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Abstract—The real-time reproduction number (Rt) of COVID-
19 in 77 provinces of Thailand during January–May 2020 are
obtained by fitting a modified SEIR model to the actual data
reported by the Thai Ministry of Public Health (MoPH). The
spread of COVID-19 in Thailand is the most rapid in March
2020, when the number of daily new confirmed cases (DNCC)
rises to above 100 cases per day. During this period, the calculated
Rt is above 3. At the beginning of April 2020 following the lock-
down, the calculated Rt drops sharply to below 1 and the number
of DNCC decays progressively until it reaches a single digit in
mid-May 2020. The model is also used to forecast the COVID-19
situation of every province in Thailand under different scenarios.
It is scheduled to automatically re-fit to new data reported daily
by MoPH so that Rt and the forecast results keep the users
up-to-date in near real-time.

Index Terms—SARS-CoV 2, COVID-19, pandemic, Thailand,
real-time reproduction number, forecast, modelling, python, scipy

I. INTRODUCTION

In December 2019, Coronavirus Disease 2019 (COVID-
19) originated in Wuhan, China [1]. The human-to-human
transmission of this virus was first confirmed in January
2020 [1]. The transmissibility of asymptomatic cases and
symptomatic cases during the pre-symptomatic phase makes
it hard to identify and isolate all the infectious cases from
susceptible population [2]–[4]. This allows the disease to
spread rapidly and widely across the globe.

The first symptomatic case in Thailand, a 61-year-old Chi-
nese female tourist from Wuhan, was found on 8th January
2020. One week later, on 15th January 2020, the first Thai
symptomatic case, a 73-year-old female who just came back
from a trip to Wuhan, was reported. On 31th January 2020, the
first Thai who had never been abroad was found infected. This
person, a 50-year-old male taxi driver, infected the COVID-19
from a symptomatic Chinese passenger he took to the hospital.

In January–February 2020, the COVID-19 situation in Thai-
land remained stable with ≈ 1 newly symptomatic case per
day on average, most of which were foreign tourists from
China. Thai people with positive COVID-19 lab test during
this period were all infected from either travelling abroad or
foreign visitors in Thailand. No Thai-to-Thai transmission was
reported until March 2020, when there were 3 super-spreading
events originated from the following 3 clusters:

1. Nightclub in Thonglor, Bangkok: The first positive lab
test was on 12th March 2020, soon after which Bangkok
found more than 50 cases infected from night clubbing
and drinking.

2. Lumpinee boxing stadium, Bangkok: There was a major
boxing event on 6th March 2020 with thousands of
participants. The first positive lab test found among these
participants was on 14th March 2020 in one of the event
organizers, followed by more than 150 other positive
cases. By the time they knew they were infected, these
positive cases had already spread the disease widely in
multiple provinces during their pre-symptomatic phase.

3. Jhor Qudamak & Ulamak Malaysia 2020 in Kuala
Lumpur, Malaysia: This event was held from 27th Febru-
ary to 2th March 2020. There were 132 Thai participants
in the event, around 50 of which were later found to have
positive COVID-19 test. The majority of them returned
back home in southern Thailand immediately after the
event and had already spread the disease widely (mostly
in Yala province) by the time the first positive lab test
among them was reported on 16th March 2020.

During these 3 super-spreading events, the cumulative num-
ber and the number of Daily New Confirmed Cases (hereafter
DNCC) soared up and reached 1, 000 cases and 100 cases/day
respectively in late March 2020. On 25th March 2020, the
Royal Thai Government (RTG) declared the national state
of emergency, which became effective on 26th March 2020
followed by multiple measures in order to take the COVID-
19 situation under control. These measures mainly focused on
preventing the spread of COVID-19 in public areas and any
new super-spreading event from happening.

Since then, Thai people strictly follow the rules and recom-
mendations from the Thai Ministry of Public Health (MoPH),
including the implementation of social distancing. Public
health professionals actively perform case investigations and
contact tracing in order to quickly identify and isolate suspect
cases from susceptible population. Within 5 weeks, the number
of DNCC declines very rapidly to a single digit by early-May
2020.

Following the COVID-19 recovery in Thailand, there are
debates about possibilities of easing the lock-down measures
to recover the economic activity. The RTG has to make
decisions on what measures should be eased at what time,
and stay prepared for any situation that may happen after the
lock-down easing. It is therefore essential to have a tool that
helps RTG monitor and forecast the COVID-19 situation in
near real-time.

