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Abstract— Nowadays a new infectious disease has been 

spreading world-wide (Covid-19), this disease mainly affects the 

respiratory system and requires the use of mechanical ventilators; 

unfortunately, the worldwide availability of such artificial 

ventilators is scarce. Therefore, some international efforts have 

been developed to get simpler and cheaper mechanical ventilators, 

although the main challenge is the air flow control, because of the 

dynamic complexity that links the servomechanism and the bio-

hydraulic system. In this context, as a first stage in the 

development of robust control algorithms with the described 

intention, this paper presents the design and analysis of a feedback 

vector linear controller implemented in a virtual servomechanism 

from an open source mechanical ventilator. The numerical 

validation of this feedback vector controller is analyzed through 

two gains tuning scenarios, the results show a positive 

implementation taking in consideration the strong nonlinearity 

the system has. The novelty of the work resides in the accuracy of 

the model being quite simple. The proposed model changes the 

idea we have of controllers being over complicated and difficult to 

manage, inviting more students to experiment with such 

controllers more confidently.

Keywords — servomechanism; linear control; states space

I. INTRODUCTION 

COVID–19 is no news around the world, Mexico started 

quarantine since March 17th and has remained this way until 

the present day. Around 318,000 cases have been confirmed, 

where approximately 199,000 patients recovered and 36,906 

died. Statistically, 11.60% of the patients died and 62.67% 

recovered [1].  

Since the COVID-19 started, the worldwide medical 

infrastructure has been strengthened to have the capability of 

treating the whole population if infected. The state of the art 

ICU ventilators’ price (Intensive Care Unit) oscillates between 

$20,000 and $50,000 USD being approximately between 2,415 

and 6,039 Mexican minimum wages, expenses that cannot be 

supported by emergence economies and poor countries [2] [3]; 

therefore, different companies and universities have decided to 

create several open-source ventilators. [4] [5] [6]. 

In this context, the main objective of this educational effort 

is to tune an algorithm to control a virtual ventilator behavior 

using numerical solvers such as MATLAB Simulink, in order 

to learn how this kind of servomechanism reacts by the 

implementation of a feedback vector linear controller; this was 

achieved by considering the numerical values of the concerned 

servomechanism open source design parameters [4] without 

any modification from [2,3] or [5 – 16]. 

Our hypothesis is that using the eigenvalues from the open-

loop system we will be able to define a new set of eigenvalues 

to design a state feedback controller that can turn our initial 

slow system into a faster and more stable one.  

Mechanical ventilators have been widely studied in the last 

decade. One of the most significant works related to the subject 

was developed by F.T. Tehrani and J.H. Roum. Their paper 

published by the IEEE Closed-loop control of artificial 

respiration shows the main characteristics of ventilators and 

developed their own using open-loop or closed-loop controllers 

according to the necessary characteristics of the ventilator [7].  

Another article published by the IEEE is the one developed 

by Anup Das, Prathyush P. Menon, Jonathan G. Hardman and 

Declan G. Bates called Optimization of Mechanical Ventilator 

Settings for Pulmonary Disease States, where it was shown how 
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the authors generate in silico experiments to examine current 

practice and uncover optimal combinations of ventilator 

settings for individual patient and disease states. They achieved 

this by combining validated computational models of 

pulmonary pathophysiology with global optimization 

algorithms [8].  

Declan G. Bates and Jonathan G. Hardman made another 

study with John G. Laffey and Marc Chikhani. They realized 

that a lot of countries were being affected by COVID-19, and 

that patients will require mechanical ventilation for around six 

days. They studied how viable it is to support more than one 

patient with a single mechanical ventilator [3].  

On the other hand, there is another study during the 

COVID-19 pandemic made by Martín A., Rodrigo B., Luciano 

A., Pedro A., Arturo A and Cristina S. about the mechanical 

risks of ventilator sharing, like the uneven distribution of tidal 

volume between the two patients [9].  

Another group of researchers studied the management of 

CO2 absorbent while using the anesthesia machine, with an 

empty absorbent reservoir, as a mechanical ventilator. They 

found out that using a fresh gas flow 20% higher than the 

adjusted minute-volume, the inspired gas was CO2-free [10].  

H. Al-Otaibi, N. Bedforth, R. Mahajan and J. Hardman 

made a study to evaluate the accuracy in predicting arterial 

blood gases values following mechanical ventilator adjustment 

[11].  

