for patients have become the first priority. Hence, 
ultrasound images have started to be adopted in lung diagnosis as 
they are more convenient, flexible, cheaper, and without ionizing 
radiation as compared with CT and CXR. This paper aims to use 
VGG, ResNet and EfficientNet networks to accurately classify 
Lung Ultrasound images of pneumonia according to different 
clinical stages based on self-made LUS datasets. The 
hyperparameters of the three networks were tuned and their 
performances were carefully compared. Our results indicate that 
the EfficientNet model outperformed the others, providing the 
best classification accuracies for 3 and 4 clinical stages of 
pneumonia are 94.62% and 91.18%, respectively. The best 
classification accuracy of 8 imagological features of pneumonia is 
82.75%.  This result is a proof of the promising potential of the 
LUS device to be used in pneumonia diagnosis and prove the 
viability of deep learning for LUS classification of pneumonia. 

Keywords—lung ultrasound image, deep learning, medical image 
classification, diagnosis of pneumonia. 

I. INTRODUCTION

The lung structure contains lobes, bronchus and pulmonary 
alveoli which are connected to important veins. All components 
need to function well for the efficient exchange of oxygen and 
carbon dioxide. Due to the softer and more fragile structure than 
other organs, the lungs are more easily injured by external 
shocks and internal inflammation. The injuries can result in lung 
consolidation, and even pulmonary effusion, which will further 
lead to respiratory failure and finally cause apnoea and multiple 
organ failure (MOF). Due to the symptoms during early 
stage 
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are mild, the development of lung lesions is extremely fast. 
Finding a rapid and efficient way of diagnosing respiratory 
system diseases at the earlies stage is thus a critical area of 
research that bears investigation.  

The advancement of medical technology has led to 
numerous medical examination technologies such as Chest X-
ray (CXR), Computed Tomography (CT) and Ultrasound (US). 
For the diagnosis of pneumonia, CT scan is regarded as gold 
standard. However, in the context of the rapid escalation of 
COVID-19 cases, the low speed and throughput due to limited 
number of CT examinations, high costs and higher doses of 
radiation, restricts the feasibility of frequent imagological 
examinations with CT devices to closely monitor the 
development of COVID-19 pneumonia. Although CXR devices 
are smaller, cheaper, with less ionizing radiation. However, it is 
difficult for CXR to distinguish between pneumonia, pulmonary 
embolism, acute respiratory distress syndrome and pulmonary 
fibrosis, with low sensitivity especially for detecting tiny and 
mild lesions in early stages of pneumonia in practical clinical 
situation [1]. Compared with CXR and CT, Lung ultrasound 
(LUS) is a versatile, low cost, radiation-free and convenient 
imaging modality that is widely available in most modern 
healthcare systems. Because Ultrasound imaging is based on the 
pulse-echo principle of sound wave, which led that clinicians 
underestimated the potential of LUS in pneumonia diagnosis 
over a long period in the past. This coupled with the detection 
capability of CT and CXR could adequately meet the daily 
examination requirements, the acceptance of LUS device in 
pneumonia diagnosis was limited in clinical practise [2].  

While LUS has yet to become the recommended diagnosis 
device for pneumonia, this paper reviews the recent literature of 
LUS in pneumonia diagnosis and summarizes the specific 
features corresponding to CT images in the past 20 years. In one 
of the earlier studies by Lichtenstein et al. [2], the accuracy of 



 
 

LUS for the diagnosis of alveolar consolidation was evaluated 
for critically ill patients in the emergency department (ED). The 
feasibility of the method was found to be 99%, with a sensitivity 
of 90% and a specificity of 98%, showing the potential of LUS 
as a beside non-invasive diagnostic method. In 2006, Volpicelli 
et al. [3] studied the use of LUS for the diagnosis of alveolar 
interstitial syndrome (AIS) in mild cases of pneumonia, 
reporting the sensitivity and specificity to be 85.3% and 96.8% 
respectively. Their findings showed that the comet-tailed 
artifacts (B-lines) could be used to accurately diagnose AIS, 
meanwhile, exclude pneumothorax and pulmonary edema. In 
2009, Parlamento et al. [4] compared LUS against CXR and CT, 
reporting accuracy = 96.9%.  