For this reason, the author, as part of the Royal Thai Govern-
ment COVID-19 modelling team, has constructed a mathemat-
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Fig. 1. From [9]. Diagram illustrating the model used in this study.

ical model of COVID-19 based on actual epidemiological data
updated daily to calculate the real-time reproduction number
(Rt) and forecast the number of infected people in every
province in order to provide early indicators of the COVID-19
situation in Thailand to the decision makers in near real-time.

II. METHODOLOGY

This work constructs a modified Susceptible-Exposed-
Infectious-Removed (SEIR) model and fit it to the actual
DNCC data of every province in Thailand reported publicly by
MoPH. In this section, we describe how values of Rt and the
forecast results are obtained. We will first begin with details
of the modified SEIR model in sections II-A and II-B. Then,
section II-C will explain how we fit the model to the data.

A. Forward Modelling

The forward model is a modified deterministic SEIR model,
which has been used in several studies for modelling the
COVID-19 (e.g. [5]–[8]). In addition to what the classical
SEIR model implements, we divide each of the Exposed (E)
and Infectious (I) phases further into 2 phases “E1 and E2” and
“Is and Ia” respectively where E1 = exposed, not infectious,
no symptoms; E2 = exposed, pre-symptomatic, infectious; Is
= infectious, symptomatic; and Ia = infectious, asymptomatic.
This is similar to what the Norwegian Institute of Public
Health (NIPH) implemented [9] (as shown in Fig.1).

In Fig.1, phase S (susceptible) refers to anyone who has
never been exposed to the disease. Phase E1 is when anyone
from phase S gets exposed to the disease but is not infectious
and shows no symptom of infection. After phase E1, there
are two possible routes the disease can develop: either route
E2–Is–R or route Ia–R.

We let the probability of entering route E2–Is–R be = 1−pa
and the probability of entering route Ia–R be = pa (these
two add up to 1). An infected person entering route Ia–R

will never show any symptom (asymptomatic) but will be
infectious during phase Ia. On the other hand, An infected
person going through route E2–Is–R will show symptoms in
phase Is and he/she will be infectious during phases E2 and Is.
Both routes will eventually terminate at phase R (recovered),
which is not infectious and no longer susceptible.

We let the phase-changing rate from E1 to E2 be λ1 (1− pa)
and from E1 to Ia be λ1pa where λ1 is the decay constant of
phase E1; the recovery rate from either phase Is to R or phase
Ia to R be γ; and, the decay constant of phase E2 be λ2.

The susceptibles (phase S) can get infected from 3 different
ways: 1.) from E2 at a rate = rE2βE2/N ; 2.) from Ia at a rate
= rIaβIa/N ; and 3.) from Is at a rate = βIs/N where N is
the number of population in the system we are modelling.

According to the MoPH report, the COVID-19 mortality
rate in Thailand is at around 2%. We therefore assume that the
death proportion can be neglected in the model calculation.
We also assume that pa, λ1, λ2, γ, rE2, and rIa are time-
independent and each of them is the same for every province
in Thailand. Whereas, β (which is the main parameter that
determines the COVID-19 transmission rate) depends on the
population density, behaviour, and culture in each province
including the local government measures and policies, which
can change with time. We hence let each province has its own
numerical values of β, which is time-dependent that changes
every 7 days.

We emphasize on monitoring the situation as a whole in
real-time, which requires fast and efficient calculations rather
than very complicated detailed algorithms. In order for the
model to run fast enough so that it can update and fit to
the actual data daily, we therefore do not divide different age
groups further into multiple models.

Our forward model has the governing system of ordinary
differential equations (ODEs) as follows:

Ṡ = −βS
N

(Is + rE2E2 + rIaIa) (1)

Ė1 = −λ1E1 +
βS

N
(Is + rE2E2 + rIaIa) (2)

Ė2 = −λ2E2 + λ1 (1− pa)E1 (3)

İa = −γIa + λ1paE1 (4)

İs = −γIs + λ2E2 (5)

Ṙ = γIs + γIa (6)
N = S + E1 + E2 + Ia + Is +R (7)

We numerically integrate this system of ODEs using the
odeint method in scipy.integrate library in python [10]. The
initial conditions we use are:

S(0) = N − E1(0)

E2(0) = Ia(0) = Is(0) = R(0) = 0

where E1(0) is an unknown parameter that can be found by
fitting the model to the actual data. This set of initial conditions
means that we define time t = 0 to be the date that the
infection in phase E1 is first present with no one in any of
the phases E2, Ia, Is and R.
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Hence, our forward model has unknown parameters as
follows: pa, λ1, λ2, γ, rE2, rIa, β, and E1(0). We let the
numerical value of each of pa, λ1, λ2, γ, rE2, and rIa be the
same for every province. But, β and E1(0) are not the same.
β of each province also changes every 7 days.

