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This work started in the context of workplace safety and 
employees emotion recognition. We developed and 
integrated a Face Emotion Recognition (FER) system with a 
new module that detects the temperature of people. The 
implemented embedded system can identify possible 
COVID-19 suspects using thermal vision (infrared) cameras. 
It is capable, besides the human body temperature detection, 
to also detect the age, gender, emotion and if the person is 
wearing a mask or not, using a smartphone. Different 
characteristics for the thermal vision cameras have been 
tested, such as: emissivity and distance between the subject 
and the camera in order to calibrate the camera to reflect the 
human body temperature as accurate as possible. 

First, we designed, implemented and evaluated a new 
system of recognition of facial expressions using different 
machine learning techniques that would ultimately perform 
better in terms of computational speed and accuracy than 
existing methods. The FER system accepts as input a live 
video stream and it is able to detect the human face and 
classify the facial expression into one of the seven basic 
human face emotions (neutral, happy, sad, surprised, 
disgusted, angry, and afraid). In our opinion losing control of 
emotions means losing control of safety. For example, if a 
human machine operator supervises or controls multiple 
heavy duty machines then it is quite important for that 
human to not be in emotional distress (angered, shocked or 
tired). The developed FER system provides notifications 
sending alerts when a human should not perform a dangerous 
task under emotional distress. Also, such an application 
could verify that a construction, civil engineering, industry 
worker is equipped accordingly with protection gear. Or, if a 
worker that supervises an industrial assembly line or 
maneuvers an excavator does not feel well (looks distressed/ 
angry/sick), it could create multiple damages if not stopped 
or assisted before or during the task he is performing. 

Second, the module that reads the human body 
temperature was developed in two scenarios: first, using a 
small camera attached to an Android smartphone for mobile 
use and second, using a fixed camera as a desktop 
application with remote controlling possibility from longer 
distances being able to simultaneously read temperatures 
from multiple subjects. 

The rest of the paper is organized as follows: section 2 
describes the methodology applied in the development of the 
two software applications (mobile and desktop) highlighting 
their features and applications workflow. Section 3 briefly 
presents the detection and classification algorithms and the 
datasets used for training. The fourth section of the paper 
provides hardware and software system requirements. Some 
limitations and implications for practice of the system are 
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Abstract—The main goal of this paper is to prove that by 
combining thermal vision cameras and image processing with 
many deep learning classification algorithms we developed an 
effective embedded system with high applicability in this 
critical period caused by COVID-19 pandemic disease. Using 
fixed and mobile thermal cameras we envisioned and 
developed a real time temperature screening capable of 
sending alarm signals over network or by SMS to local 
authorities along with multiple detection metrics such as the 
age, the gender, the facial emotion, the GPS location where the 
alarm went off, the temperature reading from the human face 
and also if the subject is wearing or not a medical face mask. 

Keywords— thermal, camera, application, detection, mask 

I. INTRODUCTION

A novel infection with the coronavirus was first found in 
the city of Wuhan, in the province of Hubei in China. The 
world Health Organization (WHO) has officially announced 
the identification of a new virus which will be called by 
2019-nCoV in January 2020 [1] and has recognized that the 
virus can cause respiratory disease with cough, fever and 
pneumonia. The WHO Emergency Committee declared on 
30 January the novel coronavirus infection as a pandemic 
disease due to the rapid human-to-human transmission. 

Anyone who is infected with coronavirus may have 
typical symptoms such as dry cough, fever, fatigue and in 
some cases nasal congestion, pain, sore throat or diarrhea. 
The infection could be fatal for older people or for someone 
with a chronic condition. As of now (May 2020), no 
effective vaccine for COVID 19 was developed. As the 
recorded death and infected people cases continue to increase 
[2], lockdowns have been conducted by several nations to 
reduce the spread of coronavirus impact. They often attempt 
to identify a potential infected person from crowds by using 
an infrared thermometer to track temperatures in public 
places. But there are drawbacks to the use of such an infrared 
thermometer gun, as it may not cover all the people, it can 
also favorize the spreading of the virus, as the user of the 
infrared thermometer gun has to do a close range (5 to 15 
cm) one by one person at a time, which is time consuming 
and could lead to a high number of people queuing. To 
prevent these drawbacks, an alternative technology is 
needed.

