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In this paper we propose a method for predicting the total
number of confirmed cases made by the novel coronavirus,
using a Recurrent Auto-encoder. The data comes from the
research paper Dong et al., 2020 [1], from the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins
University, Baltimore, USA. A distinct model is trained every
time we make a prediction for a new country. We introduce
the preprocessing concept of nearest neighbours, to select a
country’s train data only from those countries where the spread
of the virus is similar. Moreover, a semi-supervised training
process is implied, to better model the real-life evolution of the
coronavirus. The results that we obtained for our predictions
have a margin of error of approximately 2% over a period of
30 days.

The main contributions of this paper can be summarized as
follows:

1) A new preprocessing concept of nearest neighbours, to
select only data from similar countries (in terms of virus
spread) when making predictions for a specific country.

2) Applying an unsupervised learning process, to obtain a
more stable model and to guide it for longer periods of
time.

The code is made publicly available at the following link:
GitHub

II. RELATED WORK

Viruses outbreaks have always been of interest to re-
searchers, whose main goal is to predict the evolution of
their spread. The new SARS-CoV-2 is no exception, therefore
many studies have already been conducted and predictions for
different time periods have already been made. These studies
can be divided into two categories, based on their underlying
method of prediction. The first category uses non-AI models,
such as epidemiological models. The second category involves
the use of AI models, simple or in combination with improving
algorithms. Thus, we will present in this section papers from
both categories, noting that some of them refer to other
diseases, not COVID-19.

A. Non-Deep Learning models

Forna et al., 2019 [2] estimated the case fatality ratio
of West African Ebola, using a Boosted Regression Tree
model. Ceylan, 2020 [3], applied a number of Auto-Regressive

Abstract—Since December 2019, the COVID-19 disease has 
become one of the most concerning issues across the Globe. The 
world has experienced serious prevention measures, from 
lockdown of cities to entire countries, as it is still unknown when 
will this pandemic end. Thus, it is no surprise that predicting the 
spread of this novel coronavirus has quickly become a hot topic 
among Artificial Intelligence researchers. In this paper we try to 
solve this task, by leveraging the capabilities that Recurrent Auto-
Encoders have on time-series and implying a semi-supervised 
training process. Furthermore, the concept of nearest neighbour 
countries is introduced to estimate the cumulative number of 
confirmed cases for any country. The results are promising, 
showing that our proposed method is capable of making reliable 
predictions for a 30-days period. It is worth mentioning that, while 
this study uses information related to COVID-19, the proposed 
method can be used to estimate the evolution of any kind of 
disease, provided that the associated data comes in form of time-
series.

I. INTRODUCTION

Coronaviruses are a large family of viruses affecting both
animals and humans. The impact they have on humans is usu-
ally in the form of respiratory infections. In December 2019, a 
novel coronavirus, officially named SARS-CoV-2, appeared in 
Wuhan, the capital of Hubei province, China. Although its 
source is still unknown, it is thought to have a zoonotic origin, 
namely coming from bats. The disease associated with it,
COVID-19, spread outside of China so rapidly, that the World 
Health Organization (WHO) has declared it a pandemic. The 
disease is now present all over the world, affecting over 200 
countries and territories. So, it is no surprise that a majority 
of nations have imposed strict social distancing measures, like
banning social gatherings, restricting free movement and even 
closing the borders of cities and countries.

Because currently there is no vaccine or specific treatment to 
cure COVID-19, it is extremely important for health ser-vices 
and governments across the world to have information
regarding the virus’ transmission rates. For these reasons, the 
prediction of COVID-19’s development could give authorities 
an insight on how to adapt the restrictive measures in their 
countries and manage their resources to effectively contain its 
spread.
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Integrated Moving Average (ARIMA) models, using different
parameters, to determine the future evolution of COVID-19 in
Italy, Spain and France. Flaxman et al., 2020 [4] proposed a
semi-mechanistic Bayesian hierarchical model to predict the
total number of cases and the number of deaths in 11 European
countries. They also conclude whether the preventive interven-
tions adopted in these countries were effective or not. Zhao et
al., 2020 [5] used a mathematical Poisson process to estimate
the unreported number of cases in China from the beginning of
the pandemic. Lastly, Tang et al.,2020 [6], Peng et al., 2020
[7], Chen et al., 2020 [8], Anastassopoulou et al., 2020 [9]
and Fanelli et al., 2020 [10] all used simple or modified SIR
models, commonly used for epidemics analysis, to forecast the
evolution of COVID-19 and determine the effectiveness of the
preventive measures implemented by authorities.