B. Mobility between Provinces

People can travel across provinces. This causes the disease
to spread from one province to another. Our model takes
this factor into account by allowing people to move between
provinces once daily. The model takes the daily number of
people travelling across provinces as an input, which can
change everyday.

We assume that the prevalence of each of the SEIR phases
(S, E1, E2, Ia, Is, and R) in travelers departing from a province
each day is equal to that found in the population of that
province on the same day. That is, suppose a province A (with
number of population = N ) on one day has the number of
people in phases S, E1, E2, Ia, Is, and R equal to S, E1, E2,
Ia, Is and R respectively and the number of people departing
from this province is =M , our model will assume that in these
M travellers there are S M

N , E1
M
N , E2

M
N , Ia M

N , Is M
N and

R M
N individuals in phases S, E1, E2, Ia, Is, and R respectively.

C. Data-Model Fitting

We use the curve_fit method from scipy.optimize library
in python [10] to fit the model to the actual data. The
curve_fit method seeks optimal values of the model’s unknown
parameters by minimizing the root mean square (RMS) error.

We define the error as the difference of the number of
DNCC between the actual data and the model results. The
actual number of DNCC comes from the MoPH daily report.
And, the modelled number of DNCC is calculated from the
phase-changing rate from phase E2 to phase Is, which is
= λ2E2 (see the right-hand side of (3) and (5)). This is based
on the assumption that the MoPH report has taken all the
symptomatic cases into account.

We first construct a forward model for the whole country
and fit it to the actual data from January to mid-May 2020
to find optimal parameters of pa, λ1, λ2, γ, rE2, rIa, β, and
E1(0), where β can change every 7 days. During the rapid
spread of COVID-19 in Thailand in March 2020, most for-
eigners were banned from entering the country. We therefore
assume in the model that the country can be approximated as
a closed system during January–May 2020 (i.e. no entering to
and departing from Thailand). To find optimal parameters, we
run the curve_fit method using the initial guess and the upper
and lower bound values of the model’s unknown parameters as
given in Table I. The initial guess values are similar to those in
the NIPH’s modelling [9]. Optimal parameters obtained will
be shown and discussed later in Section III (Table II).

Different province has different measures and policies for
COVID-19 prevention and control. Population density, culture,
and behaviour are also different. This results in a different
transmission rate, hence, a different value of β. In the next
step, we therefore model 77 provinces with 77 different

TABLE I
INITIAL GUESS VALUES OF THE MODEL PARAMETERS WITH THE LOWER

AND UPPER BOUNDS USED FOR RUNNING THE SCIPY.OPTIMIZE.CURVE_FIT
METHOD.

Parameter Initial Guess Lower Bound Upper Bound

pa 0.40 0 1
λ1 1/3 0 50
λ2 1/2 0 50
γ 1/10 0 50

rE2 1.00 0 10
rIa 1.00 0 10
β 0.15 0 1

E1(0) 2.60 1 20

models, each of which has its own values of β and E1(0).
But, every province will still use the same numerical values
of pa, λ1, λ2, γ, rE2, and rIa obtained earlier from the
whole-country modelling (see later in Section III Table II).
To find optimal values of β and E1(0) for each province, we
fit the province’s model to the actual provincial DNCC data
(reported by MoPH) using the curve_fit method similar to what
was implemented previously in the whole-country model. The
initial guess and the upper and lower bound values of β and
E1(0) are also the same (as listed in Table I).

