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Abstract—Since December 2019 the world is infected by
COVID-19 or Coronavirus disease, which spreads very quickly,
out of control. The high number of precautions for laboratory
access, which need to be taken to contain the virus, together with
the difficulties i n r unning the g old s tandard test for COVID-19,
result in a practical incapability to make early diagnosis. Recent
advances in deep learning algorithms allow efficient implementa-
tion of computer-aided diagnosis. This paper investigates on the
performance of a very well known residual network, ResNet50,
and a lightweight Atrous CNN (ACNN) network using a Weighted
Cross-entropy (WCE) loss function, to alleviate imbalance on
COVID datasets. As a result, ResNet50 model initialized with pre-
trained weights fine-tuned b y I mageNet d ataset a nd exploiting
WCE achieved the state-of-the-art performance on COVIDX-
Ray-5K test set, with a top balanced accuracy of 99.87%.

Keywords—Coronavirus; COVID-19; Deep Learning; Auto-
matic Diagnosis; Weighted Cross-Entropy; Loss functions; Clas-
sification.

I. INTRODUCTION

Since December 2019, COVID-19 spread rapidly from
Wuhan, China, to the rest of the word. The Web page of
the World Health Organization (WHO) [1] gives numbers at a
glance: the total number of confirmed cases was 14,007,791,
the confirmed f atalitiesw ere 5 97,105f ora t otalo f216
countries affected by the COVID disease, at the 19 of July
2020. The Web page is regularly updated.

Currently, Real Time Reverse Transcriptase Polymerase
Chain Reaction (RT-PCR) seems to be the most possible
accurate test for diagnosis of COVID-19; however, RT-PCR
is a time-consuming test and it requires a large quantity of
RNA for detection [2].

Considering those shortcomings together with all restric-
tions recently imposed to access laboratories due to the risk
to get infected by Coronavirus, the test RT-PCR it practically
impossible in many realities.

That is, the current emergency together with the risk of
further spread highlight the need of an automatic system
capable to distinguish between COVID and non-COVID pa-
tients. This paper proposes a new algorithm for Computer-
based Automatic Diagnosis (CAD) system, capable to support
frontline doctors for early diagnosis.
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Chest X-ray images, together with Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI), are among the
most used images in the medical field for therapeutic diagnosis.
Every type of image has its own pros and cons; chest X-ray is
the simple and cheap one, it can be acquire also with a portable
device at the patients home; overall, since X-ray crosses the
human body, it allows to analyse the internal structure of the
body, without surgery.

The recent success of machine learning permits to model
completely automatic systems for medical image analysis.
However, automatic classification of medical images with deep
learning algorithms requires a high number of images, per
class, which may be not available. This paper focuses on
COVID-19, with a case study on X-ray images. The subject
is challenging due to the little number of available COVID
images, together with a large intra-class and a small inter-class
variance in the images.

The main contribution of this study can be summarizing
as: (1) it introduces an extended version of COVIDX-Ray-
5K training set by combining it with another publicly avail-
able dataset, i.e. COVID-ChestXray, (2) it proposes to use
a lightweight network architecture Atrous CNN (ACNN) for
medical image classification, (3) it underlines the imbalance
on COVID datasets and provides a solution by exploiting
Weighted Cross-entropy (WCE) loss function, (4) it reaches
the state-of-the-art for the experiment on COVIDX-Ray-5K
database introduced by [3].

The remainder of the paper is organized as follows. Section
2 introduced the previous works. Section 3 overviews the
publicly available COVID datasets. Section 4 describes the
methodology used in this study. Section 5 provides details
about experiments and discusses the results. Lastly, conclu-
sions are drawn in Section 6.

II. RELATED WORK

The Coronavirus disease does not have specific clinical
exhibition [4], however several researchers all over the word
are struggling to contribute for vanquishing the virus. In the re-
search areas resulting from the intersection between computer
vision and machine learning, medical images of COVID and
non-COVID patients are challenged to create computer-based
automatic diagnosis systems.

