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Abstract— Coronavirus disease 2019 (COVID-19) is an 
infectious disease of the respiratory system that caused a 
pandemic in 2020. There is still not any effective special 
treatment to cure it. Drug repositioning is used to find an 
effective drug for curing new diseases by finding new efficacy of 
registered drug. The new efficacy can be conducted by 
elaborating the interactions between compounds and proteins 
(DTI). Deep Semi-Supervised Learning (DSSL) is used to 
overcome the lack of DTI information. DSSL utilizes 
unsupervised learning algorithms such as Stacked Auto 
Encoder (SAE) as pre-training for initializing weights on the 
Deep Neural Network (DNN). This study uses DSSL with a 
feature-based chemogenomics approach on the data resulted 
from the exploration of potential anti-coronavirus treatment. 
This study finds that the use of fingerprints for compound 
features and Dipeptide Composition (DC) for protein features 
gives the best results on accuracy (0.94), recall (0.83), precision 
(0.817), F-measure (0.822), and AUROC (0.97). From the test 
data predictions, 1766 and 929 positive interactions are found 
on the test data and herbal compounds, respectively.  

Keywords— coronavirus disease 2019, drug repositioning, 
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I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious 
disease located in the respiratory system and is caused by 
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1]. This disease causes significant health problems 
such as fever, dry cough, difficulty breathing, pneumonia, 
multiorgan failure, and even death [2], [3]. Based on the 
historical data collected by the Worldometer reference 
website, as of 7 June 2020, there were at least 7008898 total 
COVID-19 cases that have been reported in 213 countries. 

This situations make researchers spend their efforts in drug 
discovery and development. Researchers conducted drug 
repositioning for reducing cost. Drug repositioning or drug 
repurposing is carried out by looking for new efficacy of 
registered drug compounds. Drug repositioning are typically 
done by observing the interaction of compounds drugs with 
proteins which related to the diseases (Drug-Target Interaction 
or DTI), then predict new DTIs in which the interactions are 
previously unknown [4], [5]. Conducting drug repositioning 
can be done on conventional medicines and herbal medicines. 
Herbal medicines tend to be more easily accessed and used by 

the Indonesian people in the foreseeable future. Therefore, the 
development of herbal medicines is necessary [6].  

Searching valuable DTI data on COVID-19 can be done 
by exploring the potential of anti-coronavirus treatment. This 
data will be utilized for drug repositioning research on 
COVID-19. This data consists of positive and negative 
interaction between drug compounds and target proteins. The 
number of positive interactions is very small when compared 
to the negative interactions. This imbalance can cause 
inaccurate classification and prediction models [7]. Therefore, 
additional handling of imbalanced data is required. Modelling 
based on deep semi-supervised learning (DSSL) utilizes 
unsupervised learning algorithms as pre-training on 
unbalanced data to improve the accuracy of predictive models 
based on supervised learning [8].  

In [9],  DSSL method for DTI (DSSL-DTI) prediction is 
proposed on handling imbalanced interaction data of drug 
compounds and target proteins. Stacked Autoencoder (SAE) 
is used as an unsupervised pre-training to initialize the weights 
of the Deep Neural Network (DNN) classification model. This 
implementation causes better weight initialization on DNN 
rather than randomly initializing it. Therefore, the model used 
was able to achieve better convergence and classification. This 
study yielded very good results with an accuracy score (AR) 
of 98.68% and area under the curve score (AUC) of 99.8%. 
This study uses a feature-based chemogenomics approach on 
the Yamanishi’s golden standard dataset. The chemogenomics 
approach predicts interactions between compounds and 
proteins by utilizing information about features of drug 
compounds and target proteins for predictions [10]. 

The success of DSSL-DTI method proposed by [9] 
inspired this paper to implement it in predicting DTI in 
COVID-19 case. DSSL-DTI method with a feature-based 
chemogenomics approach will be implemented in the 
exploration of COVID-19 coronavirus treatment. This paper 
utilized DSSL-DTI method in predicting interactions between 
herbal compounds and target proteins in COVID-19 cases.  

