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Abstract— Coronavirus disease 2019 (COVID-19) is an
infectious disease of the respiratory system that caused a
pandemic in 2020. There is still not any effective special
treatment to cure it. Drug repositioning is used to find an
effective drug for curing new diseases by finding new efficacy of
registered drug. The new efficacy can be conducted by
elaborating the interactions between compounds and proteins
(DTI). Deep Semi-Supervised Learning (DSSL) is used to
overcome the lack of DTI information. DSSL utilizes
unsupervised learning algorithms such as Stacked Auto
Encoder (SAE) as pre-training for initializing weights on the
Deep Neural Network (DNN). This study uses DSSL with a
feature-based chemogenomics approach on the data resulted
from the exploration of potential anti-coronavirus treatment.
This study finds that the use of fingerprints for compound
features and Dipeptide Composition (DC) for protein features
gives the best results on accuracy (0.94), recall (0.83), precision
(0.817), F-measure (0.822), and AUROC (0.97). From the test
data predictions, 1766 and 929 positive interactions are found
on the test data and herbal compounds, respectively.

Keywords— coronavirus disease 2019, drug repositioning,
deep semi-supervised learning, stacked autoencoder, deep
neural network

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious
disease located in the respiratory system and is caused by
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1]. This disease causes significant health problems
such as fever, dry cough, difficulty breathing, pneumonia,
multiorgan failure, and even death [2], [3]. Based on the
historical data collected by the Worldometer reference
website, as of 7 June 2020, there were at least 7008898 total
COVID-19 cases that have been reported in 213 countries.

This situations make researchers spend their efforts in drug
discovery and development. Researchers conducted drug
repositioning for reducing cost. Drug repositioning or drug
repurposing is carried out by looking for new efficacy of
registered drug compounds. Drug repositioning are typically
done by observing the interaction of compounds drugs with
proteins which related to the diseases (Drug-Target Interaction
or DTI), then predict new DTIs in which the interactions are
previously unknown [4], [5]. Conducting drug repositioning
can be done on conventional medicines and herbal medicines.
Herbal medicines tend to be more easily accessed and used by
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the Indonesian people in the foreseeable future. Therefore, the
development of herbal medicines is necessary [6].

Searching valuable DTI data on COVID-19 can be done
by exploring the potential of anti-coronavirus treatment. This
data will be utilized for drug repositioning research on
COVID-19. This data consists of positive and negative
interaction between drug compounds and target proteins. The
number of positive interactions is very small when compared
to the negative interactions. This imbalance can cause
inaccurate classification and prediction models [7]. Therefore,
additional handling of imbalanced data is required. Modelling
based on deep semi-supervised learning (DSSL) utilizes
unsupervised learning algorithms as pre-training on
unbalanced data to improve the accuracy of predictive models
based on supervised learning [8].

In [9], DSSL method for DTI (DSSL-DTI) prediction is
proposed on handling imbalanced interaction data of drug
compounds and target proteins. Stacked Autoencoder (SAE)
is used as an unsupervised pre-training to initialize the weights
of the Deep Neural Network (DNN) classification model. This
implementation causes better weight initialization on DNN
rather than randomly initializing it. Therefore, the model used
was able to achieve better convergence and classification. This
study yielded very good results with an accuracy score (AR)
of 98.68% and area under the curve score (AUC) of 99.8%.
This study uses a feature-based chemogenomics approach on
the Yamanishi’s golden standard dataset. The chemogenomics
approach predicts interactions between compounds and
proteins by utilizing information about features of drug
compounds and target proteins for predictions [10].

The success of DSSL-DTI method proposed by [9]
inspired this paper to implement it in predicting DTI in
COVID-19 case. DSSL-DTI method with a feature-based
chemogenomics approach will be implemented in the
exploration of COVID-19 coronavirus treatment. This paper
utilized DSSL-DTI method in predicting interactions between
herbal compounds and target proteins in COVID-19 cases.