Zu et al. [4] published one of the first study on Computed
Tomography (CT) findings of COVID patients, which proves



that thin-slide chest CT allows early detection and tracking of
the disease. Overall, CT is recommended because it is sensitive
to the detection of ground-glass opacity, however, chest X-ray
shows multifocal patchy opacity in both lungs, which may also
be present in COVID-19 patients.

Zheng et al. [5] presented an accurate and rapid diagno-
sis system for COVID-19 suspected cases using CT images
with weak labelling. For each patient, the lung region was
segmented in a semi-automatic way; after that, the segmented
areas were fed into a 3D deep neural network to predict for
coronavirus. Results on their private database are promising.

The work of Tartaglione et al. [6] made several experiments
by merging existing databases of COVID-19. It investigated
on the possibility to use common and cheap Chest X-ray
for COVID-19 early prediction. The proposed deep learning
model uses (1) histogram equalization to make Chest X-ray
pre-processing, (2) a U-net [7] for lung segmentation, and (3)
a pre-trained deep Convolutional Neural Network (CNN) for
classification.

Sethy et al. [8] used deep feature and Support Vector
Machine (SVM) [9] for classification of COVID-19, on X-
ray images available at Kaggle and GitHub. The performance
of SVM using deep features produced by several deep learning
models is compared, and the best accuracy is achieved by
ResNet50 [10] plus SVM. The classification issue is posed
as 3 class problem, it considers COVID-19 and common
pneumonia patients, and healthy people; all X-ray images are
collected from the Internet.

Apostolopoulos et al. [11] compared the performance of
several deep learning models using a different database of
X-ray images collected from GitHub and public repositories.
They run both the 3 class problem, which considers (COVID-
19, pneumonia, normal) X-ray images and the 2-class problem,
considering only Covid and Non-Covid images. Best classifi-
cation accuracy was reached by the VGG19 model [12].

The work of Narin et al. [13] tackled the 2 class problem
using a little, homemade, database of 50 COVID and 50 NON-
COVID X-ray images. They pre-trained ResNet50 model gave
the best accuracy over others deep CNN based architectures.

Wang et al. [14] introduced to the research community
COVID-Net, a deep CNN modelled for the detection of
COVID-19 in X-ray images. The models reached good perfor-
mance of the open access benchmark dataset COVIDx, which
is presented by the same paper.

Minaee et al. [3] tackled the problem of Coronavirus
disease early diagnosis by creating COVIDX-Ray-5K, which is
one of the few publicly available datasets of COVID-19 X-ray
images. The benchmark algorithm proposed by this paper uses
pre-trained models and data augmentation to fine-tune them.
The best performance was reached by SqueezeNet [15], with
a sensitivity of 97.5%, specificity of 97.7%, balanced accuracy
of 97.6% and Predicted Positive Prediction Rate of 97.7%.

This paper challenged the work of [3] by proposing a new
CAD system, which improves the current performance on the
COVIDX-Ray-5K dataset.

III. DATABASES

COVIDX-Ray-5K is one of the few datasets of COVID
images, introduced by [3]. The database stores a total of
5,000 chest X-ray images, divided into (COVID, Non-COVID)
classes; COVID images have been labelled by board certified
radiologists'. Table I describes the database, which is highly
unbalance with a little number of COVID images. The non-
COVID images are a selection of images collected from the
CheXpert dataset [16], which is described in the following
paragraph and reported in Table I. The creators of the dataset
paid attention to have all images of the same patient either in
the training or in the test set.

COVID-ChestXray dataset [17] stores hundreds of frontal
view x-ray images with metadata, such as time since first
symptom, survival and intubation status and hospital location?.
It has a total of 542 frontal chest images from 262 people
from 26 countries. Because some of the provided samples from
publicly available dataset are CT images, we had to dropout
these samples. The details are given in Table I. Furthermore,
the database comes with several benchmark algorithms to
predict pneumonia severity, survival probability, need for in-
tensive care estimation and the Leave-One-Country/Continent-
Out algorithm.

