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Abstract—. Covid-19 has caused a health and economic crisis 

worldwide. Unfortunately, the lack of medical equipment, such 

as ventilators, represent a significant obstacle for the medical 

community to treat patients suffering from this virus, therefore 

we decided to create an algorithm that can correctly estimate 

linear parameters for an auxiliary mechanical ventilation system 

with the purpose of helping developers to filter respiratory leaks 

from a signal. This work was developed in the facilities of 

Universidad Anahuac Querétaro, the system’s signal was 

emulated in MATLAB. To ensure the lowest percentage of error 

possible, proposed values were chosen based on their proximity 

to the original matrix which was calculated with the values of the 

torque, angular velocity, and angular position. After several 

tests, an accuracy of 98% was achieved with the A matrix values, 

this allowed us to correctly estimate linear parameters  

Keywords—Kalman filter, mechanical ventilator, parametric 

identification, dynamical system, state space representation   

I. INTRODUCTION

At the present time, the world is dealing with a new virus 
named SARS-CoV-2, which is known for causing the 
coronavirus disease, the first case took place in the city of 

Wuhan, the capital of Hubei in China. This new virus mainly 

affects the respiratory system and in some patients the use of 

an auxiliary ventilator is required.[1]  

With the arrival of mechanical ventilators in Mexico, it is 
essential to highlight the importance of why signal filtering is 
relevant to help the medical community fight COVID-19. In 

this case, a Kalman filter prevents noise disruptions, 
deviations or interferences from similar devices that can lead 
to triggers on readings that could compromise the patient’s 
health. It works by allowing us to control the angular 

displacement, angular speed and torque which are the 

variables used in this specific system. [2]  

Since we are working with an auxiliary mechanical 

ventilation system, in this document authors have applied the 
simplest version of the Kalman filter as a parametric 
identification algorithm to estimate linear parameters of the 

system. It was invented by Rudolf E. Kalman in 1960.  

The filter is constructed as a mean squared error minimizer 
all based on the dynamics of the system and noise observations. 

[3,4].   

Placket, R. et al.  rediscovered Gauss’s theory and exposed 
the recursive least-squares algorithm which invokes only 
statistical concepts from the classic linear regression model 

whereas Kalman’s was within a wider context of a state-space 
model with time-varying values. Nowadays these discoveries 

are still the core of the Kalman Filter [5].  

Kalman filters are a recursive solution to discrete-data linear 
filtering problems.  This filter is a set of mathematical equations 
that provide an efficient computational (recursive) solution of 
the least-squares method. The filter is powerful in several 

aspects since it can make estimations of past, present, and even 
future states, and it can do so even when the nature of the 

modeled system is unknown.[6]  

With the use of a Kalman filter we can estimate a variable´s 
value through measured data following two main steps: the first 
one is to predict the state of the system and then incorporate the 
new correct measured data, so that we can obtain an optimal 

estimator. The second one is to understand how signal 
processing works, since there are always variations that interrupt 
the main signal, these unwanted variations, commonly called 
noise, are reduced through filters, such as the Kalman Filter, that 

allow a better data acquisition procedure [7].   
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Vignaux, L. et al. proposed the non-invasive ventilation 
programs (NIV) algorithm to evaluate the impact of ventilation 

algorithms. They estimate that the NIV program can 
significantly reduce the number of noises caused by respiratory 
leaks. They found a significant correlation between the 
magnitude of the leaks and the respiration when the NIV 

algorithm was not activated.[8] 

 

MIT developed a mechanical ventilator, with the intention to 
make this technology available for everyone and provide the 

best safety-focused information on the automation of a manual 

resuscitator, used in longer-term ventilation. [9]   

 

A student from the MIT used a Kalman filter with the 

objective of estimate 𝑥𝑘  which is the information bearing signal 

and 𝑛𝑘, which is the additive noise from a general form of 
describing signals. [10]. He proposed a signal with the following 

equation: 

 

                               𝑦𝑘 = 𝑎𝑘𝑥𝑘 + 𝑛𝑘  (1.1) 

 

Where, 𝑦𝑘 is the time dependent observed signal, 𝑎𝑘 is a gain 

term, x𝑘 is the information bearing signal and 𝑛𝑘 is the additive 

noise. The main purpose was calculating 𝑥𝑘, the difference 

between �̂�𝑘 and 𝑥𝑘 itself is given by the error:   