Adler F. and Leonardo B. investigated the performance of 

an Iterative Learning Control (ILC) algorithm applied on the 

accuracy of tracking pressure profiles associated with a 

commonly used ventilator mode. Thus, they discovered that an 

ILC by itself is not suitable to replace a conventional feedback 

controller, but an ILC with feedback control can significantly 

improve performance [12].  

Hasan G. and Fikret A. explain key factors to consider for 

the design and implementation of training mechanical 

ventilator set. Clinicians have to determine the best treatment 

for patients due to the fact that ventilators generally work as 

open-loop controlled [13].  

A servomechanism is a system made up of mechanical and 

electronic parts, it can also be made up of pneumatic, hydraulic 

and precisely controlled parts. Edward J. Davison realized that 

there are severe limitations affecting the system’s performance, 

these limitations prompted him to study intelligent 

servomechanism controllers. These controllers contain a 

switching device which applies a sequence of LTI (Learning 

Tools Interoperability) controllers to the system [14].  

Ruben G. and Alberto S. decided to use a simple non-linear 

proportional-derivative controller to improve the settling time 

of a servomechanism. This algorithm improves the settling time 

regarding a linear proportional-derivative controller. [15]. 

CONACYT and CIDESI have also presented the Mexican 

mechanical ventilator called Ehécatl 4T and Gätsi, devices that 

have been technologically modified to accredit the medical 

certification required [16]. 

The next section describes the theoretical foundations of the 

linear control proposed in this study, with a brief description of 

the states space dynamic systems modeling paradigm and the 

feedback vector linear control strategy, following the dynamic 

model and the corresponding feedback vector tuning are shown. 

The third section illustrates the simulation results and their 

analysis shown in the fourth one; finally, conclusions about the 

simulation performance are on the last section. 

II. THEORETICAL FOUNDATIONS 

State space system representation lays the foundations for 

modern control theory as it solves many of the limitations of 

the classic control theory in which transfer functions were 

implemented.  

A state space model describes the behavior of a dynamic 

system as a set of first order ordinary differential equations 

(ODE), even if the dynamic model is described by a higher 

order ODE. The response of a system is described by a set of 

first order differential equations, in terms of the state variables 

{x1,x2,x3,…,xn} and the inputs {u1,u2,u3,…,um}. This first 

order differential equations can be written in the general form, 

but also in a matrix form as: 

𝑥̇ =  
𝑑

𝑑𝑡
[

𝑥1

𝑥2

. . .
𝑥𝑛

] =  [

𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎21 𝑎22 . . . 𝑎2𝑛

. . . . . . . . . . . .
𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛

] [

𝑥1

𝑥2

. . .
𝑥𝑛

]

+ [

𝑏11 𝑏12 . . . 𝑏1𝑚

𝑏21 𝑏22 . . . 𝑏2𝑚

. . . . . . . . . . . .
𝑏𝑛1 𝑏𝑛2 . . . 𝑏𝑛𝑚

] [

𝑢1

𝑢2

. . .
𝑢𝑚

] 

 

the column matrix X consisting in the state variables and it is 

called the state vector. The transition matrix n x n is identified 

as A, as well as the input matrix n x m is called B. Finally, the 

vector of input signals is defined as u.  

The state differential equation relates the rate of the change 

of the state of the system to the input signals. Also, the output 

of the linear system can be related to the state variables and the 

input signals by the output equation 

y=C∙x+D∙u, 
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det(𝜆𝐼 − 𝐴) = 𝑑𝑒𝑡
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1
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0

0.0012 𝜆 + 0.08 −0.04

0
2.5

82
𝜆 +

5

0.85]
 
 
 
 

 

 

(8) 

(3) 

(5) 

(6) 

where C is the output matrix and D is the direct matrix and it is 

commonly zero, because the inputs do not typically affect the 

output directly. 

The internal variables of the state space model are 

called state variables and they fully determine the future 

behavior of a system when the present state of a system is 

provided. In other words, the state variables are the specific 

variables that can fully describe the future behavior of a system. 

The number of state variables of the state-space model is the 

same as the highest order of the ODE describing the system and 

equal to the number of initial conditions needed to solve the 

model [17 - 18]. 