As most of the countries are lifting some of the 
restrictions, some governments are enforcing wearing of a 
medical mask when going out in the community, especially 
when using the public services of transportation or when 
entering shops, schools, offices of administrative and 
municipalities, workplaces, usually indoor places. Thus, 
efficient real time face mask detection is needed.  
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described in section 5. The final section presents general 
conclusions, together with the main contributions and further 
work. 

II. METHODOLOGY 

This section describes the work flows of two different but 
with similar purpose systems. The first one is a proposed 
handheld solution for effective temperature screening using a 
thermal vision camera attached to a personal smartphone. 
The second one involves a fixed thermal camera controlled 
via an internet connection with broadcasting possibility to 
multiple clients. This proposed embedded system was 
implemented and tested in the campus of the Engineering 
Faculty, Lucian Blaga University of Sibiu, Romania. 

A. EmoTemp - Android application 

Using a thermal camera for smartphones (Flir One Pro) 
we envisioned and developed a real time temperature 
screening capable of sending alarm signals over network or 
by SMS to local authorities along with multiple detection 
metrics such as the age, the gender, the facial emotion (one 
of the seven basic human emotions: sadness, happiness, 
anger, disgust, surprise, afraid, neutral), the GPS location 
where the alarm went off, the temperature reading from the 
human face and also if the subject was wearing or not a 
medical face mask. 

The application analyzes and displays frames in real time 
at roughly five frames per second, which is enough to 
capture basic human movements such as walking or even 
jogging. The user of the application has the possibility to 
alter the emissivity setting for the thermal camera with a 
rational number between zero and one. The emissivity of a 
material surface represents its effectiveness in emitting 
energy as thermal radiation. The human skin emissivity 
ranges from 0.95 up to 0.999 [3]. During tests performed, 
while also using regular body thermometers, we found out 
that the emissivity value has to be set around 0.98 for best 
results, as this value will give the closest temperature 
readings to the regular thermometer value reading of the 
human body. We also studied how the distance between the 
camera and subject influences the temperature readings. 
Starting from a distance of more than 7 meters, a human 
body emitted, with the emissivity configuration set to 0.98, a 
maximum temperature of 34.59 degrees Celsius to a distance 
of about 30 centimeters a maximum temperature reading of 
37.07 degrees Celsius. The test showed how the distance 
affects the temperature reading, having a 2.5 Celsius degrees 
temperature difference between 7 meters and 30 centimeters. 
However, the temperature sensors of cameras are not 
sensitive at less than two meters providing the same 
temperature both at 20cm and 200cm. Thus, we concluded 
that the temperature can be read correctly even at a distance 
of 2 to 2.5 meters, increasing this way the field of view 
(FoV) of the camera so that multiple subjects can be screened 
at once. 

We also validated the application against real life 
scenarios such as screening the temperature of football 
players before entering the pitch and also for restaurant 
waiters to read the temperatures and emotions of customers 
before and during their stay. The application proved to be 
valuable for the waiters because they no longer need to get 
too close to a potentially infected customer. 

 
Fig. 1. Example of automatic finding of the points with the highest 
temperature. Warning when a value is above the set threshold temperature 
(here it was set at 37.0 degrees Celsius). The temperature point from the 
nose turned red. 

 
Fig. 2. Screenshot during real time application running in dual mode 
(thermal image in the background, visible image the foreground). 
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Figure 2 illustrates how the thermal vision camera 
captures infrared images which will be transformed into 
thermal images, while on the visible spectrum images the 
detections will be performed: age-white text („Adult” 
representing the category [25-32] years old); gender-blue 
circle („Male”; red circle means „Female”); emotion-red text 
(„Happy”); mask detection-black text („Mask” + detection 
confidence [0-1]. The visible light image will be displayed in 
the foreground while maintaining the thermal image in the 
background if the option to display the processed image is 
also checked. The visible light image will be taken from the 
device’s camera. This implies the need of mapping of the 
temperature point location from the thermal image to the 
visible light image. The application workflow is illustrated in 
figure 3. 