For accurately identifying the clinical features with LUS, 
Xirouchaki et al. [5] identified four clinical signs - pulmonary 
consolidation, positive air bronchogram, abnormal pleural line 
and pleural effusion. Pagano et al. [6] further added subpleural 
lung consolidation, alveolar syndrome with dynamic air 
bronchograms and interstitial syndrome with 3 or more B lines. 
With the newer criteria, they achieved a positive predictive value 
(PPV) of 0.838, negative predictive value (NPV) of 0.960, a 
sensitivity of 0.985 and a specificity of 0.649, outperforming 
CXR. Besides the accuracy, time efficiency and feasibility were 
also focused. Seyedhosseini et al. [7] compared the diagnostic 
time, with the mean admission-treatment time of LUS with 
BLUE protocol was 17 mins compared to 38 mins of CT control 
group. Copetti et al. [8] investigated the use of LUS in paediatric 
departments. Since the ionizing radiation has negative effects on 
children’s growth and health. Their results suggested that the 
performance of LUS was comparable to CT and exceeded CXR 
in evaluating children. Correspondingly, LUS modality is 
extremely attractive for resource-limited remote areas due to the 
ease of use, portability and low cost. 

COVID-19 has brought the need for rapid detection of 
pneumonia to the forefront. In the earlier period of the outbreak, 
before diagnostic test kits like real-time reverse transcription 
polymerase chain reactions (RT-PCR) were developed, 
pneumonia symptoms were used to identify patients. According 
to previous work, the Handbook of COVID-19 Prevention and 
Treatment  and the COVID-19 diagnosis and treatment plan (7th 
Edition) [9], the clinical stages and diagnostic signs of LUS and 
CT are highly consistent and are summarized in Table I. The 
development of pneumonia from the initial onset of symptoms 
such as fever and coughs were often sudden and accompanied 
by major complications such as ARDS. Thus, meticulous 
monitoring of the progression of symptoms, would enable early 
treatment and can minimize complications and costs of follow-
up treatments. However, with the rate of transmission and the 
number of infections rising to unprecedented levels, the 
diagnostic efficiency of CT devices could no longer meet the 
testing needs for so many confirmed and suspected patients. 
Similarly, the amount of manpower would still be substantial 
even with the LUS devices.  

Deep learning method such as convolutional neural 
networks have demonstrated comparable performances to that 
of humans on a range of image classification tasks. A precise 
and fast LUS image classification system based on deep learning 
method could potentially assist clinicians and ease their 
workload. Hence, with LUS being a rapid, convenient, accurate, 

radiation-free and easy to implement bedside method for the 
visualization of pulmonary diseases, this paper focus on the 
investigation of the feasibility of computer-assisted ultrasound 
diagnosis with three CNN-based deep learning models - VGG, 
ResNet and EfficientNet for the detection and classification of 
pneumonia on a self-made lung ultrasound image dataset. 

TABLE I.  DIAGNOSTIC SIGNS OF PNEUMONIA AT DIFFERENT CLINICAL 
STAGES 

Sign of 
Pneumonia 

Pattern in 
LUS Pattern in CT Stage 

AIS 3 or more B 
lines 

ground-glass 
opacity 

Early or 
middle 

Consolidation  
(with air 

bronchogram) 

Pieces and 
hepatization white lungs Middle and 

severe 

Plueural 
Effusion Sinusoid Effusion 

shadows Severe 

 