II. DEEP SEMI-SUPERVISED LEARNING FOR DTI
Research on drug repositioning is based on the fact that

most drug compounds can activate or inhibit the biological 
functions of the target protein. This creates the needs to 
develop a DTI identification system [11]. DTI identification 
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can be done by building a classification model using DTI 
data. The data used as input are Drug-Target Pairs (DTP), and 
the output is a predicted interaction between DTP [9]. 

A. Deep Semi-Supervised Learning 
Deep semi-supervised learning is a deep learning model 

that adopts semi-supervised learning techniques, which  
within the training process. This algorithm consists of two 
stages: unsupervised pre-training and supervised fine-tuning. 
Greedy layer-wise unsupervised pre-training helps in 
achieving the minimum cost function value by initializing the 
initial parameters and acts as a regulation in increasing the 
power of data generalization [8]. After that, supervised fine-
tuning is done to minimize prediction errors within the 
training process [9]. 

B. Stacked Autoencoder 
The purpose of AE is to learn new representations of data 

by reconstructing the input data. An encoder that maps inputs 
into representations at the bottleneck layer and a decoder that 
maps representations for the reconstruction of the original 
input. Stacked Autoencoder (SAE) consist of many stacks of 
AE that can learn efficient coding of unsupervised data [12]. 
The example of SAE architecture is shown in Fig. 1. 

 

 
Fig. 1.  Stacked Autoencoder 

The input data enters the SAE network from the encoder 
layer on AE1. For example, if the input data are denoted as x, 
the representation h can be calculated by (1). 

where , , and  are the activation function, the weight 
matrix, and the bias vector of the encoder, respectively. After 
that, the decoder maps the representation of the bottleneck 
layer to the output layer (xr) using (2). 

In (2),  are the activation function, a weight 
matrix, and a bias vector of the decoder, respectively. SAE 
with N layers and  { }, with  
{ } can be formulated by (3), (4), and (5). 

where i is the parameter in the i-th AE. The bottleneck layer 
at the AE (i-1) is used as the input layer at the i-th AE [9], [13].  

C. Deep Neural Network 
. The purpose of DNN is to find the right mathematical 

manipulation to convert inputs into outputs, and determine 
whether the relationship is linear or non-linear [14]. The 
example of DNN architecture is shown in Fig. 2.  

 
Fig. 2.  Deep Neural Network 

The inputs move across the network through layers that 
calculate the output probabilities. Each hidden layer maps the 
inputs from the previous layer (xj) to the output (yj) which will 
be sent to the subsequent layer as in (6). 

The function f(xj) in (6) is an activation function, bj is the bias 
of unit j, i is the unit index of the previous layer, and wij 
represents the weight that connects i and j. In the initial 
construction of the model, the weights and biases in each 
layer are initialized randomly. DNN can be discriminatively 
trained with backpropagation that uses cost derivatives (f 
'(C)) to calculate the difference between the target output and 
actual output. Weights are updated using (7). 

where wij is the weight update,  is the "momentum" 
coefficient (0 <  <1) that can smooth the gradient, t is the 
amount of data on the minibatch, and  represent an error. 
Weights will be updated proportionally using stochastic 
gradient descent to minimize the error. 

III. MATERIALS AND METHODS 

A. Data Acquisition 
The data used in this paper came from [15] and [16]. These 

researches predicted the possibility of approved antiviral drug 
compounds that will potentially inhibit the development of 
SARS-CoV-2. In [15], the potential for reusing antiviral 
agents is investigated based on the therapeutic experience with 
two infections caused by other coronaviruses. While in [16], 
proteins encoded by the SARS-CoV-2 gene are systematically 
analyzed, comparing them with target proteins from other 
coronaviruses, and predicting their structure using homology 
modelling. The potential of the antiviral drugs in [15] and [16] 
are determined by a significant binding affinity score on drug-
target interaction. SuperTarget [17] is used to find a list of 
target proteins from compounds and a list of compounds that 
interact with target proteins. This is done in order to expand 
the exploration of drug-target interaction. The output of 
SuperTarget is a new protein and drug compound target that 
previously was not mentioned in [15] and [16].  



