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Abstract— Due to the COVID-19 pandemic, wearing a mask 
is mandatory in public spaces, as properly wearing a mask offers 
a maximum preventive effect against viral transmission. Body 
temperature has also become an important consideration in 
determining whether an individual is healthy.  In this work, we 
design a real-time deep learning model to meet current demand 
to detect the mask-wearing position and head temperature of a 
person before he or she enters a public space. In this experiment, 
we use a deep learning object detection method to create a mask 
position and head temperature detector using a popular one-
stage object detection, RetinaNet. We build two modules for the 
RetinaNet model to detect three categories of mask-wearing 
positions and the temperature of the head. We implement an 
RGB camera and thermal camera to generate input images and 
capture a person’s temperature respectively. The output of these 
experiments is a live video that carries accurate information 
about whether a person is wearing a mask properly and what 
his or her head temperature is. Our model is light and fast, 
achieving a confidence score of 81.31% for the prediction object 
and a prediction speed below 0.1s/image. 

Keywords—neural network, object detection, deep learning, 
RetinaNet. 

I. INTRODUCTION

 In recent years, the development of neural networks and 
deep learning has vastly contributed to object classification 
and detection performance [13, 16]. The modern deep learning 
object detection paradigm is based on two-stage detectors and 
one-stage detectors. The dominant two-stage detectors in the 
R-CNN family [3, 10] perform well on detection accuracy. 
Numerous developments on Faster R-CNN [10] have 
generated a set of candidate proposals called RPN [10] in 
stage one and integrated them with a strong classifier at the 
second stage into a single Convolution Neural Network 
(CNN). Meanwhile, the popular one-stage detectors SSD [8], 
YOLO [1] have reignited interest in modern object detectors. 
One-stage detectors have now turned their focus toward speed 
and accuracy. The RetinaNet detector [7] is a single network
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designed with a new concept involving anchor boxes by RPN, 
Feature Pyramid Network [6], like in SSD, and the network’s 
innovation focal loss has been shown to match the accuracy of 
a two-stage detector at a similar speed. 

Our work uses deep learning to detect whether someone is 
wearing a mask properly or not. To do so, we build a network 
to learn the features of our input image dataset to recognize 
three kinds of mask-wearing positions. We define those 
positions into three classes of the object, then set the 
classification sub-network and regression sub-network in the 

Fig. 1. The detected object from two different input images from the 
RGB camera and thermal camera. A) The output of Module 1 detects 
the position of the mask and classifies it into the corresponding class 
label with a confidence score. B) Detected “head” label of output image 
in Module 2 from the thermal camera. C) Output image of Module 3. 
A combination of the mask-wearing position and head temperature of 
the detected head are combined into a single output image containing 
object prediction and object temperature 
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last layer of the RetinaNet. The output of Module 1 and 
Module 2 determine the class of a mask-wearing position and 
show the bounding box on the predicted class. To improve the 
comprehensiveness of preventive action in the real world, in 
Module 3 we combine two predicted results from Modules 1 
and 2 then generate an image with a bounding box and show 
the highest temperature of a predicted head bounding box 
from the thermal camera. We design all modules in one single 
pipeline network as a light deep learning network for other 
applications. 

II. RELATED WORKS 
Currently, many famous object detection methods are used 

to detect an object through one or two visible camera 
combinations to explore more helpful features and collect 
more additional datasets. Person re-identification recognition 
is one problem that can be solved by taking advantage of a 
thermal camera [14]. Visual inputs of thermal cameras have a 
valid appearance and capture accurate temperature 
information under any illumination or lighting conditions.  

 Thermal images are commonly used as additional input 
images to capture more supplementary feature information via 
a convolutional neural network. An experiment by [2] shows 
the object detection improvement in the thermal image 
domain by borrowing features from the RGB image. A 
combination system for image recognition in [9] also utilizes 
the combination of two different input images to reduce 
captured noise in RGB images. Exploitation data for enhanced 
object detection was also shown in [5] by using a combination 
of two networks, Retina and U-Net [11], to fuse a one-stage 
object detector and U-Net for semantic segmentation. Another 
famous object detection method that combines two models to 
achieve the highest accuracy is RefineNet [15]. The idea 
behind these combinations relies on two inter-connected 
modules; one for anchor refinement and another for object 
detection. 

We adopt the same idea from those previous works by 
simply modifying the combination of two similar backbones. 
Since thermal cameras were designed to capture the heating 
surface in all captured frames, we needed to apply deep 
learning image detection to capture heat temperature only on 
the detected object. Unlike previous experiments, here we 
formulate two input images from a visible RGB camera and 

thermal camera to get more additional information about the 
temperature of the specific object detected. We manage the 
detection network to get accurate coordinates from both 
models, especially for the thermal camera, to capture 
temperature at a specific point. This work aims to produce an 
image result that contains the detection object and the 
temperature of the object. The result must include complete 
information on specific task object detection in a single 
pipeline network of 2 RetinaNet [7] with ResNet50 [4] as a 
convolutional neural network backbone for object 
classification task. An additional module is added to expand 
the prediction result and combine it into one single output 
bounding box prediction. 