II. MATERIAL AND METHODS 

A. Dataset Construction 
A total of 10350 LUS images were used in the construction 

of the dataset. As these images were collected from multiple 
sources with different file naming rules and sizes, each image 
was preprocessed to homogenize the filenames, remove all 
private information. Besides, due to lack the LUS data at early 
stage of COVID-19, some of the LUS images are collected from 
the patients of lung impact lesion which have similar 
imagological features as pneumonia. Each image was manually 
classified and relabeled into 8 classes according to clinical 
features of pneumonia (Fig.1). The clinical features of 
pneumonia are summarized in Table II. While there are 8 
clinical features which can be identified in LUS images of 
pneumonia patients, clinicians often need to combine several 
features based on pathology in order to accurately diagnose the 
stages of pneumonia. Hence we grouped multiple features 
together according to clinical stages, a) 3-classes, b) 4-classes to 
further differentiate the severe cases, and c) 8-classes based on 
all clinical features.  

The allocation of images into training and testing sets is 
shown in Table III. The proportions of training and testing sets 
are 90% and 10%, respectively. Due to the limitation of the 
imbalance number of 8 clinical feature images, allocating more 
images for testing set would severely reduce of the training data, 
especially for class 2 and 7. With the new grouping into 3 and 
4-classes, the distribution of images is more balance and able to 
provide better performance for the classification models. 

 
Fig. 1. Processed images of 8 clinical features. 



 
 

TABLE II.  EIGHT CLINICAL FEATURES OF PNEUMONIA IN LUS IMAGES 

# Clinical Feature 
0 Normal 
1 B lines are less than 3 
2 B lines are more than 3 
3 Area of merging B line is less than half 
4 Area of merging B line is more than half 
5 Depth of Pieces is less than 1cm 
6 Air bronchogram and depth of Hepatization is less than 3 cm 
7 Pleural effusion and depth of Hepatization is more than 3 cm 

TABLE III.  ALLOCATION OF IMAGES FOR EACH DATASET INTO 
TRAINING AND TEST SETS 

#  
Class 

Categories (Train/Test) 
0 1 2 3 4 5 6 7 

3 
2608
/288 4044/363 2654/393 

4 2608
/288 4044/363 2305/126 349/

267 

8 2608
/288 

1958
/200 

184/
32 

1014
/58 

888/
73 

1625
/51 

679/
75 

349/
267 

B. Models Construction and Training 
The aim of this paper is to rapidly verify the accuracy of the 

deep learning method in the classification task of pneumonia 
LUS images. This would pave the way for wide adoption of LUS 
device for the diagnosis of pneumonia. Thus, this paper does not 
focus on constructing a brand new ConvNet structure, apart 
from adding some steps to overcome data imbalance. The 
performance of three state of the art models were investigated in 
this work – VGG-19, ResNet-101 and EfficientNet-B5 [10]. The 
reason is that VGG and ResNet belong to the typical single-
dimension scaling methods (by depth) and EfficientNet belongs 
to latest compound scaling method (by depth, width and 
resolution together). All models utilized transfer learning to 
accelerate the training process of the models. Pre-trained 
weights of VGG-19 and Resnet-101 were trained on the 
ImageNet and CIFAR-100 dataset. The pre-trained EfficientNet 
model was trained on 8 large datasets and 1 private breast cancer 
ultrasound dataset. For our application, the models were used as 
feature extractors, with their original output layers reconnected 
to provide an output shape according to the number of classes in 
our LUS datatsets. All models were fine-tuned on a desktop 
computer with an i5-4570 processor with a Nvidia 1080Ti 11Gb 
GPU and with 16Gb of RAM. The software framework used 
was Python 3.7 with PyTorch 1.4. Image augmentation was also 
performed through random cropping and horizontal flipping in 
order to reduce the imbalance between classes. 

Hyperparameter tuning was performed, with a range of 
learning rates (from 0.01 to 0.0002), batch sizes (from 3 to 24) 
and optimizers (SGD and ADAM) were explored for their 
accuracy. The parameters selected for the final models are 
summarized in Table IV. Choosing 0.0002 as the learning rate 
of EfficientNet-B5 is based on the experimental results, which 
has higher accuracy and less training time under lr = 0.0002 than 
lr = 0.0001. All EfficientNet models converged within 50 
epochs, taking an approximate maximum of 2.5 hours while 
VGG and ResNet models took more than 8 hours for the 8-class 
dataset and approximately 3 hours for the 3 and 4-class dataset.  