II. DEEP SEMI-SUPERVISED LEARNING FOR DTI

Research on drug repositioning is based on the fact that
most drug compounds can activate or inhibit the biological
functions of the target protein. This creates the needs to
develop a DTI identification system [11]. DTI identification
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can be done by building a classification model using DTI
data. The data used as input are Drug-Target Pairs (DTP), and
the output is a predicted interaction between DTP [9].

A. Deep Semi-Supervised Learning

Deep semi-supervised learning is a deep learning model
that adopts semi-supervised learning techniques, which
within the training process. This algorithm consists of two
stages: unsupervised pre-training and supervised fine-tuning.
Greedy layer-wise unsupervised pre-training helps in
achieving the minimum cost function value by initializing the
initial parameters and acts as a regulation in increasing the
power of data generalization [8]. After that, supervised fine-
tuning is done to minimize prediction errors within the
training process [9].

B. Stacked Autoencoder

The purpose of AE is to learn new representations of data
by reconstructing the input data. An encoder that maps inputs
into representations at the bottleneck layer and a decoder that
maps representations for the reconstruction of the original
input. Stacked Autoencoder (SAE) consist of many stacks of
AE that can learn efficient coding of unsupervised data [12].
The example of SAE architecture is shown in Fig. 1.
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Fig. 1. Stacked Autoencoder
The input data enters the SAE network from the encoder

layer on AEL. For example, if the input data are denoted as x,
the representation /4 can be calculated by (1).

h = fo(x) = se(Wex + b.) ©
where s,, W,, and b, are the activation function, the weight
matrix, and the bias vector of the encoder, respectively. After

that, the decoder maps the representation of the bottleneck
layer to the output layer (x,) using (2).

x. = f,() = sq(Wgh + by) (2)

In (2), s4, W4, and b, are the activation function, a weight

matrix, and a bias vector of the decoder, respectively. SAE

with N layers and P = {P'|ie{1,2,..N}}, with P' =
{(W,, Wy, b, b.} can be formulated by (3), (4), and (5).

W= f(7) = sesWeh™ + b))

he = f (7)) = sg(Wah™ + b)) &)

h = «x 5)

where i is the parameter in the i-th AE. The bottleneck layer
atthe AE (i-1) is used as the input layer at the i-th AE [9], [13].
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C. Deep Neural Network

. The purpose of DNN is to find the right mathematical
manipulation to convert inputs into outputs, and determine
whether the relationship is linear or non-linear [14]. The
example of DNN architecture is shown in Fig. 2.
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Fig. 2. Deep Neural Network

The inputs move across the network through layers that
calculate the output probabilities. Each hidden layer maps the
inputs from the previous layer (x)) to the output (3;) which will
be sent to the subsequent layer as in (6).

y;, = f(xj)' x; = b; + Lywy (6)

The function f{x;) in (6) is an activation function, bj is the bias
of unit j, i is the unit index of the previous layer, and wy
represents the weight that connects i and j. In the initial
construction of the model, the weights and biases in each
layer are initialized randomly. DNN can be discriminatively
trained with backpropagation that uses cost derivatives (f
'(C)) to calculate the difference between the target output and
actual output. Weights are updated using (7).

AWi]'(t) = (ZAWl'I'(t— 1) - Ef’(C) (7)

where Awj is the weight update, o is the "momentum"
coefficient (0 <a <1) that can smooth the gradient, # is the
amount of data on the minibatch, and € represent an error.
Weights will be updated proportionally using stochastic
gradient descent to minimize the error.