When the application is started, it first checks the camera 
micro USB connection. Once the thermal vision camera is 
connected, the application will start capturing infrared 
images which will be transformed into thermal images 
having temperatures and different colors ready to be 
displayed on the device’s screen. To increase the processing 
performance and also keeping in mind that the value read 
from the infrared sensor changes relatively slow, once every 
3 to 4 frames, we decided that only every odd captured frame 
to find the maximum five highest temperatures from the 

frame. In all the other frames, this search will not be 
performed; instead the cached values will be used. Again, for 
the same processing performance reasons and also for the 
fact that the human face might have the lowest size of 35x35 
pixels depending on the distance to the camera, we decided 
not to process every single pixel from the image, this would 
have meant that 640x480 pixels needed to be checked, but 
instead to process just specific pixels that fit on a predefined 
grid. This grid consists of 64x48 pixels evenly distributed 
from one to another on the image, resulting in fewer pixel 
temperature checks, every 64th pixel from every line and 
every 48th pixel from each column will be checked. If at 
least one of the five highest temperature values from the 
image is above the predefined threshold value, that can be set 
either at the start of the application or during runtime through 
a spinner, and also if the option to process images from 
visible light spectrum is checked, then the temperature point 
that is above the threshold will be mapped to the closest 
detected face and start the alarm signals. 

Although the thermal vision camera has also a visible 
light camera module, it proved out to be a lot more efficient 
from the computational point of view to use an entire 
separate processing thread along with a separate, already 
existing visible light camera from the smartphone. 

 

 

Fig. 3. Android application workflow
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B. Desktop application system 

This application has a similar functionality with the 
previous one but with some key differences. The most 
important difference being the fact that the thermal vision 
camera is now a fixed one (Flir A320) and that the detection 
of the presence or not of a medical mask being used on a 
human face was done directly over the thermal images live 
stream as this thermal camera model did not have a visible 
light camera module and attaching a visible light camera to 
the system would have increased the costs. 

The architecture for this system consists of two modules. 
The first module represents a desktop application developed 
in .NET CORE 3.1, which handles the camera connection 
through Ethernet, it displays and processes the thermal 
images received from the camera and signals an alarm when 
a temperature reading from a predefined area is detected 
above a given threshold. The second module consists of a 
server and a client submodule. The server submodule was 
developed in .NET CORE 3.1 and has the role to stream the 

images processed by the first module over the local network, 
while the client submodule will receive this feed via web 
sockets through HTML5 and JavaScript’s WebRTC library. 
The first module and the server submodule have to run on the 
same machine while the client sub module can be run on 
multiple different machines. 

A sample illustration of the usage of the two modules to 
form a single system is illustrated in figure 4. The figure 
presents the synergy between the two modules, which for test 
purposes were running both on the same machine. Due to 
humidity, ambient temperature and emissivity settings at that 
point, the subject’s maximum temperature was just that of 
34.4 degrees Celsius. The threshold alert temperature was set 
to 34 degrees Celsius and this triggered an alert, starting the 
image processing thread. This thread processes the current 
thermal image and looks for human faces and if they are 
covered by a medical mask or not. 

 

 
Fig. 4. Sample screenshot for the desktop application system. Left – the first module, having in background running the server submodule of the 2nd module. 
Right – the client submodule running in Google Chrome’s web browser. 

III. DETECTION ALGORITHMS 

For the human face detection, the Viola-Jones [4] face 
detection algorithm was used. Deep learning methods like 
convolutional neural networks (CNNs) can deliver highly 
accurate classification results when feed with large enough 
data sets and respective labels. Thus, for the age and gender 
detection, the same convolutional neural network that has a 
similar architecture with AlexNet [5] was used. The first 
Convolutional Layer contains 96 filters of 7×7 pixels, the 
second Convolutional Layer contains 256 filters of 5×5 
pixels, the third and final Convolutional Layer contains 384 
filters of 3 × 3 pixels.  

 
Fig. 5. CNN arhitecture for age and gender classification. Taken from [7]. 