B. Drug-Target Representation 
In DTI prediction, numerical representations of proteins 

and compounds are needed as input data on the classification 
model. These representations are required so that the machine 
learning algorithm can understand the DTI data [18]. 
Compound and protein descriptors will be used to extract the 
numerical representations.  

The compound descriptors are Simplified Molecular-
Input Line-Entry System (SMILES). By using SMILES, 
fingerprint of a chemical structure can be obtained to 
effectively represent compounds. Fingerprint (FP) is the 
encoding of a compound into a Boolean FP vector that 
represents the existence of a substructure within the molecule 
of the compound. PubChem's FP dictionary will be used 
because it is considered good in representing the compound 
molecules [19]. PubChem defines 881 chemical 
substructures. The retrieval of FP produces feature vector S 
( . 

The protein descriptors are protein sequences in FASTA 
type text files, which are text-based formats to represent 
nucleotide or amino acids sequences, each of which is 
represented using a single letter code. Three types of protein 
features will be extracted by using FASTA, which are 
Dipeptide Composition (DC), Autocorrelation Descriptors 
(ACD), and Position-Specific Scoring Matrix (PSSM).  

DC is the ratio of dipeptides [18]. Dipeptides are 
combinations of 2 amino acid components (such as AA, AR, 
AN, AD, AC) [20]. DC converts protein sequences into 400 
features. DC can be defined by (8). 

where dep(i) is the i-th dipeptide of 400 dipeptides. Xdep(i) 
represents the ratio of occurrences of dep(i), ndep(i) is the 
number of occurrences of dep(i), and N is the sum of 
occurrences of all dipeptides. 

ACD is defined based on the distribution of amino acid 
traits along the sequence [21]. The traits of the amino acids 
were obtained from the AAIndex Database. The amino acid 
index that were used is the default index on the PROFEAT 
web [22], namely alpha-CH chemical shifts, hydrophobicity 
index, and membrane-buried preference parameters. The 
total features for ACD are 270 features. 

PSSM gives the probability value for each amino acid in 
each position in the protein sequence [23]. PSSM is a matrix 
of N x 20. Each element M(i, j) can be obtained using (9). 

where N is the length of the protein sequence, and (i, j) is the 
probability that the i-th protein residue mutates to the j-th 
amino acid in multiple sequence alignment proteins [23]. 
Auto Cross Covariance (ACC) transforms PSSM into a scale-
based descriptor. Therefore, PSSM information of all 
proteins taken has the same length to build feature vectors 
[24]. ACC is a combination of auto covariance (AC) of amino 

acids and cross-covariance (CC) between two amino acids. 
AC measures the correlation of amino acids in two separate 
residues by the lg distance along the sequence and is 
formulated by (10). 

In (9), i is the residue, L is the length of the protein sequence, 
Sij is the PSSM value of the amino acid i in position j,  is 
the average of the amino acid values along the sequence. The 
number of AC features is as much as 20 * lg. CC measures 
the correlation between two amino acids in two residues 
separated by the lg distance along the sequence and is 
formulated by (11). 

with x, y are two different amino acids. The number of CC 
features is 380 * lg. The lg variable used is 1. The number of 
ACC features is 400. The retrieval of protein features will 
produce 3 feature vector P (  where 
each of them will contain DC, ACD, and PSSM. 