III. MATERIALS AND METHODS

A. Data Acquisition

The data used in this paper came from [15] and [16]. These
researches predicted the possibility of approved antiviral drug
compounds that will potentially inhibit the development of
SARS-CoV-2. In [15], the potential for reusing antiviral
agents is investigated based on the therapeutic experience with
two infections caused by other coronaviruses. While in [16],
proteins encoded by the SARS-CoV-2 gene are systematically
analyzed, comparing them with target proteins from other
coronaviruses, and predicting their structure using homology
modelling. The potential of the antiviral drugs in [15] and [16]
are determined by a significant binding affinity score on drug-
target interaction. SuperTarget [17] is used to find a list of
target proteins from compounds and a list of compounds that
interact with target proteins. This is done in order to expand
the exploration of drug-target interaction. The output of
SuperTarget is a new protein and drug compound target that
previously was not mentioned in [15] and [16].
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B. Drug-Target Representation

In DTI prediction, numerical representations of proteins
and compounds are needed as input data on the classification
model. These representations are required so that the machine
learning algorithm can understand the DTI data [18].
Compound and protein descriptors will be used to extract the
numerical representations.

The compound descriptors are Simplified Molecular-
Input Line-Entry System (SMILES). By using SMILES,
fingerprint of a chemical structure can be obtained to
effectively represent compounds. Fingerprint (FP) is the
encoding of a compound into a Boolean FP vector that
represents the existence of a substructure within the molecule
of the compound. PubChem's FP dictionary will be used
because it is considered good in representing the compound
molecules [19]. PubChem defines 881 chemical
substructures. The retrieval of FP produces feature vector S

(S = [51,52,53, - Sgg1])-

The protein descriptors are protein sequences in FASTA
type text files, which are text-based formats to represent
nucleotide or amino acids sequences, each of which is
represented using a single letter code. Three types of protein
features will be extracted by using FASTA, which are
Dipeptide Composition (DC), Autocorrelation Descriptors
(ACD), and Position-Specific Scoring Matrix (PSSM).

DC is the ratio of dipeptides [18]. Dipeptides are
combinations of 2 amino acid components (such as AA, AR,
AN, AD, AC) [20]. DC converts protein sequences into 400
features. DC can be defined by (8).

_ Tdep(i)

Xdep(i) - N (8)
where dep(i) is the i-th dipeptide of 400 dipeptides. Xuepi)
represents the ratio of occurrences of dep(i), naep is the
number of occurrences of dep(i), and N is the sum of
occurrences of all dipeptides.

ACD is defined based on the distribution of amino acid
traits along the sequence [21]. The traits of the amino acids
were obtained from the AAlndex Database. The amino acid
index that were used is the default index on the PROFEAT
web [22], namely alpha-CH chemical shifts, hydrophobicity
index, and membrane-buried preference parameters. The
total features for ACD are 270 features.

PSSM gives the probability value for each amino acid in
each position in the protein sequence [23]. PSSM is a matrix
of N x 20. Each element M(i, j) can be obtained using (9).

11 1,20
M= ( : : ) 9)
N1 aN,20

where N is the length of the protein sequence, and ay; ) is the
probability that the i-th protein residue mutates to the j-th
amino acid in multiple sequence alignment proteins [23].
Auto Cross Covariance (ACC) transforms PSSM into a scale-
based descriptor. Therefore, PSSM information of all
proteins taken has the same length to build feature vectors
[24]. ACC is a combination of auto covariance (AC) of amino
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acids and cross-covariance (CC) between two amino acids.
AC measures the correlation of amino acids in two separate
residues by the /g distance along the sequence and is
formulated by (10).

AC = 529(Sy = $:)(Stjuig — Si)L = 1g)™* (10)

In (9), i is the residue, L is the length of the protein sequence,

Sj is the PSSM value of the amino acid i in position j, S; is
the average of the amino acid values along the sequence. The
number of AC features is as much as 20 * /g. CC measures
the correlation between two amino acids in two residues
separated by the /g distance along the sequence and is
formulated by (11).

CC = 20(Suj = $i1) (Syjurg — S )L — 1)1 (1)

with x, y are two different amino acids. The number of CC
features is 380 * [g. The /g variable used is 1. The number of
ACC features is 400. The retrieval of protein features will
produce 3 feature vector P (P = [pq, P2, D3, - Pn]) Where
each of them will contain DC, ACD, and PSSM.