D. Reproduction Number

By definition, Rt is the mean number of infections infected
directly from a single infective [11]. We can decompose Rt

into 2 components (multiplying together):
1. The mean infectious period: How many days on average

an infective can transmit the disease to others, and
2. The mean transmission rate: how many, per day, on

average there are new cases infected from an infective.
In the model, phases E2, Is, and Ia are infectious with the

mean lifetime (mean infectious period) = 1/λ2 , 1/γ, and
1/γ respectively (see (3), (5), and (4)), and the transmission
rate = rE2β, β, and rIaβ respectively (see (1)). Multiplying
these two components together gives the mean number of new
cases infected from an infective in phase E2, Is, and Ia =
rE2β/λ2, β/γ, and rIaβ/γ respectively. We add these three
terms together, each weighted by the probability of its route
(E2–Is–R route = 1− pa and Ia–R route = pa), to obtain the
mean number of infectious infected directly from an infective:

Rt = (1− pa)

[
rE2β

λ2
+
β

γ

]
+ pa

rIaβ

γ

= β

[
parIa + 1− pa

γ
+

(1− pa) rE2

λ2

]
. (8)

i.e., Rt can be calculated directly from the model parameters
fitted to the actual data.

III. RESULTS AND DISCUSSION

The optimal parameters obtained from fitting the model to
the actual data are listed in Table II. These are slightly different
from the values reported by [12] probably due to the diversity
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TABLE II
OPTIMAL PARAMETER VALUES OBTAINED BY FITTING THE MODEL TO THE

ACTUAL DATA USING THE SCIPY.OPTIMIZE.CURVE_FIT METHOD.

Parameter Optimal Value

pa 0.41
λ1 1.82
λ2 1.26
γ 0.13

rE2 1.31
rIa 0.80

E1(0) 2.83

of several factors among different countries such as climate
(e.g. temperature and humidity) and genetic differences, which
may respond/react to COVID-19 differently.

A. Fitting model to the historical data

The bottom panel of Fig.2 shows Rt obtained from fitting
the model to the actual data (shown in Fig.2, top panel) of
Thailand viewed as a single system. This graph shows that
Rt > 1 before the lock-down begins at the end of March.
Especially in early-March, there were 3 super-spreading events
happening simultaneously (see section I), during which the
number of DNCC soared up from below 10 to above 100 per
day (Fig.2, top panel). The calculated Rt also has a sharp rise
from around 1.5 to above 3 during the super-spreading events
in early-March 2020.

As stated in several studies (e.g. [11], [13], [14]), Rt is a key
indicator for monitoring pandemics including the COVID-19.
Fig.2 shows that Rt trend leads the trend of DNCC number.
In early-March 2020, Rt has risen sharply (from ≈ 1.5 to
≈ 3) one week prior to a significant increase of the number
of DNCC around mid-March 2020.

On 25th March 2020, the RTG announced the national state
of emergency, night curfew, and ban on incoming international
flights, which become effective on 26th March 2020. Social
gatherings and community events were prohibited. People
implemented social distancing and stayed at home. From then,
Rt calculated by the model suddenly dropped to below 1
(Fig.2, bottom panel), meaning that the epidemic was fading
out as shown in the top panel of Fig.2 where the number of
DNCC began to drop.

In addition to the whole-country view, we also calculate
Rt for every individual province updated daily. Fig.3 shows
the model results in two example provinces: Bangkok (left
column) and Phuket (right columns).

The COVID-19 outbreak in Thailand originated in Bangkok,
the capital city. Bangkok also has the highest total number of
confirmed cases in Thailand at around one half of the whole
country. The disease then spreads to other provinces due to
travel. In Fig.3, by comparing Bangkok (left column) to Phuket
(right column), we can see that both the number of DNCC and
Rt in Bangkok begin to rise one week before Phuket (early-
March vs. mid-March 2020).

Fig. 2. Top: number of daily new confirmed cases (DNCC) as reported by
the Thai Ministry of Public Health (MoPH) (pink bars) and as calculated
from the model (dark grey line). Bottom: real-time reproduction number of
COVID-19 in Thailand obtained by fitting the whole-country model to the
actual data during January–May 2020.

Nevertheless, the reason why we see the number of DNCC
and Rt in Bangkok rise before Phuket could also be because
the lab test for COVID-19 available in Phuket could begin later
than in Bangkok. If this was the case, it would result in a delay
of confirmed case findings in provinces outside Bangkok.

B. Forecasting

Once the optimal model parameters are obtained, we can
use the model to forecast time evolution of the number of
people in different SEIR phases (S, E1, E2, Ia, Is, and R)
in several different scenarios. From April 2020, Thailand can
control the COVID-19 situation very well. Rt stays below 1
and the number of DNCC keeps declining until it is below 10
in mid-May 2020 (as seen in Fig.2).