Assuming that all components of the state vector can be 

measured, since the state at time t contains all the information 

necessary to predict the future behavior of the system, the most 

general time invariant control law is a function of the state and 

the reference input:   
u = α(x, r) 

 

 If the state feedback control law is assumed linear, the 

feedback can be written as a linear combination of all state 

variables, including the reference: 
 

x = (A − BK)x + Bkxr,   x(0) = xo 

 

The poles of the closed-loop system are the roots of the 

characteristic equation: 

 

det(sI − A + BK) = 0 

 

The state feedback control law consists of selecting earnings 

such that the roots of the characteristic equation of the closed-

loop system. Assuming, that the designer has selected the 

desired poles of the closed loop system being: p1, p2, ..., pn. 

The desired poles (of the closed loop system) can be either real 

or complex. If they are complex, they must be in complex 

conjugate pairs. This is due to the use of real kij earnings. Once 

we define the desire poles, we can form the desired closed-loop 

characteristic polynomial where the objective is to select a K 

feedback matrix such that [19] 

 

det(sI  − A + BK) = sn + α sn−1 + ... + α s + α  

 

III. MODEL AND CONTROL VALIDATION 

This article specifically focuses on a controller for the 

mechatronic unit of the mechanical ventilator. The definition of 

the system was accomplished with the use of State-space 

representation as the equation (7) depicts. The equations (7) 

through (9) show the process followed to calculate the open-

loop eigenvalues. The constants were substituted with the 

following values:  

 

 

 

 

Where: 

Then we proceeded to calculate the determinant of the 

identity matrix multiplied by lambda minus the original matrix 

(𝜆𝐼 − 𝐴) using the calculated values shown above. 

 

 

 

 

 

 

 

 

 

 

 

Equation (8) establishes the determinant of the 

original matrix shown in Equation (7) being subtracted from the 

identity matrix multiplied by λ. This new matrix is re-written 

with the numerical values substituted.  

 

 

 

 

 

 

 

 

 

We obtained the roots of Equation (9) and thus calculated 

the eigenvalues for the open loop system, which are the 

following: 
 

 

 

The first graph obtained from Simulink, Figure 3.1 shows 

the estimated error of the open-loop system, while the second 

graph, Figure 3.2, the behavior of the system's response. Further 

analysis of the results is presented in section Analysis Results.  

 

 

𝑑

𝑑𝑡
[

𝛼(𝑡)
𝜔(𝑡)
𝑇(𝑡)

] =

[
 
 
 
 
 
 0

1

𝑘𝑒

0

−
𝑘𝜃𝑘𝑒

𝐽𝜃
−

𝐵𝜃

𝐽𝜃

1

𝐽𝜃

0 −
𝐾𝑚2

𝐿𝐾𝑚1

−
𝑅

𝐿]
 
 
 
 
 
 

[

𝛼(𝑡)
𝜔(𝑡)
𝑇(𝑡)

]

+ [

0
0
1

𝐿𝐾𝑚1

] 𝑣(𝑡) 

(7) 

𝐾𝑒 = 3 

𝐾𝑚1
= 100 [

𝑉 − 𝑠

𝑟𝑎𝑑
] 

𝐾𝑚2
= 2.5 [

𝐴

𝑁 − 𝑚
] 

𝐽𝜃 = 25 [
𝑁−𝑠2

𝑚
] 

𝐿 = 0.82[Ω − 𝑠] 

= 𝜆3 + 𝜆2(5.96235) + 𝜆(0.472208)
+ 0.002353 

(9) 

𝜆1 = −5.88214 

𝜆2 = −0.074867 

𝜆3 = −0.005343 

(4) 

𝑘𝜃 = 0.01 [
𝑁

𝑚
] 

𝐵𝜃 = 2 [
𝑁 − 𝑠

𝑚
] 

𝑅 = 5[Ω] 
 

𝐾𝑒 = 𝑔𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 

𝐾𝑚1
= 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑠𝑝𝑒𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 

𝐾𝑚2
= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜𝑟𝑞𝑢𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 

𝐽𝜃 = 𝑝𝑜𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎           𝐿 = 𝑚𝑜𝑡𝑜𝑟´𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑒 

𝑘𝜃 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 

𝐵𝜃 = 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 

𝑅 = 𝑚𝑜𝑡𝑜𝑟´𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 
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Fig. 3.2. Open-loop behavior graph 

= 𝜆3 + 5962.35 𝜆2 + 472206𝜆 + 2.35294𝐸6 (11) 

𝜆3 + 𝜆2(6.17756 + 0.01219𝐾𝑇) + 𝜆(0.48942 + 0.00097𝐾𝑇 +
0.00048𝐾𝜔) + 90478.7 − 6𝐾𝑇 + 0.00016𝐾𝛼 = 