Finally, two fully connected layers are added, each 
containing 512 neurons as taken from [7]. The network was 
pre-trained twice on the same Audience [6] dataset but each 
time with a different target output. First time gender 
detection for male or female, while the second time the age 
class, one age segment from [(0 – 2), (4 – 6), (8 – 12), (15 – 
20), (25 – 32), (38 – 43), (48 – 53), (60 – 100)]). The dataset 
contains 26580 images. The structure for the CNN can be 
seen in figure 5. 

The medical mask detection was performed using a CNN 
implemented by Google, MobileNetV2 [8] in the submodule 
of the framework TensorFlow, Keras. The dataset used for 
the training of the network is a synthetical one because there 
is not yet any dataset available at the global level. With the 
help of facial landmarks detection using an ensemble of 
regression trees [9], the human mouth was detected and on 
top of it a surgical mask was applied. Figure 6 illustrates the 
steps performed in order to generate such a synthetic dataset. 
Even though the model obtained close to 99% accuracy over 
the synthetic image dataset [10], we observed, in our tests, 
that it reaches above 90% accuracy for real time detection. 
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Fig. 6. Creation of the synthetical dataset. Step 1 – face detection; Step 2 - 
facial landmarks detection. Step 3 – Drawing on top of the original image a 
surgical mask. As taken from [10]. 

As for the face emotion recognition (FER) we used our 
own implementation of such a system. After a face is 
detected using the Viola-Jones face detection algorithm [4], 
we applied a facial landmarks predictor using an ensemble of 
regression trees [9] obtaining 68 2-dimensional points 
representing the facial landmarks positions on the face. From 
these points, we calculated 38 specific pair pixel Euclidian 
distances obtaining a vector of 38 1-dimension elements, 
which will be fed to a machine learning classifier algorithm. 
We tested with multiple algorithms belonging to the 
supervised learning cathegory and the ones giving the highest 
accuracies were a Multilayer Perceptron Classifier (MLPC) 
and close to it was a Support Vector Classifier (SVC). We 
trained the MLPC over two combined already face emotion 
labeled datasets, first being The Karolinska Directed 
Emotional Faces (KDEF) [11] having 490 images and the 
second one being The Extended Cohn-Kanade Dataset 
(CK+) [12] with 309 images. In order to find the best 
hyperparameters for both the MLPC and the SVC used an 
evolutionary computing algorithm for a hyperparameter 
search or tuning of a set of hyperparameters for the classifier 
algorithm.  

 
Fig. 7. Our own implementation of the FER system 

 

Fig. 8. Specific pair pixel Euclidian distances calculated by our FER 
marked with green lines between pixel indices retrieved by the landmarks 
predictor 

For the MLPC, the hyperparameters included number of 
hidden layers, number of neurons on each layer, activation 
function for the hidden layer, the solver for weight 
optimization. While for the SVC the tunning was performed 
over kernel type and penalty parameter of the error term. The 
output of each classifier is a 7 elements 1-dimensional vector 
containing the confidences for each one of the seven basic 
human emotions. Figure 7 presents the entire workflow for 
our FER system, while figure 8 evidentiates the specific 
Euclidian distances calculated. The trained MLPC obtained 
79% accuracy over the KDEF dataset when trained over 80% 
of the dataset and testing over the last 20%. 

IV. SYSTEM REQUIREMENTS 

The EmoTemp Android application was developed 
using Android Studio 3.5 integrated development 
environment (IDE) with Java SE 8 support. As for the 
libraries used, OpenCV4Android version 3.4.3 [13] and 
TensorFlowLite [14] are at the core. The application was 
deployed and tested successfully on a Samsung Galaxy TAB 
A T580 10.1-inch display having a 1920x1200 resolution, 2 
GB RAM memory, octa core Exynos 7870 CPU at 1.6 MHz 
running on Android OS version 8.1. 

The first module and the server submodule of the 
Desktop application system were developed in Visual Studio 
2019 versions 16.6. The used programming language was C# 
with the target framework .NET CORE 3.1 and 
WindowsForms application types. The client submodule was 
written in HTML5 and JavaScript with the help of WebRTC-
adapter library [15]. The server submodule uses the 
WebRTC Native API [16] while the first module, that does 
the temperature reading and detections, was written with the 
help of the SciShap.TensorFlow.NET, SciSharp.Keras.NET 
[17] and EmguCV .NET wrapper for OpenCV [18] 
packages. 