At the same time, some people demand easing of the lock-
down to recover the economic activity. The RTG has to find
out what measures could be eased, and how much the COVID-
19 situation will change after the lock-down easing. To answer
the latter question, the author (working as a Thai Government
Officer in collaboration with MoPH) uses this numerical model
to forecast the COVID-19 situation in 4 different scenarios:

1. Rt = 1 with no one allowed to travel between provinces,
2. Rt = 1 with normal travel between provinces,
3. Rt = 2 with no one allowed to travel between provinces,

and
4. Rt = 2 with normal travel between provinces.
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Fig. 3. Actual data and the model results for Bangkok (left column) and Phuket (right column). For details of the top and bottom row, see caption of Fig.2
(top) and 2 (bottom) respectively.

From (8), we can adjust the modelled Rt by adjusting β.
Numerical values of the remaining parameters (pa, λ1, λ2,
γ, rE2, and rIa) are kept unchanged as listed in Table II. In
the scenarios with normal travel across provinces, we estimate
the daily number of travellers between provinces from the total
number of visitors visiting each province in year 2018 reported
by the Thai Ministry of Tourism and Sports.

The forecast results of 2 example provinces (Bangkok and
Patum-thani) are shown in Fig.4. Blue and green lines show
that if Rt = 1 the number of DNCC in every province will
stay constant, and the effect of travel between provinces will
be insignificant. i.e., the disease is in the endemic equilibrium
when Rt = 1 as expected.

On the other hand, if Rt = 2, the number of DNCC in each
province will grow exponentially. Travel between provinces
will affect different province differently depending mainly
on the COVID-19 prevalence in that province relative to the
others.

For example, Bangkok (left panel of Fig.4), which is one of
the top 5 provinces that have the highest COVID-19 prevalence
in Thailand, will see a slower growth of DNCC if travel
between provinces returns to normal compared with the case
when travelling across provinces is banned (red line vs. yellow
line, left panel of Fig.4). The reason is because the provincial
border re-opening will drain some infectives out of Bangkok.
Infectives from Bangkok can then transmit the disease to
people outside Bangkok instead of transmitting it to people in
Bangkok themselves. This also applies to other provinces with

the COVID-19 prevalence above the average of the country.
Conversely, provinces with the COVID-19 prevalence below

the average (such as Patum-thani, right panel of Fig.4) will
have a faster growth of DNCC if travel between provinces
returns to normal compared with the case when travelling
across provinces is banned (red line vs. yellow line, right panel
of Fig.4). Travel between provinces will drain infectives out
of provinces with prevalence above the average into provinces
with prevalence below the average.

In addition to what we have shown here, our model also
forecasts the number of infected people in different SEIR
phases in every province. This includes the Is phase, which
can be used to estimate the hospitalization rates. This helps
the RTG ensure that health-care resources are sufficient for
any scenario that can happen in the near future.

IV. CONCLUSIONS

We develop a modified SEIR model and fit it to the
actual COVID-19 data in Thailand reported by MoPH to find
the trend of Rt and to forecast the COVID-19 situation in
multiple different scenarios. Our main priority is given to the
computational cost so that the model can re-fit to new data
and re-forecast everyday, which keeps the users up-to-date.
The near real-time Rt and forecast results give early warnings
of potential risks so that the RTG are well-prepared for any
challenge in the near future.

COVID-19 in Thailand spreads most rapidly in March 2020,
during which Rt is elevated above 3 and the number of DNCC
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Fig. 4. The number of DNCC in Bangkok (left) and Patum-thani (right). Different coloured lines correspond to different scenarios of the model forecast
results performed on 19th of May 2020: 1.) blue line: Rt = 1 with no one allowed to travel between provinces, 2.) green line: Rt = 1 with normal travel
between provinces, 3.) yellow line: Rt = 2 with no one allowed to travel between provinces, and 4.) red line: Rt = 2 with normal travel between provinces.
Dark grey line is the modelled number of DNCC obtained from fitting model to the actual historical data (pink bars).

is greater than 100 cases per day. By the beginning of April,
Rt has dropped quickly to below 1, which stops the spread
of COVID-19. Since then, the number of DNCC substantially
declines to below 20 cases per day by mid-April 2020.
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