The feature vectors of compound and protein are
combined into 3  feature vector F ( F =
[S1,52,S3, .. Sgg1,P1, P2, P35 - Pn]). Each F is a combination
of FP and each of the protein features types. The data is
transformed by creating every feature vector pairs from
unique protein IDs and compound IDs. Pairs of compounds
and proteins that are known to have interactions will be
labelled as 1, if not, labelled as 0. Data cleaning is done by
filling in missing values with median values and
normalization. To increase the chance of randomness and
overcome class imbalance, a random sample of negative
interactions was selected as many as five times the number of
positive interactions. This sample is used for training data
[19]. Negative interaction data that were not taken by random
samples will be used as test data.

C. SAE-DNN Modelling

Before modelling, all transformed data will be used as
input to SAE modelling. SAE will be trained with the aim of
initializing weights on DNN. Pre-training uses the concept of
unsupervised learning. Initialization of weights in DNN
modelling is done to produce an optimal model [9]. The
unsupervised pre-training SAE process carried out in [9]
consisted of the following stages:

e Step 1: Use the entire dataset as input data in the
encoder layer to train the initial AE.

e Step 2: After the AE has been trained, save the
weight and bias parameters in the encoder layer.

e Step 3: Remove the decoder layer, take the data
representation at the AE bottleneck layer as input
data for the encoder layer to train AE2.

e Step 4: Repeat steps 2 and 3 to train next AE. Repeat
until all AE is trained.

The next step is the supervised fine-tuning process by
making a DNN prediction model. The training data is used as
input data. Weights and biases from the results of the SAE
training will be used as weight and bias parameters in the
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DNN architecture. The weight at the output layer is randomly
initialized. Because the data label is binary, the sigmoid
function is used as the activation function at the output layer
and the binary cross-entropy is used as cost function.

To improve the performance of the model, Batch
Normalization (BN) and Dropout (DO) are used. BN is used
to normalize the input of each layer by ensuring all inputs have
a mean close to 0 and standard deviations close to 1. This is
done to speed up the training process [25]. DO removes a
random percentage of the output node from each layer when
training the model to reduce the capacity and complexity of
DNN and prevent overfitting [26]. The use of DO after
conducting a BN can lead to a stable training process, faster
convergence, and better generalization performance [27].

Hyperparameter tuning is done to choose a combination of
hyperparameter (X) from all the hyperparameter combinations
provided (Rp) on a model that optimizes the performance of
the SAE-DNN model. Bayesian Optimization is used because
it is able to produce optimal results in shorter iterations
compared to greedy method. Bayesian Optimization builds a
probabilistic model to make decisions on choosing the next X

data. Herbal compound data comes from Indonesian Herbal
Database (HerbalDB). The herbal compounds dataset includes
the name of the compound and its PubChem FP. All
combinations of herbal and protein pairs are made by
combining the FP of the herbal compound with the selected
protein features.

IV. RESULTS AND DISCUSSION

A total of 78 virus-based compounds, 16 human-based
compounds, 15 host-based proteins, 7 virus-based proteins
along with the DTIs are obtained from [15] and [16]. The data
gathered from SuperTarget adds 29 new compounds and 303
new proteins. After the data is combined, pre-processing
continues with the verification of compound IDs and protein
entry names, and eliminating duplicates. The final dataset
consists of 39975 interactions, with 712 positive interactions
and 39263 negative interactions. FP-DC and FP-PSSM have
1281 columns, while FP-ACD has 1151 columns. After the
data is ready to be used, SAE-DNN hyperparameter tuning is
done on those three datasets. The results of this process are
shown in Table 2.