The main shortcoming of these models are the number
of parameters needed. For example, in [6] a SEIR model is
used and 12 parameters are needed (most of which have to
be computed). Then, a lot of assumptions are made, like in
[4], the authors assume that the preventive measures have the
same impact in all 11 countries studied and, because they have
more data available, advanced countries (e.g. Italy, Spain) have
a more significant influence on the final prediction for each
country, than countries with less data. Moreover, in papers
like [3] using ARIMA models, it is proved that a different
model configuration is needed for each country, that is, for
each country, a new set of optimal parameters have to be
determined.

B. Deep Learning models

In their paper, Liu et al., 2019 [11] tested a Back Prop-
agation Neural Network (BPNN) to forecast the trend of
tuberculosis in China. Dandekar et al., 2020 [12] used a neural
network augmented model to predict the evolution of COVID-
19 in Wuhan, Italy, South Korea and USA and concluded that
the implemented quarantine measures had efficiently stopped
the spread of the disease. In another paper, Zeng et al.,
2020 [13] used a multi-model ordinary differential equation
set neural network (MMODEs-NN) to predict the ending of
the COVID-19 transmission in China. Many researchers, like
Tomar et al., 2020 [14], Pal et al., 2020 [15], Yang et al., 2020
[16] used Long Short-Term Memory (LSTM) based models,
known to be suitable for time-series, to forecast the spread
of the novel coronavirus and asses the effectiveness of the
prevention methods. Finally, Hu et al., 2020 [17] proposed
in their paper a modified stacked auto-encoder for modelling
the transmission dynamics of COVID-19 and for real-time
forecasting of the confirmed cases across China.

After analyzing the related research, we decided to use
a recurrent auto-encoder, described below, to leverage the
existing AI capabilities of working with time-series.

III. PROPOSED APPROACH

A. Data

The data format that is used in this work is collected by the
John Hopkins institute in collaboration with multiple interna-

tional agencies such as World Health Organization (WHO),
European Centre for Disease Prevention and Control (ECDC),
Centers for Disease Control and Prevention (CDC) and others.
They separately provide a per day, per country number of
cumulative confirmed cases, fatalities and recovered persons
(for larger countries, data is provided per region/county/state).
The dataset contains entries for almost every country in the
world, since 11 January 2020 and is updated on daily basis, as
the pandemic progresses. This work focuses on the prediction
of the cumulative number of confirmed cases as reported.

B. Data preprocessing

The section is divided into 2 main stages, one which aims
to align the data to a temporal interval considering the day
of reaching a certain number of confirmed cases in a specific
country and another for grouping together countries that have
evolved in a similar manner.

Zero-day alignment is the process of translating the spread
data for each country from an absolute to a relative timeline,
given a certain alignment threshold T . A pandemic does not
start at the same time in all countries, and even after the
apparition of the first few cases, there is an amount of time
for which they are contained (see Fig. 1). These elements
can be considered to have a random nature and they are
not relevant for predicting an advanced spread. By applying
zero-day alignment we can compare and group together the
countries that experience a similar growth, which is useful
when making a forecast.