III. METHODOLOGY 
In this section, we first introduce our mask and thermal 

detection pipeline before discussing the experiment details of 
the three main modules: 1) Object detector network, 2) Head 
thermal detector and 3) Combination of both output images. 

A. Framework Description 
As mentioned above, in this experiment we implement 

RetinaNet as an object detector network. RetinaNet is 
composed of a backbone network and sub-network. We use 
ResNet50 as a convolutional neural network backbone for 
computing feature maps of the input image dataset. We adopt 
all detector network parameters and loss function from  [4] as 
built on FPN. We simply implement focal loss formula from 
RetinaNet into our multi-class case for both networks to yield 
a confident prediction on the class of mask and head images. 
We utilize the advantage of an FPN for a multi-scale feature 
pyramid from a single image resolution. Since our dataset is 
limited, we have to optimize ResNet50 and FPN to calculate 
feature maps and predict the class. Much like RetinaNet, we 
use the same parameter for the RPN, but modify it for 3 
classes of label detection and adjust the threshold. We assign 
anchor intersection-over-union (IoU) threshold and each 
anchor is assigned one object class in one bounding box 
prediction.  

In this network, two sub-networks work in parallel 
between class prediction and regressing the offset from each 
bounding box.  Classification sub-network predicts the 
probability of object for each anchor with FCN network 

 
 

Fig. 2. The network architecture of the 3-module object detection. Two different input images are trained into the object detection backbone and each of the 
networks produces a class prediction and label. Lastly, Module 3 will use the results from two other modules and combine them to deliver a new output. 
All training and testing processes are run in one single light pipeline task. 
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attached to each FPN level, and shares similar parameters for 
all layers of FPN. Our FPN input image channels for both 
networks consist of three channels before applying the 3x3 
convolution layer size in each subnetwork. Sigmoid activation 
is applied for class prediction in the last layer. The sub-
network of the regression box also attaches FCN to each 
pyramid level for the regressing offset of an anchor box near 
the ground truth bounding box. 

In contrast with Network Module 1, as shown in Figure 2, 
in our experiment of Network Module 2 we highlight the 
problems on the regression offset of the bounding box to 
identify the maximum captured temperature of the predicted 
bounding box. We integrate all modules of this detector 
framework into one pipeline thread function and add one last 
module for a combination of two detection results. 

The main aim of the detector module is to produce the 
exact mask-wearing position and head position of an input 
image. In order to determine the class prediction of our 
network, we calculate the precision of our class detection 
result from Module 1 and Module 2 by using the confidence 
score prediction metric. The confidence score defines the 
probability of the event or probability of the input to fall into 
different classes. Confidence value is calculated for all testing 
images, to determine how confident our algorithm is for y 
class. To comply with real-time application requirements, our 
network has to reach maximum speed in the prediction 
process; therefore we show the prediction time of our live 
video in testing time. 

B. Combination Module 
Module 3 is a bounding box combination module from 

two different prediction results. In this case, we assume that 
the input of both prediction results are different images and 
resolution scales. The concept of this module is to add two 
bounding box predictions of two different trained networks 
with a typical image from each network. Module 1, with an 
image from the RGB camera, will produce ��� image 
���� ��� �	� �	
  bounding boxes and �������
�� class labels. 
Module 1 will generate y class labels based on the loss 

                                                           
[1] 1 https://www.kaggle.com/shreyashwaghe/medical-mask-dataset 
[2] 2 https://github.com/fizyr/keras-retinanet 

function of a classification network setting. Module 2, with 
an image from a thermal camera, produces �	� images 
containing bounding box coordinates ���� ��� �	� �	
  and 
����
 class label and c for temperature (Celsius). Module 3 
runs through two modules as a thread of two algorithms in 
parallel. The testing procedure for one image or one frame is 
shown in Algorithm 1. 
 
Module 1: 

While True: 
 Get testing image X1 
 Detect mask coordinate ���� ��� �	� �	
  
 If detected: 
  Draw �� bbox ���� ��� �	� �	
  
 Classify ���into y class label 

Module 2: 
 Set temperature as global variable 
 Set initial temperature c = 0 
 While True: 
 Get testing image X2 
 Detect head coordinate ���� ��� �	� �	
  
 If detected: 
  Draw �	 bbox ���� ��� �	� �	
  
  Set ������������ 
Module 3: 
 Set image output resolution 

Draw output image Z with bbox ���� ��� �	� �	
, ����, and y class 
label [good, bad, none] 

 
With the assumption that both cameras are positioned at the 
same angle, we are able to precisely show one identical 
predicted object. The output of Module 3 is a combination 
between the bounding box prediction of y class labels and 
temperature c of the predicted object as shown in Figure 1.   