TABLE IV.  SELECTED HYPERPARAMETERS OF MODELS 

Model
Parameters Results

# 
Class 

Learning 
rate 

Batch 
size Epoch Loss 

function Optimizer Moment
um Accuracy

VGG-
19 

3 0.0001 12 250 cross 
entropy SGD 0.9 0.891 

4 0.0001 12 250 cross 
entropy SGD 0.9 0.884 

8 0.0001 12 250 cross 
entropy SGD 0.9 0.600 

ResNet-
101 

3 0.0001 24 250 cross 
entropy ADAM - 0.886 

4 0.0001 24 250 cross 
entropy ADAM - 0.875 

8 0.0001 24 250 cross 
entropy ADAM - 0.624 

Efficien
tNet-B5

3 0.0002 16 50 cross 
entropy ADAM - 0.946 

4 0.0002 16 50 cross 
entropy ADAM - 0.912 

8 0.0002 16 50 
Weighted 
Smooth 

cross 
entropy  

ADAM - 0.823 

Comparing across classification models, the EfficientNet model 
performed far better across all 3 datasets, with less time needed 
for fine-tuning. For all models of EfficientNet, training results 
stabilized fairly quickly within less than 20 epochs. With the 
speed and accuracy of the model in mind, the EfficientNet-B5 
model was selected for use in the final implementation and was 
retrained with the same parameters for a final evaluation in the 
next section. 

III. RESULTS AND DISCUSSION 
 The results for EfficientNet-B5 after the final retraining are 
shown in the confusion matrices in Fig. 2-4 The best 
hyperparameters used for EfficientNet-B5 were learning rate = 
0.0002, batch size = 16, epoch = 50, ADAM optimizer (step-size 
= 7, gamma = 0.1), cross entropy loss function for the 3 and 4-
class dataset. Meanwhile, in order to reduce the class imbalance 
in 8-class dataset, weighted smooth cross entropy for the 8-class 
dataset were used, the weights for each class are setting as: 
(0.7198,0.7896,0.9801,0.8910,0.9046,0.8254,0.9270,0.9625). 
These weights are calculated according to the image allocation 
of 8-class dataset which can effectively increase the weights for 
the classes with less images and suppress the weights of the 
classes with more images. Besides that, the label smoothing and 
k-fold cross-validation (k = 10) were also used to further 
mitigate the class imbalance, the hyperparameter of label 
smoothing is 0.2. The true probability distribution and loss 
function were revised in the following equation [11] to add some 
noise to the weights of true label via soft one-hot tag type, which 
can increase the loss and effectively avoid overfitting for the 
training dataset with imbalance class. 
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 The EfficientNet-B5 model performed the best on the 3-class 
dataset. As this grouping was based on the diagnostic signs 
summarized in Table I, the results suggest that the model can 
achieve a performance in accordance with clinical guidelines for 
COVID-19. The sensitivity of the 2nd class (clinical features 1- 



 
 

 

Fig. 2. Confusion Matrix for EfficientNet-B5 based network with 3 class 
dataset 

TABLE V.   STATISTIC ANALYSIS OF BEST EFFICIENTNET-B5 
NETWORK ON 3 CLINICAL STAGES DATASET 

Metric 
Clinical Features (Class)  
0 1-4 5-7 Micro-

Average 
f1 0.914 0.916 0.960 0.932 

Accuracy 0.949 0.944 0.970 0.955 
Sensitivity 0.976 0.871 0.957 0.932 
Specificity 0.939 0.984 0.978 0.966 
Precision 0.859 0.966 0.964 0.932 

False Postive rate 0.061 0.016 0.022 0.034 
False Negative rate 0.024 0.129 0.043 0.068 
Negative Predictive 