Fig. 1. Example of COVID-19 spread presented after the zero-day alignment
step. On y axis is are the number of cumulative number of confirmed cases
and x axis represents number of days since a country reached the alignment
threshold T

Nearest neighbours algorithm is used to group together the
countries with similar growth. To obtain these neighbours for
a target country Cs we proceed as follows: first, we apply the
zero-day alignment having a threshold T for every country
in the dataset (Cs included). Then, we consider a candidate
country, Ct that is more evolved than Cs (it reached T earlier).
We start sliding Cs over Ct beginning with the first day it
reached the threshold, until Ct ends. For each step, an error
Lstep(Cs, Cti) is computed and stored. The smallest error Lstep

will be the final error ξ associated with Ct. We do this for all
candidates in the dataset, taking one individual feature f , f ∈
{confirmedcases} at a time. This will result in a collection
of neighbours, from where the training data for the model is
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Fig. 2. Recurrent auto-encoder architecture comprised from a group of reccurent cells and a multi layer perception having multiple hidden layers.

going to be selected, given a certain error threshold Terror
(only keep data below this threshold).

C. Recurrent auto-encoder

The model architecture (Figure 2) is an encoder-decoder
structured as follows:

Recurrent Neural Network - composed of recurrent cells,
which embed the temporal information from the input series.
For this we are going to make use of Long Short-Term
Memory cells[18]. Such a unit is composed of multiple gates,
an input gate, an output gate and a forget gate. The exact
operations that a cell does are:

it = σ(wi[ht−1, xt] + bi)
ft = σ(wf [ht−1, xt] + bf )
ot = σ(wo[ht−1, xt] + bo)
c̃t = tanh(wc[ht−1, xt] + bc)
ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tanh(ct)

(1)

Where, c and h are the hidden and cell state passed from the
last timestamp, * is the Hadamard product operator and σ is
the sigmoid activation function.

Multi layer perceptron composed of multiple hidden linear
units, which decode the aforementioned latent representation
to reconstruct the input series.

D. Learning process

Fig. 3. Model output interpretation

During training, the model takes as input the data for an
observation period Tx, and produces an output series for
multiple days into the future. This can be divided into 3 parts:

1) Pr the reconstruction of the input sequence; each pre-
diction is based on the exact timestamp from the input
sequence, this is the auto-encoding branch.

2) Pn is the prediction for the next n days into the future,
given the last day of Pr; each prediction is based on the
prediction from the previous timestamp.

3) Pl is the prediction for the next m days after Pn; each
prediction is based on the prediction from the previous
timestamp; we do not have label for this period.

For each of the aforementioned categories, a certain crite-
rion is optimized as follows:

Reconstruction loss is going to minimize the prediction
error. It is measured using the Huber error function [19]
between the target y and the reconstructed sequence Pr and
the future forecast Pn. The motivation for choosing this is the
fact that it is less sensitive for outliers and leads to a better
model stability during training. For a given timestamp, the loss
can be defined as:

fδ(yi, xi) =

{
1
2 (yi − xi)

2, |yi − xi| ≤ 1

|yi − xi| − 1
2 , otherwise

(2)

and for an entire period, the error becomes the average loss
measured at each timestamp:

Lr(y, x) =
1

T

T∑
0

fδ(yi, xi) (3)

where T denotes the number of time stamps fed into the
network.

Saturation loss is going to limit the increase of the predic-
tion over large periods of time and make it reach a saturation
plateau. It is limiting the gradients of the forecast over larger
periods of time by being smaller than a certain weighted value
h computed on the training set. The weight of h decreases as
the according timestamp is larger following a linear decay:

yi = α− i

t
∗ β (4)

where α, β ∈ R are considered hyperparameters, t denotes
the total number of time-stamps and i denotes the timestamp
number. The unsupervised loss can be expressed as:

Ls = −1

t

t∑
i=1

h ∗ yi −∇xi (5)
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Where xi denotes the prediction at timestamp i, i ∈ t.
The total loss is the sum of Lr, Ls using the according

scale factors λr and λs:

Ltotal = λrLr + λmLm (6)

IV. EXPERIMENTS

A. Implementation details

Data The data was first transformed using zero-day align-
ment. We found out that a good alignment threshold was
T =400 confirmed cases. To compare the countries we choose
the error function Lstep to be the Mean Average Percentage
Error. We compared multiple criterions and obtained very
similar results, so we chose this one for the ease of inter-
pretability and for the convenience when comparing our results
with the ones found in other related research papers. The
threshold for Terror was chosen to be 40% and everything
above this was discarded.