selection while eliminating uncertainty [28]. The list of TABLE 2. HYPERPARAMETERS TUNING RESULTS
hyperparameters is shown in Table 1. Values
Params FP-DC FP-ACD FP-PSSM
TABLE 1.  HYPERPARAMETERS FOR TUNING Hidden node 0 (HNo) | 300 1000 700
Params Values Hidden node i (HNi) % * HNin-1 % * HNin-1 % * HNin-1
Hidden node 0 (HNo) 300, 500, 700, 1 000 Hidden layer 2 4 3
Hidden node i (HNi) 0.5 x HNi.1, 0.66 x HNi.1, 0.75 x HNi-1 Optimizer adam adam rmsprop
Hidden layer 2,3,4 Learning rate 0.01 0.01 0.01
Optimizer adam, sgd, adagrad, rmsprop Activation function relu relu relu
Learning rate 0.01, 0.001, 0.0001 Dropout rate 0.5 0.5 0.5

relu, tanh, sigmoid
0.1,0.3,0.5

Activation function

Dropout rate

D. Model Evaluation

Stratified k-fold cross-validation is used to test the
model. This method divides the data into k parts according to
the proportion of its class, followed by making a model using
k-1 parts of data and tested using 1 part of data. Training and
testing are done k times on different pieces of data.
Evaluation is done by paying attention to the prediction label
with the actual label. The metrics are defined as follows:

_ (TP+TN)
Accuracy = TPATN+FPFR) x 100 (12)
TP
Recall = TPEm) (13)
.. TP
Precision = TPiFP) (14)

(2xPrecisionxRecall)

F — Measure = (15)

(Precision+Recall)

E. Predicting New Interactions

The best model based on the selection of protein features
and hyperparameter tuning will be used to predict interactions
on the test data and herbal compound data. The selection of
protein features is done by comparing the performance of the
SAE-DNN model on three different data, which are FP-DC,
FP-ACD, and FP-PSSM. Test data is the negative interactions
that were not taken by random samples in making training
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The test was performed using stratified k-fold cross-
validation with k = 10 on the training data from three datasets,
namely FP-DC, FP-ACD, and FP-PSSM. The test results of
cross-validation are represented by the average value as well
as the standard deviation of the metrics used. These results are
presented in Table 3.

TABLE 3. TESTING RESULTS
Model
Metrics
FP-DC FP-ACD FP-PSSM
Accuracy 0.940+0.009 0.884+0.009 0.930+0.009
Recall 0.83040.043 0.42340.049 0.761+0.040
Precision 0.81740.050 0.78510.054 0.815+0.051
F-measure 0.82240.022 0.54810.044 0.78510.025
AUROC 0.97040.009 0.855+0.023 0.947+0.013

Table 3 shows that the FP-DC model is superior
compared to other models, with an average accuracy of 0.94,
recall 0.83, precision 0.817, F-measure 0.822, and AUROC
0.97. This proves that the SAE-DNN model that uses this
feature vector as training data is good at predicting DTI
classes (accurate), accurate in predicting positive classes
(high recall), good positive predictions (high precision), good
performance on minority class (high F-measure), and
confident in distinguishing classes (high AUROC). The
smaller the standard deviation, it means that the metric is
more stable in each fold of the CV. The FP-DC model has the
smallest standard deviation value, except for the recall metric
that is outperformed by the FP-PSSM model.
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Another measurement done is by creating the Receiver
Operating Characteristic (ROC) which are obtained by
making a graph between the True Positive Rate (TPR) and
the False Positive Rate (FPR) of several threshold values.
Area Under ROC Curve (AUROC) value can be calculated
as a numerical representation of ROC curve. To compare the
ROC curve, the ROC curve on the fold is used to produce the
best AUROC in each model and can be seen in Fig. 3.

1.0 =
0.8 e
i o
=
o #7
b -
@ 06 | "
=
=] P’
2 ' v
T 04
@ -
= P’
= 4
0.2
”/ = FP-DC, auc=0.982
”,' = FP-ACD, auc=0.887
5 - === FP-PSSM, auc=0.972
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Fig. 3. Receiver operating characteristic curve of the FP-DC model

The ROC curve shows the trade-off between sensitivity (or
TPR) and specificity (1 - FPR). Based on the graph in Fig. 3,
it can be observed that the FP-DC model has a wider ROC
curve area compared to other models. A more expanded area
causes a higher AUC. AUC explains that the model has a
98.2% chance of being able to distinguish between positive
and negative classes.