The feature vectors of compound and protein are 
combined into 3 feature vector F (

. Each F is a combination 
of FP and each of the protein features types. The data is 
transformed by creating every feature vector pairs from 
unique protein IDs and compound IDs. Pairs of compounds 
and proteins that are known to have interactions will be 
labelled as 1, if not, labelled as 0. Data cleaning is done by 
filling in missing values with median values and 
normalization. To increase the chance of randomness and 
overcome class imbalance, a random sample of negative 
interactions was selected as many as five times the number of 
positive interactions. This sample is used for training data 
[19]. Negative interaction data that were not taken by random 
samples will be used as test data. 

C. SAE-DNN Modelling 
Before modelling, all transformed data will be used as 

input to SAE modelling. SAE will be trained with the aim of 
initializing weights on DNN. Pre-training uses the concept of 
unsupervised learning. Initialization of weights in DNN 
modelling is done to produce an optimal model [9]. The 
unsupervised pre-training SAE process carried out in [9] 
consisted of the following stages: 

 Step 1: Use the entire dataset as input data in the 
encoder layer to train the initial AE. 

 Step 2: After the AE has been trained, save the 
weight and bias parameters in the encoder layer. 

Step 3: Remove the decoder layer, take the data 
representation at the AE bottleneck layer as input 
data for the encoder layer to train AE2.  

 Step 4: Repeat steps 2 and 3 to train next AE. Repeat 
until all AE is trained. 

The next step is the supervised fine-tuning process by 
making a DNN prediction model. The training data is used as 
input data. Weights and biases from the results of the SAE 
training will be used as weight and bias parameters in the 



DNN architecture. The weight at the output layer is randomly 
initialized. Because the data label is binary, the sigmoid 
function is used as the activation function at the output layer 
and the binary cross-entropy is used as cost function.  

To improve the performance of the model, Batch 
Normalization (BN) and Dropout (DO) are used. BN is used 
to normalize the input of each layer by ensuring all inputs have 
a mean close to 0 and standard deviations close to 1. This is 
done to speed up the training process [25]. DO removes a 
random percentage of the output node from each layer when 
training the model to reduce the capacity and complexity of 
DNN and prevent overfitting [26]. The use of DO after 
conducting a BN can lead to a stable training process, faster 
convergence, and better generalization performance [27]. 

Hyperparameter tuning is done to choose a combination of 
hyperparameter (X) from all the hyperparameter combinations 
provided (RD) on a model that optimizes the performance of 
the SAE-DNN model. Bayesian Optimization is used because 
it is able to produce optimal results in shorter iterations 
compared to greedy method. Bayesian Optimization builds a 
probabilistic model to make decisions on choosing the next X 
selection while eliminating uncertainty [28]. The list of 
hyperparameters is shown in Table 1. 

TABLE 1. HYPERPARAMETERS FOR TUNING 

Params Values 
Hidden node 0 (HN0) 300, 500, 700, 1 000 
Hidden node i (HNi)  0.5 x HNi-1, 0.66 x HNi-1, 0.75 x HNi-1 
Hidden layer 2, 3, 4 
Optimizer adam, sgd, adagrad, rmsprop 
Learning rate 0.01, 0.001, 0.0001 
Activation function relu, tanh, sigmoid 
Dropout rate 0.1, 0.3, 0.5 

D. Model Evaluation 
Stratified k-fold cross-validation is used to test the 

model. This method divides the data into k parts according to 
the proportion of its class, followed by making a model using 
k-1 parts of data and tested using 1 part of data. Training and 
testing are done k times on different pieces of data. 
Evaluation is done by paying attention to the prediction label 
with the actual label. The metrics are defined as follows: 

E. Predicting New Interactions 
The best model based on the selection of protein features 

and hyperparameter tuning will be used to predict interactions 
on the test data and herbal compound data. The selection of 
protein features is done by comparing the performance of the 
SAE-DNN model on three different data, which are FP-DC, 
FP-ACD, and FP-PSSM. Test data is the negative interactions 
that were not taken by random samples in making training 

data. Herbal compound data comes from Indonesian Herbal 
Database (HerbalDB). The herbal compounds dataset includes 
the name of the compound and its PubChem FP. All 
combinations of herbal and protein pairs are made by 
combining the FP of the herbal compound with the selected 
protein features.  