Another publicly available database of chest images of
Coronavirus disease is COVIDx [14]. The database stores a
total of 13,975 chest X-ray images from 13,870 patients. The
database has been collected by Wang et al.; it is the result of
the merging of five different publicly available repositories®.
X-ray images belongs to the 3 classes labelled as COVID-19,
pneumonia and normal.

CheXpert is a large dataset storing 224,316 chest radio-
graphs of 65,240 patients [16]. The database focuses on 14
most common pathologies. The validation set of 200 chest
radiography from 200 patients was manually annotated by 3
board-certified radiologists, and the ground-truth of the 500
images from 500 patients of the test set has been fixed by
the consensus of 5 board-certified radiologists. The database
comes with a benchmark paper, which proposes an algorithm
for automatic labelling of 5 pathologies. The results of the
model were compared against the judgements of 3 additional
board-certified radiologists. In 4 out of 5 pathologies the
automatic system performed better than human. Table I gives
the distribution of images. All images of this database may be
used as Non-COVID images, samples of the negative class.

This work uses the COVIDX-Ray-5K, COVID-ChestXray
and CheXpert datasets; the use of the COVIDx database is
part of our future work. Fig. 1 shows diseased image samples
taken from the COVIDX-Ray-5K, ChestXray and CheXpert
databases. Table I shows detailed distribution of datasets used
in this study. Since the combination of COVIDX-Ray-5K and
COVID-ChestXray contains adequate samples for both classes,
we did not apply any augmentation. The total number of used
train and test samples is detailed in Table I.

The database is available at https://github.com/shervinmin/DeepCovid.

>The database is publicly available at: https:/github.com/ieee8023/covid-
chestxray-dataset.

3Dataset generation scripts for constructing the COVIDx dataset is available
publicly for open access at https:/github.com/lindawangg/COVID-Net.



(a) COVIDX-Ray-5K

(c) CheXpert

Fig. 1. Examples of images with COVID disease from the
three datasets used in this study.

Table 1. Distribution of images in the datasets. *Due to
computational limitations, we had to take a subset of original
dataset

Training Set Test Set
Dataset ——
COVID Non-COVID | COVID Non-COVID
COVIDX-Ray-5K
31 2000 40 3000
(w/out augmentation)
COVIDX-Ray-5K
992 2000 40 3000
(with augmentation)
COVID-ChestXray 512 17
COVIDX-Ray-5K +
543 2017 40 3000
COVID-ChestXray
CheXpert* 1500 1500

IV. MODELS

Recent advances in deep learning models overtook the
classical machine learning approach of future extraction and
classification in favour of models made up of several layers,
which extract features at different level of details and make
classification. Models are deep networks that transform the
input images into a set of features, at different level of details,
and classify them. The computational element of a network is
a neuron with its activation function. Neurons are connected
to each other’s and weights are assigned to the connecting
links. Neurons in hidden layers receive, as input, a weighted
sum, which is filtered thought their activation functions before
been outputted. The initial weights assigned to the links are
fine-tuned via training, where input images are passed thought
the network, classified and errors are back propagated. In
Convolutional Neural Network (CNN) the weights are the
coefficients of the filters, which convolve the input features.
CNNs have become more and more deep to handle complex
tasks. The problem of deep CNNss is the training time and the
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Fig. 2. Single residual block [10]

overfitting issue.

This issue was first solved by a model called AlexNet [18],
which is a Deep Convolutional Neural Networks (DCNN),
proposed by Krizhevsky et al., that won ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) competition,
in 2012. Following AlexNet several other models have been
proposed; this paper focuses on Residual Networks (ResNet)
[10] and SqueezeNet [15]; it compares their performance
against the Atrous CNN (ACNN) introduced by [19]. The
following paragraphs give a general overview of the interesting
architectures.

A. ResNet

Residual Networks [10] were introduced with the aim to
tackle the vanishing gradient problem. That is, the more a
network becomes deep the more it is difficult to train it because
the error signal used to change the weights is too little, since
it comes from the bottom layers, which are too far away.
Residual Networks introduced a new type of building block,
called Residual Block, which uses an identity arc to bypass
one or more convolutional layers. Fig. 2 show the picture of
a residual block.