 

                                    (𝑒𝑘) = (𝑥𝑘 − �̂�𝑘) (1.2) 

  
He inferred that the values should both be positive and 

increasing, the chosen function was the squared error function. 
The expected value of the error function was stated by the 

following equation:   

 

                              Cost 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ((𝑒2
𝑘)) (1.3) 

  

The results from the mean square function:   

 

                                         ∈ (𝑡) = 𝐸(𝑒2
𝑘)  (1.4) 

 

 

He shared that even though the mean square error was 
intuitive, it was also somewhat heuristic, so they calculated 

maximum likelihood too. In this case V𝑘 is the associated 
measurement error, which the author assumes to be a white 

noise process (w𝑘) with its correspondent covariance. Through 
Gaussian distributions the systems errors, were found and the 

covariances of the two noise models were given by:   

  

                                         𝑄 = 𝐸(𝑤𝑘𝑒  𝑘
𝑇  )  (1.5)  

 

                                         𝑅 = 𝐸(𝑣𝑘𝑣  𝑘 
𝑇 )  (1.6) 

From the mean square function (2.4), he stated the following 

equivalence:   

 

                                         𝐸(𝑒𝑘𝑒  𝑘 
𝑇 ) = 𝑃𝑘  (1.7) 

 

Where, 𝑃𝑘 is the error covariance matrix at time k. To further 

understanding and expansion, the equation is now:  

                     𝑃𝑘 = 𝐸(𝑒𝑘𝑒  𝑘 
𝑇 ) = 𝐸[(𝑥𝑘 − �̂�𝑘)(𝑥𝑘 − �̂�𝑘)

𝑇  (1.8) 

 

By assuming that the prior estimate of �̂�𝑘 is called �̂�′𝑘 and it 
was gained by the knowledge of the system and that it is possible 
to update the equation for a new one that combines the new data 

with previous estimations, he stated that:  

  

                               �̂�𝑘 = 𝑥´ ̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥´̂𝑘)  (1.9) 

 
Continuing with substitution he obtained the final error 

covariance updated equation:  

 

                 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃´𝑘(𝐼 − 𝐾𝑘𝐻)𝑇 + 𝐾𝑘𝑅𝐾  𝑘
𝑇 )       (1.10) 

 

Where 𝑃′𝑘 is the prior estimate of 𝑃𝑘.  

  
Once this equation was calculated they followed to calculate 

the matrix. The final recursive algorithm is explained in Figure 

1. 

  
Figure 1.- Kalman Filter Recursive Algorithm. 

 

 

II. THEORETICAL BACKGROUND  

A Kalman filter has a large amount of advantages, one of 
those is that it is a recursive process, which means that we can 
incorporate new data without having to reformulate all the 

algorithm. [11]. 

 

An important condition for an estimation to be considered 
accurate is that the system must be observable, meaning that the 
information from the behavior of both the initial and final state 

is available. Observability for discrete-time systems can be 

defined as: 

 

                          𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)          (2.1) 
 

                          𝑦(𝑘)  =  𝐶𝑥(𝑘)  +  𝐷𝑢(𝑘)             (2.2) 
 

It is said that if there is a finite number of time steps (k) so 

that the information from the input sequence (u) and the output 
sequence (y) is enough, we can then determine the initial state 

of the system [12]. 
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State variables and eigenvalues con be obtained through 
differential equations and measurements made on the system.  

The Kalman filter provides an estimate with an inevitable level 
of uncertainty, but with the cost or loss function we are capable 

of determining how well the filter works [13].  

 

The extended Kalman filter has been applied on non-linear 
estimations for machine learning applications and dynamic 
systems. In this case the state approximation is given by the 
Gaussian variable which can introduce large errors in the true 

posterior mean and covariance of the transformed variable. The 
classic framework involves an estimation of the state of a 

discrete-time nonlinear dynamic system: 

 

                                  𝑥𝑘+1 = 𝐹(𝑥𝑘,𝑣𝑘,)  (2.3) 

 

                                  𝑦𝑘 = 𝐻(𝑥𝑘,𝑛𝑘,)  (2.4) 

 

where 𝑥𝑘 represents the unobserved state of the system and 

𝑦𝑘  is the observed signal. The process noise 𝑣𝑘  drives the 

dynamic system, the observation noise is given by 𝑛𝑘 and H and 
F are assumed known. This is the standard method of choice to 
achieve a recursive maximum likelihood estimation of the initial 

state [14].  