Value 0.990 0.934 0.974 0.966 

4) for the model is low, with a substantial number of images 
mistakenly labelled as class 0. This may be indicative that some 
images of the 2nd class share similar features to class 0 and are 
not well separable. Comparatively for the 4-class dataset, the 
sensitivity for the 3rd class (clinical features 5-6) was 0.611, 
with almost a third misclassified as the most severe class. This 
could be due to both the 3rd and 4th class representing varying 
severity of consolidation, which share clinical features of pieces 
and hepatization. In addition, the specification of a 3cm length 
as a clinical feature may not be suitably strong as it depends on 
the how the LUS device is positioned and oriented. Also, the 
class imbalance may have caused the overfitting of class 7. 
Finally, for the 8-class dataset, the EfficientNet model 
performed poorly for classes 2,3 and 6. Even with the image 
augmentation, weighted loss function, k-fold cross-validation 
and label smoothing, many images of classes 2 and 3 were 
classified as class 1, while numerous images of class 6 were 
classified as class 7. This could possibly be attributed to the 8-
class dataset having the worst imbalance of data – class 2 and 7 
has the least number of images for training. 

 

Fig. 3. Confusion Matrix for EfficientNet-B5 based network with 4 class 
dataset 

TABLE VI.  STATISTIC ANALYSIS OF BEST EFFICIENTNET-B5 
NETWORK ON 4 CLINICAL STAGES DATASET 

Metric 
Clinical Features (Class)  

0 1-4 5-6 7 Micro-
Average 

f1 0.945 0.936 0.670 0.900 0.899 
Accuracy 0.969 0.956 0.927 0.946 0.950 
Sensitivity 0.955 0.923 0.611 0.944 0.899 
Specificity 0.975 0.974 0.971 0.947 0.966 
Precision 0.935 0.949 0.740 0.860 0.899 

False Postive rate 0.025 0.026 0.029 0.053 0.034 
False Negative rate 0.045 0.077 0.389 0.056 0.101 
Negative Predictive 

Value 0.983 0.959 0.948 0.980 0.966 

 
Fig. 4. Confusion Matrix for EfficientNet-B5 network with 8 class dataset 



 
 

 

TABLE VII.  STATISTIC ANALYSIS OF BEST EFFICIENTNET-B5 
NETWORK ON 8 IMAGOLOGICAL FEATURES DATASET 

Metric 
Clinical Features (Class)  

0 1 2 3 4 5 6 7 Micro-
Average

f1 0.934 0.831 0.308 0.561 0.775 0.657 0.320 0.888 0.816
Accuracy 0.963 0.933 0.974 0.966 0.969 0.955 0.935 0.938 0.954
Sensitivity 0.962 0.860 0.188 0.397 0.753 0.882 0.213 0.966 0.816
Specificity 0.963 0.950 0.999 0.999 0.986 0.959 0.991 0.928 0.974
Precision 0.908 0.804 0.857 0.958 0.797 0.523 0.640 0.822 0.816

False 
Postive rate 0.037 0.050 0.001 0.001 0.014 0.041 0.009 0.072 0.026

False 
Negative 

rate 
0.038 0.140 0.813 0.603 0.247 0.118 0.787 0.034 0.184

Negative 
Predictive 

Value 
0.985 0.966 0.975 0.966 0.982 0.994 0.942 0.988 0.974

IV. CONCLUSION 
Three state of the art CNN-based deep learning models for 

the detection and classification of pneumonia in LUS images 
was investigated. The EfficientNet-B5 model achieved the best 
result and could achieve similar performance with respect to an 
experience clinician. The model in its current form could 
potentially aid in easing the workload of clinicians and enable 
an ultrasound user to rapidly identify patients with pneumonia. 
This work is a proof of the promising potential of the LUS 
device in pneumonia diagnosis and proves the viability of deep 
learning for LUS classification task. In the future, we will extend 
the models to a larger dataset as more become available, further 
validating the method’s efficacy and accuracy. With further 
research, we believe LUS device can become the new gold 
standard for pneumonia diagnosis in the near future. 
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