As result, the Residual Block calculates the difference
between the true output of the block, H(z), and its input,
z. In formula, H(xz) = F(x) + x, which can be re-written
as F(z) = H(x) — x, i.e. F(x) is the residual. The good
performance of ResNet confirmed the hypothesis that it is easy
to optimize a residual instead of the original mapping.

B. SqueezeNet

The new architecture SqueezeNet [15] was proposed with
the aim to reduce the total number of parameters in the network
while keeping the same accuracy. This objective was achieved
by using three strategies: (1) replacing 3 x 3 filters with
1 x 1, (2) using squeeze layers to decrease the number of
input channels, and (3) postponing the down sample operation
by using strides greater than one only in convolutional layer
toward the end of the network.

C. ACNN

Atrous CNN (ACNN) was designed by Zhou et al. [19]
as a CNN ad-hoc for medical image segmentation. Atrous
or dilated convolution is an alternative to the down-sampling
layer. Atrous convolution inserts zeros between non-zeros
filters’ coefficients to sample the feature map, e.g. a 3 x 3
filter with dilation rate of 2 will have the same input space of
a 5 x b filter while using only 9 coefficients. As the training



parameters reduces, the network becomes more light weight
compared to regular convolutional architectures.

In this study, a similar implementation of Zhou et al. is
applied, that is atrous blocks that contain two atrous convo-
lution layer with a kernel size of 3 x 3 and rate of 1 and 3,
respectively. The composition of atrous blocks constitutes the
ACNN network. This paper tests the performance of ACNN
for medical image classification.

V. ALGORITHMS FOR L0OSS FUNCTIONS

A loss function is an algorithm to evaluate how well a
network models the input data. In classification the challenge
is to assign every inputs signal to the correct class; in case of
binary classification there are only two possible output classes,
i.e. COVID or Non-COVID.

Possible loss functions for regression are Mean Square
Error (MSE), also known as Quadratic Loss or L2 Loss,
described in Equation (1) and the Mean Absolute Error (MAE),
also known as L1 Loss, detailed in Equation (2). In all
formulas, y is the true class, ¢ the predicted class, m is the
total number of training samples. In case of formula (1), on
the left side the is the detailed equation, on the right part the
simplified one, to increase the readability; that is, variable y
must be read as y; the same for y, and the sum is over all
training samples ¢, with ¢ = 1,...,m.

1 1
MSE(y, ) = o Zi(gi_yi)z — MSE =~ Zl(y—:gj

In the following, we will use the simplified notation to
increase readability.

L,
MAE=—3% |§-y] @

For classification the above formulas are not convex and,
therefore, not usable. That is, since cost functions must be
differentiable, it is necessary to insert the logarithm function
inside the formula, which is now divided into two part, one for
the positive and one for negative samples. The resulting loss
functions is called Cross-Entropy (CE) and has the following
formula:

CE = —(ylogy + (1 —y)log(1 —9)) 3)

This work implements a custom loss function, named
Weighted Cross-Entropy (WCE), in favour of positive samples.
Cross-entropy is among the most widely used types of loss
function to train networks. However, training with cross-
entropy might not be ideal for unbalanced datasets, because the
error on minor class is more likely to vanish since the major
class samples dominate the dataset. In this study, we analysed
a utilized version of cross-entropy function, namely Weighted
Cross-Entropy (WCE), on unbalanced COVID datasets. WCE
can be expressed as

WCE = —(ylog(y) + (1 —y)log(1 =) (4

where [ is adjustment weights. The quantity of 3 is either
scalar or vector, depends on utilization of cross-entropy func-
tion. The quantity becomes scalar when the function is binary;
vector if the function is categorical.

Exploiting of adjustment weight allows handicapping either
false negative or false positive predictions. The value of 8 < 1
penalizes the error on false positive samples, while the value
of 5 > 1 penalizes the error on false negatives.