IV. EXPERIMENTS 
In this section, we evaluate our proposed mask and head 

temperature detector system by experimenting on a live 
camera as an input of test images. We introduce how we 
evaluate the training parameters and testing results of each 
category of detection of our method. Details of all experiment 
settings for live testing are also described in this section. We 
additionally show failed and false detection results from our 
method. 

A. Evaluation Method 
We train the network for an RGB camera with a public 

medical mask dataset from the Kaggle dataset1. The dataset 
contains 678 images with annotations and 3 class labels y 
(good, bad, none) that indicate mask-wearing position. From 
the dataset for Module 2 of the thermal image, we collect 800 
captured thermal images. In contrast to the treatment of RGB 
images, for the thermal image dataset we only define one y 
(head) class label since technically we only consider taking 
the highest temperature inside the bounding box prediction 
rather than classifying the class image. We divided the 
collected dataset into training, validation, and testing data. 
Practically speaking, we employ all testing images from the 
live video source to capture in real-time temperature. 

We implement Keras RetinaNet 2  object detection 
framework as our base framework. We follow a similar 
configuration of RetinaNet basic parameters. To simplify the 
classification training, we set image size at 800 x 1333 pixels 

 

Fig 3. Sample of detected images from different angles and different y class 
labels of mask-wearing positions. A, C) Images captured from real-time 
RGB camera with all classes of mask positions. B, D) Classification images 
from the testing dataset with class label predictions.  
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for both modules as a default input size. We build ResNet50 
as a backbone model on top of RetinaNet, and load ImageNet 
pre-trained weight as a starting initial weight. ImageNet with 
pre-trained weight has shown outstanding performance in the 
ImageNet Large Scale Visual Recognition challenge for 
classification tasks [12].  

An output image ��  from Module 1 contains the 
prediction of the class label and the bounding box with the 
threshold setting. In this experiment, we set the NMS 
threshold to 0.5 for the IoU threshold value to determine 
when a box should be suppressed. This bounding box 
configuration will be intuitively selected based on the best 
score of prediction class results. We show the prediction 
results for the classification and bounding box in Figure 1. 
We straightforwardly construct similar parameters on 
Module 2 to simplify the networks 

The main task of Module 2 is to detect the head class after 
obtaining the maximum temperature value inside the 
bounding box prediction. During the testing with real-time 
input video, we did encounter some failed detection problems 
with Module 2. The output of Module 2 failed to detect head 
class, after which Module 3 failed to update the real-time 
temperature for a short period. As depicted in Figure 4.A, the 
output image showed the temperature of the last detected 
bounding box.   

All training processes of this experiment were run on 
Microsoft Windows with one NVIDIA GeForce GTX 1080i 
graphic card. The training accuracy of y class predictions are 
depicted in Figure 3. We built a visual testing environment 
from a high-resolution RGB camera with a maximum 
resolution of 720 pixels/30 fps and one radiometric longwave 
infrared camera with 160x120 active pixels. 

B. Results 
We evaluated our network prediction by calculating the 

confidence score of the prediction y class label in Modules 1 
and 2. We used an unseen test image to calculate the 
prediction results. The confidence score indicates the 
percentage of correct predictions out of all predictions. As we 
defined in our method, we only consider a prediction to be 
correctly labeled if the IoU � 0.5. The average scores are 
shown in Table I. 
 As shown in Figure 4, some prediction results of head 
detection were not as accurate as expected. Module 3 
sometimes had difficulty detecting an input from another 
thermal camera with different technical specifications. In 
contrast, when we experiment with the same input image from 
the same thermal camera, Module 3 works well. This result 
impacts the output of Module 3, but this problem is instantly 

resolved after Module 2 detects the head position and updates 
it in real-time in Module 3. We will consider enlarging the 
study in terms of variation and producing more datasets in the 
next experiment for both modules. 

V. CONCLUSION 
In this work, we successfully construct a deep learning 

object detection network to detect and capture the temperature 
of a specific point inside a predicted bounding box. We 
propose a novel approach consisting of two networks trained 
simultaneously from two different inputs, and combined on 
the last module to fuse certain pieces of information. By 
utilizing ResNet50 on top of RetinaNet we successfully detect 
and classify 3-class labels on Network Module 1 and Module 
2. Future work could involve more training and diverse 
thermal head or facial images to enlarge the dataset.  
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