 

To show and explain our results and analysis process, this 
document is going to be divided in different sections, starting 
with an introduction and following on the next chapter our 
theoretical background, then our description of the applied 

calculations as well as an explanation of our model, our results 
and analysis. Finally, we will share our discussion and 

conclusion of our model.  

III. METHODOLOGY  

Since our aim is to obtain the signals from the angular 
velocity, torsional torque, and angular position we must analyze 

their respective formula and equation used to model our system. 

                

                     

                                
𝑑𝑎(𝑡)

𝑑𝑡
=

𝑤(𝑡)

𝐾𝑒
  (3.1) 

 

Where Ke = 3 (gear ratio)  

  

          
𝑑𝑤(𝑡)

𝑑𝑡
= −

𝐾𝜃𝐾𝑒

𝐽𝜃
𝑎(𝑡) −

𝐵𝜃

𝐽𝜃
𝑤(𝑡) +

1

𝐽𝜃
𝑇(𝑡)  (3.2) 

 

Where:  

 

𝐾𝜃 = 0.01(𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠)  (𝑁/𝑚) 

𝐽𝜃 = 25(𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎) (𝑁𝑠2)/𝑚 

𝐵𝜃 = 2(𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡) (𝑁𝑠)/𝑚  

 

          
𝑑𝑇(𝑡)

𝑑𝑡
= −

𝐾𝑚2

𝐿𝑘𝑚1
𝑤(𝑡) −

𝑅

𝐿
𝑇(𝑡) +

1

𝐿𝐾𝑚1
𝑉(𝑡)  (3.3) 

 

Where: 

 

𝐾𝑚1 = 100(𝑠𝑝𝑒𝑒𝑑 − 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜) [Vs/rad  

𝐾𝑚2 = 2.5(𝑡𝑜𝑟𝑞𝑢𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜) [A/Nm]  
𝑅 = 5(𝑚𝑜𝑡𝑜𝑟′𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒) [Ω]  
𝐿 = 0.82(𝑚𝑜𝑡𝑜𝑟′𝑠 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑦) [Ω𝑠]  

  

With these initial values we generated the construction of 

the system in state space representation.   

 

  

 Figure 2.- space of states representation 

Then we proceeded with the substitution of values. 

  

  

 Figure 3.- values of the space of states representation 

      After we obtained the differential equations of the system 
and represented the system in a state-space representation, we 
designed an algorithm in MATLAB to get the system’s output. 

First, we designed the initial matrix A with experimental results 

shown in Figure 3.  

 

The system was modeled in its state-space representation 

(see Figure 4) in order to obtain the angular position, torsional 
torque and angular velocity from the system. To obtain them we 
used a parametric identification algorithm with one input and 

multiple outputs programed in MATLAB.  

  
Figure 4.- Simulation in space of states  

We followed by testing the algorithm with one volt as an 
input, the results are shown on the following graphs (see from 
Figure 4 to Figure7). Each parameter corresponds to every 
output from the system, showed in the previous programmed 

algorithm.  

  

  
Figure 5.- Angular position  
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Figure 6.- Angular Velocity 

 

  
Figure 7.- Torsional torque 

 
Figure 8.- Torsional Torque, angular position, and angular Velocity 

  
Now that we know exactly how the system behaves and how 

the parameters react to the original values and its arrangement 
inside a matrix, we can work on our proposal for a new matrix 
A, and then determine if these values can actually work for our 

system by calculating the square error of our results compared 

to the originals.   

IV.  RESULTS  

We programmed an intelligent algorithm based in the 
differential equations that compose the initial matrix A. The 
algorithm had the responsibility to analyzes all the differential 
equations and gives us the values that were closer to the initial 

matrix A.  

 

Before we iterated the algorithm several times, we obtain 
very similar parameters as we can see in Figures 8, 9 and 10. 

The problem was that the angular velocity values were inverted 

as we can see in Figure 10. 