(12) 

𝜆3 + 5962.35 𝜆2 + 472206𝜆 + 2.35294𝐸6 (13) 

1 = 1 

6.17756 + 0.01219𝐾𝑇 = 5962.35 

0.48942 + 0.00097𝐾_𝑇 + 0.00048𝐾_𝜔 = 472206 

90478.7 − 6𝐾𝑇 + 0.00016𝐾𝛼 = 2.35294𝐸6 

  

(14) 

Fig. 3.3. Closed-loop error graph 

Fig. 3.4. Closed-loop behavior graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the calculated eigenvalues, we established the 

closed-loop system should be 1,000 times more stable. The 

proposed eigenvalues in this stage were as follows: 

 

 

 

 

These values were used to design the controller and 

calculate the system's gains. The equations (10) through (17) 

show the process followed to obtain these. Equation (10) 

shows I-A+BKc. We equalize this to the determinant of Equation 

(8) with the difference that the gains are involved in the 

operation as the last row of Equation (10) shows. This was 

equalized to Equation (11) which contains the new eigenvalues, 

shown above, for the closed-loop controller. Once we expanded 

these equations, we proceeded to equalize different equations 

depending on the lambda exponent they were multiplied by; 

Equation (14). 
After equalizing and clearing Equations (15) through (17), 

we obtained the gains values.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The states feedback vector is the following: 

 

 

 

A simulation of the applied control and the Simulink graphs 

were obtained. The results are shown in figures 3.3 and 3.4; and 

analyzed in Analysis Results 
 

After analyzing these graphs and due to the excessive gains 

obtained, a secondary set of eigenvalues was created, designed 

to be ten times bigger.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This set of eigenvalues was selected, looking for a better 

state feedback vector (in comparison with the first one 

calculated). Equations (18) through (27) show the mathematical 

process followed to calculate the new control. These operations 

are parallel to the ones shown in Equations (10) through (17). 

𝛼1 = −60 

𝛼2 = −74.86 

𝛼3 = −50.34 

Fig. 3.1. Open-loop error graph 

𝛼1 = −5882.14 

𝛼2 = −74.867 

𝛼3 = −5.343 

𝜆𝐼 − 𝐴 + 𝐵𝐾𝑐

= 𝑑𝑒𝑡

[
 
 
 
 𝜆 −

1

3
0

0.0012 𝜆 + 0.08 −0.04
𝑘𝛼

82

2.5 + 𝑘𝜔

82
𝜆 +

5

0.85
+

𝑘𝑇

82]
 
 
 
 

 (10) 

𝐾𝑇 =
5962.35-6.17756

0.01219
= 488611 

 

𝐾𝜔 =
472206 − 0.48942 − 0.00097(488611)

0.00048
= 9.82845𝐸8 

 

𝐾𝜃 =
2.35294𝐸6 − 90478.7 + 6(488611)

0.00016
= 3.24633𝐸10 

(15) 

 

 

(16) 

 

 

(17) 

𝐾 = [3.24633𝐸10    29.82845𝐸8    488611] 
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Fig. 3.5. New closed-loop error graph 

 
Equation (18) establishes the matrix involving the gains that 

need to be determined. Equation (19) is the equation obtained 

using the new set of eigenvalues. After equalizing Equations 

(18) and (19) we proceeded to break down the factors to obtain 

new expressions; shown in points (21) through (24). And then 

cleared the values, Equations (25) through (27) to obtain the 

new gains.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The new states feedback vector is the following: 

 

 

 

Using these values, we simulated the applied control and the 

Simulink graphs obtained are shown in the figures 3.5 and 3.6 

and analyzed in Analysis Results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. ANALYSIS RESULTS 

On the open-loop system, the eigenvalues are real and 

negative, which means we are dealing with an overdamped 

system. Even though such systems are considered stable and 

can get rid of their energy, this process is quite slow. Figure 4.1 

represents this energy relief process and figure 4.2 depicts how 

the system is behaving.  
 

Once the first controller was applied, the controller´s gains 

turned out highly unreasonable and its error graph (figure 4.3) 

proved the controller not to be as optimum as possible. 

Therefore, a new system was designed. This controller 

showed smaller gains; even though they are still quite high. 

Its error graph (figure 4.5) shows that the original system is 

quite slow. Therefore, the system must use a great amount of 

energy to behave in the desired way.  
 