IV. RESULTS AND DISCUSSION 
A total of 78 virus-based compounds, 16 human-based 

compounds, 15 host-based proteins, 7 virus-based proteins 
along with the DTIs are obtained from [15] and [16]. The data 
gathered from SuperTarget adds 29 new compounds and 303 
new proteins. After the data is combined, pre-processing 
continues with the verification of compound IDs and protein 
entry names, and eliminating duplicates. The final dataset 
consists of 39975 interactions, with 712 positive interactions 
and 39263 negative interactions. FP-DC and FP-PSSM have 
1281 columns, while FP-ACD has 1151 columns. After the 
data is ready to be used, SAE-DNN hyperparameter tuning is 
done on those three datasets. The results of this process are 
shown in Table 2. 

TABLE 2. HYPERPARAMETERS TUNING RESULTS 

Params 
Values 

FP-DC FP-ACD FP-PSSM 
Hidden node 0 (HN0) 300 1 000 700 
Hidden node i (HNi)  ½ * HNin-1 ½ * HNin-1 ½ * HNin-1 
Hidden layer 2 4 3 
Optimizer adam adam rmsprop 
Learning rate 0.01 0.01 0.01 
Activation function relu relu relu 
Dropout rate 0.5 0.5 0.5 

The test was performed using stratified k-fold cross-
validation with k = 10 on the training data from three datasets, 
namely FP-DC, FP-ACD, and FP-PSSM. The test results of 
cross-validation are represented by the average value as well 
as the standard deviation of the metrics used. These results are 
presented in Table 3.  

TABLE 3. TESTING RESULTS 

Metrics 
Model 

FP-DC FP-ACD FP-PSSM 

Accuracy 0.940±0.009 0.884±0.009 0.930±0.009 
Recall 
 

0.830±0.043 
 

0.423±0.049
 

0.761±0.040 
 

Precision 0.817±0.050 0.785±0.054 0.815±0.051 
F-measure 0.822±0.022 0.548±0.044 0.785±0.025 
AUROC 0.970±0.009 0.855±0.023 0.947±0.013 

Table 3 shows that the FP-DC model is superior 
compared to other models, with an average accuracy of 0.94, 
recall 0.83, precision 0.817, F-measure 0.822, and AUROC 
0.97. This proves that the SAE-DNN model that uses this 
feature vector as training data is good at predicting DTI 
classes (accurate), accurate in predicting positive classes 
(high recall), good positive predictions (high precision), good 
performance on minority class (high F-measure), and 
confident in distinguishing classes (high AUROC). The 
smaller the standard deviation, it means that the metric is 
more stable in each fold of the CV. The FP-DC model has the 
smallest standard deviation value, except for the recall metric 
that is outperformed by the FP-PSSM model.  



Another measurement done is by creating the Receiver 
Operating Characteristic (ROC) which are obtained by 
making a graph between the True Positive Rate (TPR) and 
the False Positive Rate (FPR) of several threshold values. 
Area Under ROC Curve (AUROC) value can be calculated 
as a numerical representation of ROC curve. To compare the 
ROC curve, the ROC curve on the fold is used to produce the 
best AUROC in each model and can be seen in Fig. 3. 

 
Fig. 3.  Receiver operating characteristic curve of the FP-DC model 

The ROC curve shows the trade-off between sensitivity (or 
TPR) and specificity (1 - FPR). Based on the graph in Fig. 3, 
it can be observed that the FP-DC model has a wider ROC 
curve area compared to other models. A more expanded area 
causes a higher AUC. AUC explains that the model has a 
98.2% chance of being able to distinguish between positive 
and negative classes.  