Further comparison on the models is done by analyzing
confusion matrix results on the fold that produce the best
AUROC in each model. Metrics on each model is also shown.
This comparison can be seen in Table 4.

TABLE 4. CONFUSION MATRIX AND METRICS ON THE FOLD
THAT PRODUCE THE BEST AUROC IN EACH MODEL.
Metrics Model
FP-DC FP-ACD FP-PSSM
True Positive (TP) 65 28 53
True Negative (TN) | 340 350 349
False Positive (FP) 16 6 18
False Negative (FN) 6 43 7
Accuracy 0.948 0.885 0.941
Recall 0.915 0.394 0.746
Precision 0.802 0.824 0.883
F-measure 0.855 0.533 0.809
AUROC 0.983 0.887 0.972

Based on the test results, the FP-DC model provides better
metrics than other models. For this reason, the FP-DC model
will be used to predict the test data and the herbal compounds
data. Test data has 35703 interactions. Prediction results
resulted in 1766 positive interactions. There are 403 herbal
compounds used for the herbal compound data. Herbal
compound data consists of all pairs of herbal compounds and
target proteins. Herbal compounds data have 130975
interactions. The results of the prediction of test data showed
that there were 929 positive interactions. Ten interactions of
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herbal compounds with the COVID-19 target protein in [16]
with the highest probability according to the model are
presented in Table 4.

TABLE 5. TEN POSITIVE COVID-19 DTIS WERE PREDICTED FROM
THE FP-DC MODEL ON THE HERBAL COMPOUNDS DATA
WITH THE HIGHEST PROBABILITY
Compound Protein Probability
Y-mangostin RdRp 0.994717
Stigmatellin RdRp 0.994717
Berberine2 RdRp 0.994717
3-Eicosyne RdRp 0.994650
Enzacamene 3CLPro 0.994538
Brazilein 3CLPro 0.994439
Brazilin 3CLPro 0.994385
Eugenol 3CLPro 0.994145
Eugenol RdRp 0.992982

For the research on drug repositioning in handling
COVID-19, positive prediction interactions between
compounds and proteins associated with SARS-CoV-2 were
collected. The number of predicted positive interactions
between drug compounds and virus-based target proteins
associated with COVID-19 according to [16] on the test data
and herbal compound data is shown in Table 5.

TABLE 6. NUMBER OF POSITIVELY PREDICTED INTERACTIONS
BETWEEN DRUG COMPOUNDS AND VIRUS-BASED
TARGET PROTEINS ASSOCIATED WITH COVID-19
Protein Identifier Test data Herbal
PLPro PLPro_SARS-CoV-2 92 113
3CLPro 6LU7:A 115 93
RdRp yp_009725307.1 118 300
6MO0J:A 5 0
6MOJ:E 4 0
Spike-ACE2
6LZG:A 5 0
6VSB:A 7 0

V. CONCLUSION AND FUTURE WORK

The use of the fingerprint feature as a compound
representation and the Dipeptide Composition (DC) feature as
a protein representation yielded good average metric value of
cross-validation with an accuracy of 0.94, recall 0.84,
precision 0.817, F-measure 0.822, and AUROC 0.97. In the
test data, 1766 DT1Is are predicted to be positive by the model,
with 346 of them are associated with COVID-19. For the
herbal compound data, it is predicted that there are 929
interactions of the herbal compounds with the target protein,
where 506 of them are associated with COVID-19. As for
future work, new information on DTI related to COVID-19
might give better training. We hope to be able to utilize a more
advanced architecture and wider search space on
hyperparameter tuning for a possible increase in performance.
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