Model For the model architecture, the recurrent neural
network encoder is composed from a single LSTM cell,
followed by a 3-layered MLP. The prediction for a country
implies training a new model. Thus, for distinct countries we
will have distinct models. Our model was trained using the
Adam [20] optimizer for 150 epochs, with a batch size of 16.
We chose λr = 1.0, λi = 0.5, Each of the time windows
considered for reconstruction and for future prediction were
of 5 days. We discerned that the long term predictions for a
country were very dependable on the amount of data available
for training. Thus, we concluded that a forecasting period of
15 days is considered to be stable for all situations (both when
we have more data and less data).During training, the gradients
of the model were clipped such that they have a norm of 1.
This was done to avoid the exploding gradients problem.

The experimental part was implemented in Python using the
Pytorch library.

B. Results

To validate our model, we trained it using multiple time
frames: up until April, May and June respectively, each time
adding one more month. The mean average percentage error
(MAPE) was used to compute the validation error. The rest
of the available data (up until the current date), were used
for validation. We are confident that the results we obtained
have a 2% margin of error. In Table I, several results that
were obtained using our model for a number of European
countries (arbitrarily chosen) are presented. Moreover, Figure
4 illustrates the spread prediction of COVID-19 in Romania,
for a 30-day period.

Comparison of results It is difficult to make comparisons
between our model and other proposed methods, because there
are many factors that need to be taken into consideration. First
of all, there is the evaluation metric, which, in our case is
MAPE. Thus, we can consider only those methods using the
same evaluation metric. Then, we have the dataset, which we
described before. Also, we need to take into consideration
the prediction period, meaning for how many days was the

prediction made and for which month(s). The month is im-
portant because when trying to predict for an earlier month,
fewer data is available for training, so, obviously, the model
will perform worse. Having all this in mind, the following
are rough comparisons between our results and the ones from
related research papers, noting that in all cases the training
datasets are different than ours. In [3], an ARIMA (0,2,1)
model is used to make predictions for a 10 days period (in
April) for Italy, having MAPE = 4.752. Şahin et al., 2020 [21]
used a nonlinear grey Bernoulli model to make predictions for
a 35 days period (March-April), also for Italy, having MAPE =
9.68. In comparison, our model, for a 30 days period prediction
for Italy has MAPE = 0.19. In [22], an improved ANFIS
model is used to make predictions for China for a 30 days
period (May-June), having MAPE = 4.79. In [23], the authors
used a Single Exponential Smoothing (SES) model to make
predictions for all available countries, for a 35 days period
(March-Apri), with a MAPE = 0.917. In contrast to this, our
model, when making predictions for all countries, for a 30
days period, has a MAPE = 0.4.

TABLE I
THE RESULTS PRESENTED IN THE TABLE CONTAIN THE MAPE FOR A

MODEL PREDICTING ON VARIOUS PERIODS OF TIME. THIS RESULTS WERE
OBTAINED BY BACKTESTING.

Country 3 months [%] 2 months [%] 1 month [%]
Romania 7.5 1.3 0.44
Germany 4.6 0.7 0.61

Italy 6.8 1.6 0.19
Poland 9.2 2.9 0.55
Spain 5.5 1.02 0.24

Fig. 4. Model prediction for a period of 30 days for Romania.

V. CONCLUSION

In this paper, an auto-encoder forecasting model was pro-
posed to predict the spread of COVID-19 in multiple European
countries. The results of this research can help authorities to
plan in advance prevention measures and allocate resources ef-
ficiently, such that the impact of the new disease is minimal in
their country. The proposed method can be used to predict the
spread of a pandemic, like COVID-19. It is worth mentioning
that our proposed model uses only statistical data (number of

120



confirmed cases), without taking into account any other sort
of data, like mitigation measures, travel impact and so on.
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