Further comparison on the models is done by analyzing 
confusion matrix results on the fold that produce the best 
AUROC in each model. Metrics on each model is also shown. 
This comparison can be seen in Table 4. 

TABLE 4. CONFUSION MATRIX AND METRICS ON THE FOLD 
  THAT PRODUCE THE BEST AUROC IN EACH MODEL. 

Metrics 
Model 

FP-DC FP-ACD FP-PSSM 
True Positive (TP) 65 28 53 

True Negative (TN) 340 350 349 
False Positive (FP) 16 6 18 

False Negative (FN) 6 43 7 
Accuracy 0.948 0.885 0.941 

Recall 0.915 0.394 0.746 
Precision 0.802 0.824 0.883 

F-measure 0.855 0.533 0.809 
AUROC 0.983 0.887 0.972 

Based on the test results, the FP-DC model provides better 
metrics than other models. For this reason, the FP-DC model 
will be used to predict the test data and the herbal compounds 
data. Test data has 35703 interactions. Prediction results 
resulted in 1766 positive interactions. There are 403 herbal 
compounds used for the herbal compound data. Herbal 
compound data consists of all pairs of herbal compounds and 
target proteins. Herbal compounds data have 130975 
interactions. The results of the prediction of test data showed 
that there were 929 positive interactions. Ten interactions of 

herbal compounds with the COVID-19 target protein in [16] 
with the highest probability according to the model are 
presented in Table 4. 

TABLE 5. TEN POSITIVE COVID-19 DTIS WERE PREDICTED FROM 
THE FP-DC MODEL ON THE HERBAL COMPOUNDS DATA 
WITH THE HIGHEST PROBABILITY 

Compound Protein Probability 
Y-mangostin RdRp 0.994717 

Stigmatellin RdRp 0.994717 

Berberine2 RdRp 0.994717 

3-Eicosyne RdRp 0.994650 

Enzacamene 3CLPro 0.994538 

Brazilein 3CLPro 0.994439 

Brazilin 3CLPro 0.994385 

Eugenol 3CLPro 0.994145 
1,4-Dimethoxy-6,7,8,9-tetrahydro-5-
benzocycloheptenone RdRp 0.993844 

Eugenol RdRp 0.992982 

For the research on drug repositioning in handling 
COVID-19, positive prediction interactions between 
compounds and proteins associated with SARS-CoV-2 were 
collected. The number of predicted positive interactions 
between drug compounds and virus-based target proteins 
associated with COVID-19 according to [16] on the test data 
and herbal compound data is shown in Table 5. 

TABLE 6. NUMBER OF POSITIVELY PREDICTED INTERACTIONS 
BETWEEN DRUG COMPOUNDS AND VIRUS-BASED 
TARGET PROTEINS ASSOCIATED WITH COVID-19 

Protein Identifier Test data Herbal 
PLPro PLPro_SARS-CoV-2 92 113

3CLPro 6LU7:A 115 93 

RdRp yp_009725307.1 118 300 

Spike-ACE2 

6M0J:A 5 0 

6M0J:E 4 0 

6LZG:A 5 0 
6VSB:A 7 0 

V. CONCLUSION AND FUTURE WORK 
The use of the fingerprint feature as a compound 

representation and the Dipeptide Composition (DC) feature as 
a protein representation yielded good average metric value of 
cross-validation with an accuracy of 0.94, recall 0.84, 
precision 0.817, F-measure 0.822, and AUROC 0.97. In the 
test data, 1766 DTIs are predicted to be positive by the model, 
with 346 of them are associated with COVID-19. For the 
herbal compound data, it is predicted that there are 929 
interactions of the herbal compounds with the target protein, 
where 506 of them are associated with COVID-19. As for 
future work, new information on DTI related to COVID-19 
might give better training. We hope to be able to utilize a more 
advanced architecture and wider search space on 
hyperparameter tuning for a possible increase in performance. 
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