VI. EXPERIMENTAL SETUP AND RESULTS
A. Data Preprocessing

COVIDX-Ray-5K was the first database that we chal-
lenged. Given the fact that it is highly dominated with negative
samples, data augmentation has been required despite the
utilized loss function, WCE. That is, to alleviate the imbalance
between positive and negative classes, we employed horizontal
flipping and we rotated the images from -5 to +5 degree while
skipping 3 degrees for each rotation. Consequently, the training
set of COVIDX-Ray-5K comprises 992 COVID and 2,000
Non-COVID X-ray images. The details about the used datasets
are given in Table L.

Since the images in the datasets are collected from different

sources, they vary in shapes. Therefore, all images are resized
to a fixed shape, i.e. 256x256. Moreover, the intensity of the
pixel values is fluctuating from image to image. To alleviate the
inconsistency of pixel values between images, normalization is
applied for each image in the datasets.
All models queried on a test set, which is made up of 40
COVID and 3,000 Non-COVID images provided by Minaee
et al. The results of the used algorithms, with configuration
details, are given in Table II.

B. Network details and hyper-parameters

Besides the fact that the network weights are randomly
initialized for training, we conducted some experiments on us-
ing weights from previously trained networks. That is, weights
from ResNet50 model [10], which was pre-trained on a dataset
of 1000 object, i.e. ImageNet, were exploited to initialize the
training. Moreover, the network architectures were fine-tuned
on CheXpert dataset to classify healthy or diseased lungs from
X-Rays. Although original CheXpert dataset [16] is very big,
we used only a subset of it, due to computational limitations.

At training time, the data is split into batches with fixed
size of 64, and 20% of the training set is used as validation
set, to detect over-fitting. Adam optimizer with learning rate of
0.0002 and exponential decay rate of 0.5 is used for optimizing
the loss function.

A fully connected network (FCN) with 7000 trainable pa-
rameters is employed for producing likelihoods of predictions.
Despite memory overhead, the true labels are constructed
of the sparse vector representations to avoid fine-tuning a
threshold value for regression. Therefore, the last layer of FCN,
that is softmax, constitutes of 2 neurons indicating the binary
classes.

Since ResNet50 [10] contains 16 residual blocks, we set
the block size to 16 also for ACNN model, so as to compare
the architecture sizes. Consequently, ResNet50 consists of
23M trainable parameter, whereas ACNN model has only 8M
parameters.



Table II. Results of used algorithms with their configurations

Training set Configurations Results

g Model Pre-training 3 (Eq. (4)) Sensitivity  Specificity bACC PPCR Gain(%)
ResNet30 - - 0.9000 09993 09497 09980  -0.30%
ResNet30 - 075 0.8000 T000 09000 09973  2.88%
ResNet30  TmageNet - 0.7500 T000 08750 0997  4.19%
ResNetS0  TmageNet 075 0.7500 T000 08750 09967  4.19%
COVIDX-Ray-3K I Net50  ChestXpert - 0825 09993 09121 09970 2.27%
(with auementation) |_RESNeS0  ChesiXpert 075 0.6667 00987 08327 09908 6.65%
with aug ACNN - - 0.7500 00983 08742 09951  431%
ACNN - 075 0.7000 00997 08498 09957 3553 %
ACNN — ChestXpert - 09250 00600 00470 09684  -1.95%
ACNN — ChestXpert 075 0.8000 00993 08997 0997  2.92%
ResNet30 - - 0.9500 00397 00443 09398  -3.53%
ResNet0 - 075 0.9500 09977 09738 09970  +0.89%
COVIDX-Ray-5K I —p Nei50  TmageNet - T.000 09963 09982 09964  +2.10%
(wlout augmentation) ResNet50 ImageNet 0.75 1.000 0.9973 0.9987  0.9974 +2.18%
wiout aug ResNet50  ChestXpert - 0.9750 0.9680 09715 09681  -0.74%
. ResNetS0  ChestXpert 075 0.9500 09967 09733 0991  +081%
ACNN - - T.000 08653 09327 08671 7.87%
ACNN - 075 T.000 00776 00645 09299  3.03%
COVID-ChestXray XN ChestXpert - T.000 07730 08865 07760 -14.90%
ACNN — ChestXpert 075 0.9750 09783 09767 09783  +0.08%