A controller´s gains represent how aggressive it is; in other 

words, how much power the control ought to have over the 

open-loop system to change its response. In this case, as we 

have already stated, the system requires a very drastic change 

in its behavior, justifying the gains.   
  

V. CONCLUSIONS 

This article has a huge impact on our present and maybe 

future situation. Covid-19 has brought a lot of new problems to 

our lives but has also opened our eyes to serious conflicts that 

were not under our radar, like the poor availability of health 

machinery and technology in Mexico. There is still a lot of work 

to do, and we may even have to adapt our lives to this new virus. 

However, thanks to this pandemic, we have put in practice our 

knowledge acquired to create and invent, in as many ways we 

can, to provide support to anyone who may need it. Our 

proposed model can change the way we see a controller and the 

idea of them being over complicated and difficult to manage, 

opening a door for more students to experiment with different 

controllers more confidently. 

= 𝜆3 + 𝜆2(6.17756 + 0.01219𝐾𝑇) 
 

det(𝜆𝐼 − 𝐴 + 𝐵𝐾) = 

𝜆((𝜆 + 0.08) (𝜆 +
5

0.85
+

𝑘𝑇

82
) − (−0.04) (

2.5 + 𝑘𝜔

82
)) 

+
1

3
((0.0012) (𝜆 +

5

0.85
+

𝑘𝑇

82
) − (−004) (

𝑘𝛼

82
)) 

(20) 

𝜆𝐼 − 𝐴 + 𝐵𝐾𝑐

= 𝑑𝑒𝑡

[
 
 
 
 𝜆 −

1

3
0

0.0012 𝜆 + 0.08 −0.04
𝑘𝛼

82

2.5 + 𝑘𝜔

82
𝜆 +

5

0.85
+

𝑘𝑇

82]
 
 
 
 

 (18) 

= 𝜆3 + 185.2 𝜆2 + 11280.5𝜆 + 226107 (19) 

1 = 1 

 

 

6.17756 + 0.01219𝐾𝑇 = 185.2 

 
 

0.48942 + 0.00097𝐾𝑇 + 0.00048𝐾𝜔 = 11280.5 

 

 

90478.7 − 6𝐾𝑇 + 0.00016𝐾𝛼 = 226107 

  

(21) 

 

(22) 

 

(23) 

 

 

(24) 

𝐾𝑇 =
185.2-6.17756

0.01219
= 14686 

 

𝐾𝜔 =
11280.5 − 0.48942 − 0.00097(14686)

0.00048
= 2.34703𝐸7 

 

𝐾𝜃 =
226107 − 90478.7 + 6(14686)

0.00016
= 1.3984𝐸9 

(25) 

 

(26) 

 

 

(27) 

 

𝐾 = [1.3984𝐸9   2.34703𝐸7   14686] 

Fig. 3.6. New closed-loop behavior graph 
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As we have learned, open-loop eigenvalues establish the 

behavior of a system in its natural state. By obtaining these 

eigenvalues, we noticed they were real and negative, meaning 

that the system dissipates energy. So, we knew we were dealing 

with a stable, overdamped system. When the controller was 

made, we used eigenvalues 1000 times more stable, these 

generated high gains, which means that the controller needed 

too much energy to stabilize the system. We then decided to use 

eigenvalues in a new controller only 10 times bigger. The gains 

were elevated but in a more reasonable measure. Analyzing the 

error graph and the one of its general response, we conclude 

that the error obtained was huge, because the system is being 

forced to modify its behavior to a faster and more stable system 

that can provide a better response. Finally, we were able to 

obtain a state feedback controller, accomplishing the 

established objectives.  

By developing this project, we accomplished to complete all 

our objectives; after analyzing our Model simulation results, we 

can also conclude that there are several options when building 

a controller, as there are many different methods. However, the 

one proposed in this project has the advantage of being easily 

modifiable. This means that if after experimenting with the 

theoretical values one is not content with the outcome, 

recalculating such values is easy, fast, and inexpensive. We 

compared our model and results to other control strategies 

exposed by Robert L Chatburn in his paper Computer Control 

of Mechanical Ventilation, where he focuses on the different 

types of control to manipulate more complex systems. In this 

paper he concludes that the control depends mostly on the 

power of the learning machine. So, even though our control 

may not be the most complex one, it is more than acceptable for 

the algorithm we analyzed. This is because the algorithm 

handled is simple and linear. 
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