 
Figure 9.- Angular position 

      

 
Figure 10.- Angular velocity 

 

 
Figure 11.- Torsional Torque 

 

Even though the algorithm were transposing the angular 
velocity values we decided to implement in order to analyze it 
performance. When we were analyzing the performance of the 

algorithm using the estimated matrix A, we observed that the 
angular velocity error did not decrease as we can see in Figure 

12.  

 

 
            

Figure 12.- Angular Velocity Error   

  

Then we decided to implement the same algorithm, but this 
time providing the angular velocity values transpose. After we 
iterate again the algorithm, we obtained correctly the estimated 
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initial matrix A. Furthermore, the algorithm performs in the way 

that we wanted. 

Table 1.- Matrix comparicion  

Initial matrix A Initial matrix A with 𝜔T 

[
 
 
 
 
 0

1

𝐾𝑒
0

−
𝐾𝜃𝐾𝑒

𝐽𝜃
−

𝐵𝜃

𝐽𝜃

1

𝐽𝜃

0 −
𝐾𝑚2

𝐿𝑘𝑚1
−

𝑅

𝐿]
 
 
 
 
 

 

[
 
 
 
 
 0

1

𝐾𝑒
0

(−
𝐾𝜃𝐾𝑒

𝐽𝜃
)𝑇 (−

𝐵𝜃

𝐽𝜃
)𝑇 (

1

𝐽𝜃

0 −
𝐾𝑚2

𝐿𝑘𝑚1
−

𝑅

𝐿

)𝑇

]
 
 
 
 
 

 

 

Now the algorithm reduces the angular velocity error as we 

can see in the Figure 13.  

 
 

Figure 13.- Angular Velocity Error   

 

From the best algorithm we encounter the following values 

for each linear parameter: 

 

• Ke = 2.8 (gear ratio) 
• 𝐾𝜃 = 0.01(𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑡𝑖𝑓𝑛𝑒𝑠𝑠) [𝑁/𝑚]  
• J𝜃 = 25 (torsional moment of inertia) [Ns2]/[m] 
• B𝜃 = 2(viscous damping coefficient) [Ns]/[m]  
• Km1 = 100 (speed-voltage ratio) [vs] /[rad] 
• Km2 = 2.25(torque – current ratio) [A] /[Nm]  
• 𝑅 = 5(𝑚𝑜𝑡𝑜𝑟′𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒) [Ω]  
• 𝐿 = 0.8(𝑚𝑜𝑡𝑜𝑟′𝑠 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑦) [Ω𝑠]  

Then we proceeded to replace the initial matrix A values to 

the estimated matrix A values.   

 
 Figure 14.- Values of the Estimated matrix A  

 

Estimated matrix A: 

  

  

Figure 15.- Estimated matrix A  

 

We obtained the following system by approximating the 

values from the estimated matrix A:  

  

Figure 16.- final system (Ax+Bu)  

 
In order to determine our error, we compared our matrixes. 

Since we wanted this error to be as minimum as possible, we 

will later equal it to cero, to proceed with our calculations. (See  

Figure 13). 

 

                               (𝑛𝑇) = (𝑛𝑇) − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛𝑇)  (4.1)  

  

      
Figure 17.- Obtaining our square error  

  
To calculate the error, we needed to operate different matrix 

equations, so we started by defining the real and estimate output.  

  

where:  

 

                               (𝑛𝑇) = 𝑅𝑒𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡       (4.2) 
 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛𝑇) = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡  

  

Then we had that the error equation is squared:  

   

           𝐸3𝑋3(𝑛𝑇)
2 = 𝐸(𝑛𝑇)3𝑥1 ∗ 𝐸3𝑥1(𝑛𝑇)

𝑇   (4.3) 

  
This derives from the error in respect to the variable of 

interest, this will help us later on making it easier for us to obtain 

our variable of interest.   

 
𝑑𝐸2(𝑛𝑇)

𝑑𝐴(𝑛𝑇)
=

1

𝑎
(𝐸2(𝑛𝑇) − 𝐸2(𝑛𝑇 − 𝑇)) + 𝐴(𝑛𝑇 − 𝑇) − 𝐴(𝑛𝑇)      (4.4) 
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The derivative of the error was equalized to zero, since we 
needed the error to be as low as possible, in order to minimize it 

and obtain our variable of interest.  