The EmoTemp Android application runs without any 
dependencies. This is not the case for the desktop 
application, as it requires .NET CORE Runtime 3.1.4 [19], 
Python 3.7 with TensorFlow and Keras modules installed 
and a 64-bit OS. The minimum required hardware for the 
desktop application is a CPU like Intel’s i5 7th generation 
with 4 Cores at 3.4 GHz or similar and 4 GB RAM. For the 
client submodule, the only dependency needed is a machine 
capable of running Google Chrome’s web browser. 

Flir One Pro camera has a thermal resolution of 160 x 
120 pixels at a frame rate of 8.7 Hz, a visual resolution of 
1440 x 1080 pixels and a thermal sensitivity of 0.07 Celsius 
degrees. 

Flir A320 thermal camera has an infrared resolution of 
320 x 240 pixels with a thermal sensitivity of 0.05 Celsius 
degrees with a frame rate Ethernet streaming of 4.5 Hz. 

V. LIMITATIONS AND IMPLICATIONS FOR PRACTICE 

For the moment, the developed embedded system faces 
few limitations: 

• False alarms could be triggered if, due to the 
positiong of the cameras, in the FoV, some light spots 
coming from the Sun will be visible. These spots will 
generate heat, reaching temperatures of more than 40 
Celsius degrees. 
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• The need to install on the server machine the software 
dependencies presented in the previous section 

• Sometimes, upon the machine entering stand-by, the 
desktop application freezes and has to be restarted 
along with all the clients having to refresh the 
connection from the browser. 

• For the desktop application, it is vital to have a static 
IP address allocated to the thermal camera so there 
will be no issues when there will be power cuts or 
internet connection drop offs. Otherwise, the camera 
will receive a different IP every time and the desktop 
application must be restarted to reflect the changes.  

• Thermovision camera Flir One Pro has to be 
recharged after about two hours of usage. 

In the following, we briefly present a few practical 
applications of our solution: 

• The University’s Management board has decided that 
the system will be implemented in other faculties 
also, especially where there will be a lot of students 
entering the faculty at once. 

• As soon as the developed system idea reaches outside 
of University doors, public or private institues could 
request the system installation. For example, when 
entering a store, if the buyer does not have a mask, an 
alarm will be triggered specifying the need to put on a 
mask, along with the displayed temperature.  

• Checking student’s body temperature as a 
requirement for the participation in the exam’s 
session, bachelor’s degree or dissertation thesis exams 
at the entrance of the university and to verify if they 
are wearing a mask or not. 

VI. CONCLUSIONS AND FURTHER WORK 

Based on two types of thermal vision cameras (fixed and 
mobile) we developed an embedded system (hardware-
software) which identifies possible COVID-19 suspects by 
real time temperature screening and sending alarm signals 
over network or by SMS to local authorities. The system is 
capable, besides the human body temperature reading to also 
detect the age, gender, emotion and if the person is wearing a 
mask or not, using a smartphone. The software applications 
allows automatic finding of the top 5 highest temperature 
values from the current displayed frame. Basically the 
application analyzes and displayes frames in real time. The 
applications included a spinner that allows the user to set the 
threshold warning temperature value. If at least one out of 
the 5 highest temperature values found before is above the 
threshold, a warning signal will be sent and these values will 
be marked with red. We studied how the emissivity 
influences the reading of the temperature and found that the 
emissivity value has to be set to 0.98 for the most accurate 
results. We also studied how the distance between the 
camera and subject influences the temperature readings and 
our conclusion is that the temperature sensors of cameras are 
not sensitive at less than two meters providing the same 
temperature both at 20cm and 200cm. 

For the future development we intend to implement a 
centralized database in order to visualize when (and where, 
because we will extend the project to other faculties) the 

infection did take place and also to improve the detection 
accuracies based on many images, features and algorithms. 
Our further intention is to analyze how a subject standing in 
light/shadow influences the temperature reading in case of 
the mobile camera scenario. 
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