ResNet30 [3] 0.9750 09010 09380  0.9020 -

COVIDX-Ray-5K Squeezenet [3] 09750 00773 09762 09773 -

C. Evaluation Metrics

Due to the imbalance of the data, sensitivity and specificity
metrics are more informative to evaluate the performance of
the applied algorithms rather than the metrics widely used
for classification like accuracy, precision*, and Fl-score. In
other words, we considered also Balanced Accuracy (bACC)
and Predicted Positive Condition Rate (PPCR), as they are
two informative measurements in case of classification of
imbalance data [20]. Sensitivity, specificity, bACC, and PPCR
are, respectively defined as:

Sensitivity = L
Y=TPYFN
TN
ity — — TN
Speci ficity TN FP
bACC — Sensitivity J2r Speci ficity
TP+ FP
PPCR = +

TP+ FP+TN+FN

where T'P stands for true positive samples, T'N stands for
true negative samples, F'P stands for false positive samples,
and F'N stands for false negative samples. The test results
of trained networks summarized in Table II, in addition to
showing the results of the networks used by Minaee et al. Their
best performance was reached using SqueezeNet; the authors
gave Specificity and Sensitivity; we added Balanced Accuracy
(bACC) and Predicted Positive Condition Rate (PPCR) with
respect to their confusion matrices. Moreover, the Gain col-
umn indicates the contribution of the used configurations and
evaluates the success of per network compared to chueezeNet
the best model from Minaee et al., in terms of 24 C+P PCR

4Besides precision, recall is another widely used metric. However, it is also
referred to sensitivity.

D. Discussion

Table II summarizes the performance evaluation of the
trained networks, with configuration details. As the table shows
merging COVIDX-Ray-5K and COVID-ChestXray training
sets improved the results substantially, up to 2.18%. The net-
work trained on the combined data with the weights initialized
from fine-tuned values from ImageNet and penalized with 3
(in Equation (4)) value of 0.75 achieved the best performance.
To the best of our knowledge, this configurations becomes the
state-of-the-art among all models queried on COVIDX-Ray-
5K test set [3].

Careful attention must be exercised in networks that exploit
WCE for error calculation. The results on the combined
databases show that penalizing the false positive samples
improves the performance for each network. However, the
network trained on purely COVIDX-Ray-5K training set were
contradictory to this achievement. In our detailed analysis on
distribution of the predictions reported that the models trained
on this dataset are already good at predicting the positive
samples. Therefore, the false positive samples were not the
dominating problem. We thus deduced that 8 < 1 degrades
the performance, when false negative samples dominate the
false positives. Since § < 1 penalizes the false positives, this
proves the effect of WCE on distribution of false samples. It
is an intriguing optimization problem for future works, that
is finding the optimal adjustment value to alleviate imbalance
of dataset in favour of both false negative and false positive
samples.

Furthermore, the performance comparison between ACNN
and ResNet50 models is reported in Table II. Despite the fact
that there is some inconsistency, ACNN achieved significantly
close performance to ResNet50. Highlighting the lightweight
of the network, ACNN results are promising for medical image
classification along with segmentation.



VII. CONCLUSION AND FUTURE WORK

COVID-19 created a situation of emergency, which is still
out of control. This paper challenges [3] and reaches the
state-of-the-art on the COVIDX-Ray-5K test set with the top
balanced accuracy of 99.87%. Furthermore, our study analyses
the performance of the ACNN network architecture for medical
image classification task and exploiting weighted cross entropy
(WCE) loss function to alleviate the imbalance on COVID
datasets.

A successful CAD system may be helpful to support
frontline doctors, or, in some realities, can, actually, provide
the only available diagnosis. However, the current number of
available databases of COVID-19 images is still too limited,
and there is not a common database used as benchmark to
compare the proposed models. In summary, it is desirable to
have a couple of big and balanced databases with X-ray and
CT images to be used, as benchmark, by the entire research
community.

Further work includes (1) the use of the proposed algorithm
with other databases of COVID-19 X-ray images to test its
robustness, (2) the adaptation of the suggested method for
tomography images, and (3) the investigation of other deep
learning algorithms.
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