 

            𝐴(𝑛𝑇) =
1

𝑎
(𝐸2(𝑛𝑇) − 𝐸2(𝑛𝑇 − 𝑇) + 𝐴(𝑛𝑇 − 𝑇)  (4.5) 

   
Now that we have the variable that we needed to find, we 

then proceeded to calculate the estimated output, which is:  

 

                                       𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = (𝑛𝑇) + 𝐵𝑢  (4.6)   

 

 
Figure 18.- Angular position error  

 

 
Figure 19.- Angular velocity error 

 

 
Figure 20.- Torsional Torque error 

 

As we can see from our graphics, our error is very low, since 
it is variating from ranges of x10-5, showing that our estimated 
values were indeed correct, and they are very accurate in terms 

of the results obtained from comparing both matrixes.   

 
Now that we obtained the error for each value, we proceeded 

to graph our three main values: torsional torque, angular 

velocity, and angular position, to see how much they resemble 

the original graphs we obtained.    

 

 
Figure 21.- Estimated angular position 

 
Figure 22.- Estimated angular velocity 

 

Figure 23.- Estimated torsional torque 

  

 
Figure 24.- Comparison of actual with estimated output  

 

The graphics for the original values and the estimation are 
almost identical as we can see in Figure 24. We obtain an 

accuracy of 98% of similarity between both matrixes. 

 
Now in order to obtain our Eigenvalues from the initial 

matrix A, we used MATLAB to create an input for every single 

value that the matrix A had, and then generate these eigenvalues. 
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 Eigenvalues:  

 

A=  

[
 
 
 
 

−

0
1

𝑘𝑒
0

𝐾∅𝐾𝑒

𝐽∅
−

𝐵∅

𝐽∅

1

𝐽∅

0 −
𝐽𝐾𝑚2

𝐿𝐾𝑚1
−

𝑅

𝐿]
 
 
 
 

+ [
 𝜆 0 0

0 𝜆 0

0 0  𝜆

] 

 

𝑑𝑒𝑡

[
 
 
 
 
 𝜆 −

1

3
0

(0.01)(3)

25
𝜆 +

2

25
−

1

25

0
2.5

(0.82)(2.5)
𝜆 +

5

0.82]
 
 
 
 
 

 

 

= 𝜆 [(𝜆 +
2

25
) (𝜆 +

5

0.82
) + (

1

25
)(

2.5

(0.8)(2.5)
) ]  

+ −
1

3
⌈(

(0.01)(3)

25
)(𝜆 +

5

0.82
)⌉ 

 

=𝜆3 + 6.17756𝜆2 + 0.792283𝜆 − 0.002328 = 0 

 

• 𝜆1= -6.0844 

• 𝜆2= -0.0833094 

• 𝜆3= -0.0048076 

For the estimated matrix A, we obtained the following 

Eigenvalues to compare them with the original ones:   

  

 

  

• 𝜆1 = −6.24982  

• 𝜆2 = −0.0748372  

• 𝜆3 = −0.00534509  

 

V. CONCLUSIONS AND DISCUSSIONS  

With a simple algorithm programmed in MATLAB and the 

use of differential equations we correctly applied the state space 
method which allowed us to obtain the best parameter 
estimation possible as we can see from figures 21 to 24, as well 
as the lowest error regarding the parameters estimation with an 

accuracy of 98% shown in figures 14 to 17.  

  
As we can see, our eigenvalues are very similar to the ones 

obtained in the original matrix, with variations of 0.001 and a 

minimum range of error. Based on the results obtained we can 
determine our filter as successful and efficient, since it does 
approximate to the original proposed matrix and the difference 

between them both is minimal. In terms of the filter, we 
conclude that the output of a differential equation can be in fact 

estimated by discretizing the equation in finite differences and 
in order to minimize the associated error. The mean square error 
method is effective to reduce differences between the final and 
estimated input in order for the algorithm to converge by only 

having to adjust the parameters of interest.  

  
Compared to other parametric identification algorithms such 

as the non-invasive ventilation algorithms (NIV), MIT 

mechanical ventilator system, and decision support system for 
mechanical ventilation (DSS) our intelligent algorithm is 

computationally less expensive.   
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